Index: native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html |
diff --git a/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html |
new file mode 100644 |
index 0000000000000000000000000000000000000000..37f29d5ff4bdf540b05d73b4acee201a1267f5a3 |
--- /dev/null |
+++ b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html |
@@ -0,0 +1,3937 @@ |
+{{+bindTo:partials.standard_nacl_article}} |
+ |
+<section id="pnacl-bitcode-file-reference-manual"> |
+<h1 id="pnacl-bitcode-file-reference-manual">PNaCl Bitcode File Reference Manual</h1> |
+<div class="contents local" id="contents" style="display: none"> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#introduction" id="id5">Introduction</a></li> |
+<li><a class="reference internal" href="#data-model" id="id6">Data Model</a></li> |
+<li><a class="reference internal" href="#high-level-basics" id="id7">High Level Basics</a></li> |
+<li><a class="reference internal" href="#pnacl-blocks" id="id8">PNaCl Blocks</a></li> |
+<li><a class="reference internal" href="#pnacl-records" id="id9">PNaCl Records</a></li> |
+<li><a class="reference internal" href="#conventions-for-describing-records" id="id10">Conventions for describing records</a></li> |
+<li><a class="reference internal" href="#factorial-example" id="id11">Factorial Example</a></li> |
+<li><p class="first"><a class="reference internal" href="#parse-state" id="id12">Parse State</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#typing" id="id13">Typing</a></li> |
+<li><a class="reference internal" href="#id-counters" id="id14">ID Counters</a></li> |
+<li><a class="reference internal" href="#size-variables" id="id15">Size Variables</a></li> |
+<li><a class="reference internal" href="#other-variables" id="id16">Other Variables</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#special-records" id="id17">Special records</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#header-record" id="id18">Header Record</a></li> |
+<li><a class="reference internal" href="#enter-block-record" id="id19">Enter Block Record</a></li> |
+<li><a class="reference internal" href="#exit-block-record" id="id20">Exit Block Record</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#types-block" id="id21">Types Block</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#count-record" id="id22">Count Record</a></li> |
+<li><a class="reference internal" href="#void-type" id="id23">Void Type</a></li> |
+<li><a class="reference internal" href="#integer-types" id="id24">Integer Types</a></li> |
+<li><a class="reference internal" href="#bit-floating-type" id="id25">32-Bit Floating Type</a></li> |
+<li><a class="reference internal" href="#id1" id="id26">64-bit Floating Type</a></li> |
+<li><a class="reference internal" href="#vector-types" id="id27">Vector Types</a></li> |
+<li><a class="reference internal" href="#function-type" id="id28">Function Type</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#globals-block" id="id29">Globals block</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#id2" id="id30">Count Record</a></li> |
+<li><a class="reference internal" href="#global-variable-addressses" id="id31">Global Variable Addressses</a></li> |
+<li><a class="reference internal" href="#global-constant-addresses" id="id32">Global Constant Addresses</a></li> |
+<li><a class="reference internal" href="#zerofill-initializer" id="id33">Zerofill Initializer</a></li> |
+<li><a class="reference internal" href="#data-initializer" id="id34">Data Initializer</a></li> |
+<li><a class="reference internal" href="#relocation-initializer" id="id35">Relocation Initializer</a></li> |
+<li><a class="reference internal" href="#subfield-relocation-initializer" id="id36">Subfield Relocation Initializer</a></li> |
+<li><a class="reference internal" href="#compound-initializer" id="id37">Compound Initializer</a></li> |
+</ul> |
+</li> |
+<li><a class="reference internal" href="#valuesymtab-block" id="id38">Valuesymtab Block</a></li> |
+<li><p class="first"><a class="reference internal" href="#module-block" id="id39">Module Block</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#version" id="id40">Version</a></li> |
+<li><a class="reference internal" href="#function-address" id="id41">Function Address</a></li> |
+</ul> |
+</li> |
+<li><a class="reference internal" href="#constants-blocks" id="id42">Constants Blocks</a></li> |
+<li><p class="first"><a class="reference internal" href="#function-blocks" id="id43">Function Blocks</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#function-enter" id="id44">Function enter</a></li> |
+<li><a class="reference internal" href="#id3" id="id45">Count Record</a></li> |
+<li><p class="first"><a class="reference internal" href="#terminator-instructions" id="id46">Terminator Instructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#return-void-instruction" id="id47">Return Void Instruction</a></li> |
+<li><a class="reference internal" href="#return-value-instruction" id="id48">Return Value Instruction</a></li> |
+<li><a class="reference internal" href="#unconditional-branch-instruction" id="id49">Unconditional Branch Instruction</a></li> |
+<li><a class="reference internal" href="#conditional-branch-instruction" id="id50">Conditional Branch Instruction</a></li> |
+<li><a class="reference internal" href="#unreachable" id="id51">Unreachable</a></li> |
+<li><a class="reference internal" href="#switch-instruction" id="id52">Switch Instruction</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#integer-binary-inststructions" id="id53">Integer Binary Inststructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#integer-add" id="id54">Integer Add</a></li> |
+<li><a class="reference internal" href="#integer-subtract" id="id55">Integer Subtract</a></li> |
+<li><a class="reference internal" href="#integer-multiply" id="id56">Integer Multiply</a></li> |
+<li><a class="reference internal" href="#signed-integer-divide" id="id57">Signed Integer Divide</a></li> |
+<li><a class="reference internal" href="#unsigned-integer-divide" id="id58">Unsigned Integer Divide</a></li> |
+<li><a class="reference internal" href="#signed-integer-remainder" id="id59">Signed Integer Remainder</a></li> |
+<li><a class="reference internal" href="#unsigned-integer-remainder-instruction" id="id60">Unsigned Integer Remainder Instruction</a></li> |
+<li><a class="reference internal" href="#shift-left" id="id61">Shift left</a></li> |
+<li><a class="reference internal" href="#logical-shift-right" id="id62">Logical Shift right</a></li> |
+<li><a class="reference internal" href="#arithmetic-shift-right" id="id63">Arithmetic Shift Right</a></li> |
+<li><a class="reference internal" href="#logical-and" id="id64">Logical And</a></li> |
+<li><a class="reference internal" href="#logical-or" id="id65">Logical Or</a></li> |
+<li><a class="reference internal" href="#logical-xor" id="id66">Logical Xor</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#floating-binary-inststructions" id="id67">Floating Binary Inststructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#float-add" id="id68">Float Add</a></li> |
+<li><a class="reference internal" href="#float-subtract" id="id69">Float Subtract</a></li> |
+<li><a class="reference internal" href="#float-multiply" id="id70">Float Multiply</a></li> |
+<li><a class="reference internal" href="#float-divide" id="id71">Float Divide</a></li> |
+<li><a class="reference internal" href="#float-remainder" id="id72">Float Remainder</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#memory-creation-and-access-instructions" id="id73">Memory creation and access Instructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#alloca-instruction" id="id74">Alloca Instruction</a></li> |
+<li><a class="reference internal" href="#load-instruction" id="id75">Load Instruction</a></li> |
+<li><a class="reference internal" href="#store-instruction" id="id76">Store Instruction</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#conversion-instructions" id="id77">Conversion Instructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#integer-truncating-instruction" id="id78">Integer truncating Instruction</a></li> |
+<li><a class="reference internal" href="#floating-truncating-instruction" id="id79">Floating truncating Instruction</a></li> |
+<li><a class="reference internal" href="#zero-extending-instruction" id="id80">Zero Extending Instruction</a></li> |
+<li><a class="reference internal" href="#sign-extending-instruction" id="id81">Sign Extending Instruction</a></li> |
+<li><a class="reference internal" href="#fpext" id="id82">fpext</a></li> |
+<li><a class="reference internal" href="#fptoui" id="id83">fptoui</a></li> |
+<li><a class="reference internal" href="#fptosi" id="id84">fptosi</a></li> |
+<li><a class="reference internal" href="#sitofp" id="id85">sitofp</a></li> |
+<li><a class="reference internal" href="#bitcast" id="id86">bitcast</a></li> |
+</ul> |
+</li> |
+<li><a class="reference internal" href="#comparison-instructions" id="id87">Comparison Instructions</a></li> |
+<li><p class="first"><a class="reference internal" href="#other-instructions" id="id88">Other Instructions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#phi-instruction" id="id89">Phi Instruction</a></li> |
+<li><a class="reference internal" href="#forward-type-declarations" id="id90">Forward type declarations</a></li> |
+<li><a class="reference internal" href="#select-instruction" id="id91">Select Instruction</a></li> |
+<li><a class="reference internal" href="#call-instructions" id="id92">Call Instructions</a></li> |
+</ul> |
+</li> |
+<li><a class="reference internal" href="#intrinsic-functions" id="id93">Intrinsic Functions</a></li> |
+</ul> |
+</li> |
+<li><p class="first"><a class="reference internal" href="#support-functions" id="id94">Support Functions</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#signrotate" id="id95">SignRotate</a></li> |
+<li><a class="reference internal" href="#absoluteindex" id="id96">AbsoluteIndex</a></li> |
+<li><a class="reference internal" href="#relativeindex" id="id97">RelativeIndex</a></li> |
+<li><a class="reference internal" href="#abbrevindex" id="id98">AbbrevIndex</a></li> |
+<li><a class="reference internal" href="#log2" id="id99">Log2</a></li> |
+<li><a class="reference internal" href="#exp" id="id100">exp</a></li> |
+<li><a class="reference internal" href="#bitsizeof" id="id101">BitSizeOf</a></li> |
+<li><a class="reference internal" href="#underlyingtype" id="id102">UnderlyingType</a></li> |
+<li><a class="reference internal" href="#underlyingcount" id="id103">UnderlyingCount</a></li> |
+<li><a class="reference internal" href="#isinteger" id="id104">IsInteger</a></li> |
+<li><a class="reference internal" href="#isfloat" id="id105">IsFloat</a></li> |
+<li><p class="first"><a class="reference internal" href="#abbreviations" id="id106">Abbreviations</a></p> |
+<ul class="small-gap"> |
+<li><a class="reference internal" href="#id4" id="id107">Introduction</a></li> |
+<li><a class="reference internal" href="#bitstream-format" id="id108">Bitstream Format</a></li> |
+</ul> |
+</li> |
+<li><a class="reference internal" href="#reference-implementation" id="id109">Reference Implementation</a></li> |
+</ul> |
+</li> |
+</ul> |
+ |
+</div><section id="introduction"> |
+<h2 id="introduction">Introduction</h2> |
+<p>This document is a reference manual for the contents of PNaCl bitcode files. It |
+is presented using assembly language <em>PNaClAsm</em>. PNaClAsm uses a <em>static single |
+assignment</em> (SSA) based representation that requires generated results to have a |
+single (assignment) source. PNaClAsm is the textual version of the bitcode file.</p> |
+<p>PNaClAsm focusses on the semantic content of the file, not the bit-encoding of |
+that content. However, it does provide annotations that allow one to specify |
+how the PNaCl bitcode writer converts the semantic content of a PNaClAsm |
+program, into a specific bit sequence.</p> |
+<p>Below PNaClAsm is the high-level form of the data stored in PNaCl bitcode |
+files. Each construct in PNaClAsm defines a corresponding <em>PNaCl record</em> [ref]. |
+A PNaCl bitcode file is simply a sequence of PNaCl records. The goal of PNaClAsm |
+is to make records easier to read, and not to define a high-level user |
+programming language.</p> |
+<p>PNaCl records are an abstract encoding of structured data, similar to XML. Like |
+XML, PNaCl records have a notion of tags (i.e. the first element in a record, |
+called a <em>code</em>), and nested structures. The nested structures are defined by |
+corresponding <em>enter</em> and <em>exit</em> block records.</p> |
+<p>These block records must be used like parentheses to define the block structure |
+that is imposed on top of records. Each exit record must be preceded by a |
+corresponding enter record. Blocks can be nested by nesting enter/exit records |
+appropriately.</p> |
+<p>The <em>PNaCl bitcode writer</em> takes the sequence of records, defined by a PNaClAsm |
+program, and converts each record into a (variable) sequence of bits. The output |
+of each bit sequence is appended together. The resulting generated sequence of |
+bits is the contents of the PNaCl bitcode file.</p> |
+<p>For every kind of record, there is a default method for converting records into |
+bit sequences. These methods correspond to a notion of <em>abbreviations</em> |
+[ref]. Each abbreviation defines a specific bit sequence conversion to be |
+applied. The default conversion methods are simply predefined abbreviations.</p> |
+<p>The default abbreviations can be overridden with user-specified abbreviations. |
+All user-specified abbreviations are included in the generated bitcode |
+file. Each abbreviation defines how a record is converted to a bit sequences. The |
+<em>PNaCl bitcode writer</em> uses these abbreviations to convert the corresponding |
+record sequence into a corresponding bit sequence. As a result, all records have |
+an abbreviation (user or default) associated with them.</p> |
+<p>The <em>PNaCl bitcode reader</em> then uses these abbreviations to convert the bit |
+sequences back into the corresponding records.</p> |
+<p>Conceptually, abbreviations are used to define how to pack the contents of |
+records into bit sequences. The main reason for defining abbreviations is to |
+save space. The default abbreviations are simplistic and are intended to handle |
+all possible records. The default abbreviations do not really worry about being |
+efficient, in terms of the number of bits generated.</p> |
+<p>By separating the concepts of PNaCl records and abbreviations, the notion of |
+data compression is cleanly separated from semantic content. This allows |
+different use cases to decide how much effort should be spent on compressing |
+records.</p> |
+<p>For a JIT compiler that produces bitcode, little (if any) compression should be |
+applied. In fact, the API to the JIT may just be the records themselves. The |
+goal of a JIT is to perform the final translation to machine code as quickly as |
+possible. On the other hand, when delivering across the web, one may want to |
+compress the sequence of bits considerably, to reduce costs in delivering web |
+pages.</p> |
+</section><section id="data-model"> |
+<h2 id="data-model">Data Model</h2> |
+<p>The data model for PNaCl bitcode is fixed at little-endian ILP32: pointers are |
+32 bits in size. 64-bit integer types are also supported natively via the i64 |
+type (for example, a front-end can generate these from the C/C++ type <em>long |
+long</em>).</p> |
+<p>Integers are assumed to be modeled using two’s complement. Floating point |
+support is fixed at IEEE 754 32-bit and 64-bit values (f32 and f64, |
+respectively).</p> |
+</section><section id="high-level-basics"> |
+<h2 id="high-level-basics">High Level Basics</h2> |
+<p>A program is defined as a sequence of top-level <em>blocks</em>. Blocks can be nested |
+within other blocks. Each block defines a sequence of records.</p> |
+<p>Most of the records, within a block, also define a unique values. Each unique |
+value is given a corresponding unique identifier (i.e. <em>ID</em>). In PNaClAsm. each |
+kind of block defines its own kind of identifiers. The names of these |
+identifiers are defined by concatenating a prefix character (‘@’ or ‘%’), the |
+kind of block (a single character), and a suffix index. The suffix index is |
+defined by the positional location of the defined value within the records of |
+the corresponding block. The indices are all zero based, meaning that the first |
+defined value (within a block) is defined using index 0.</p> |
+<p>Identifiers are categorized into two types, <em>local</em> and <em>global</em>. Local |
+identifiers are identifiers that are associated with the implementation of a |
+single function. All other identifiers are global. This split is |
+intentional. Global identifiers are used by multiple functions, and therefore |
+must be unique across all function implementations. Local identifiers only apply |
+to a single function, and can be reused between functions. The <em>PNaCl |
+translator</em> uses this separation to parallelize the compilation of functions.</p> |
+<p>Global identifiers use the prefix character <em>‘@’</em> while local identifiers use |
+the prefix character <em>‘%’</em>.</p> |
+<p>Note: There is one exception to this separation of local and global identifiers. |
+Abbreviations can be defined locally and globally. An abbreviation is local if |
+it only applies to the block it appears in. If it is global, the abbreviation |
+can apply to multiple block instances.</p> |
+<p>Note that by using positional location to define identifiers (within a block), |
+the values defined in PNaCl bitcode files need not be explicitly included in the |
+bitcode file. Rather, they are inferred by the (ordered) position of the record |
+in the block. This is also intentional. It is used to reduce the amount of data |
+that must be (explicitly) passed to the PNaCl translator.</p> |
+<p>In general, most of the records within blocks are assumed to be topologically |
+sorted, putting value definitions before their uses. This implies that records |
+do not need to encode data if they can deduce the corresponding information from |
+their uses.</p> |
+<p>The most common use of this is that many instructions use the type of their |
+operands to determine the type of the instruction. Again, this is |
+intentional. It allows less information to be stored.</p> |
+<p>However, for function blocks (which define instructions), no topological sort |
+exists. Loop carried value dependencies simply do not allow topologically |
+sorting. To deal with this, function blocks have a notion of a forward |
+(instruction value) declaration. These declarations must appear before any of |
+the uses of that value, if the (instruction) value is defined later in the |
+function than its first use.</p> |
+</section><section id="pnacl-blocks"> |
+<h2 id="pnacl-blocks">PNaCl Blocks</h2> |
+<p>Blocks are used to organize records in the bitcode file. The kinds of blocks |
+defined in PNaClAsm are:</p> |
+<dl class="docutils"> |
+<dt>Types block</dt> |
+<dd>Defines the set of types used by the program. All types used in the program |
+must be defined in this block. These types consist of primitive types as well |
+as high level constructs such as vectors and function signatures.</dd> |
+<dt>Globals block</dt> |
+<dd>Defines the set of global addresses of global variables and constants, used by |
+the program. It also defines how each global (associated with the global |
+address) is initialized.</dd> |
+<dt>Valuesymtab block</dt> |
+<dd>Defines textual names for global and function addresses.</dd> |
+<dt>Function block</dt> |
+<dd>Each function (implemented) in a program has its own block that defines the |
+implementation of the corresponding function.</dd> |
+<dt>Constants block</dt> |
+<dd>Each implemented function, that uses constants in its instructions, defines a |
+constant block. Constants blocks appear within the corresponding function |
+block.</dd> |
+<dt>Module block</dt> |
+<dd>A top-level block defining the program. This block defines global information |
+used by the program, followed by function blocks defining the implementation |
+of functions within the program.</dd> |
+<dt>Abbreviations block</dt> |
+<dd>Defines abbreviations that are used to compress PNaCl records. This block is |
+segmented into multiple sections, one section for each kind of block. This |
+block appears at the beginning of the module block.</dd> |
+</dl> |
+<p>A PNaCl program consists of a header record and a module block. The header |
+defines a sequence of bytes uniquely identifying the file as a bitcode file. The |
+module block defines the program to run.</p> |
+<p>Each block, within a bitcode file, defines values. These values are associated |
+with IDs. Each type of block defines different kinds of IDs.</p> |
+<p>The <em>abbreviations block</em> [ref] is the first block in the module buld.. The |
+block is divided into sections. Each section is a sequence of records. Each |
+record in the sequence defines a user-defined abbreviation. Each section |
+defines abbreviations that can be applied to all (succeeding) blocks of a |
+particular kind. These abbreviations are denoted by the (global) ID of the form |
+<em>@aN</em>.</p> |
+<p>The <em>types block</em> [ref] defines types used by the program. Each record in the |
+types block defines a separate type. Valid types include various sizes of |
+integer and floating types. They also define higher level constructs such as |
+vectors and function signatures. For each definition, a type ID is defined. A |
+type ID is of the form <em>@tN</em>, where <em>N</em> corresponds to the (relative) position |
+of the corresponding defining record in the types block.</p> |
+<p>The types block must appear within the module block, and must appear before any |
+block that uses a typed value. Many PNaClAsm constructs allow one to use |
+explicit type names, rather than type IDs. However, they are internally |
+converted to the corresponding type ID in the types block. Hence, the |
+requirement that the types block must appear early in the module block.</p> |
+<p>The <em>module block</em> [ref] contains all other blocks. The only values defined in |
+a module block are function addresses. All remaining definitions appear within |
+blocks of the module block.</p> |
+<p>Function addresses are global IDs of the form <em>@fN</em>, where <em>N</em> corresponds to |
+the position of the corresponding function address record in the module |
+block. Function addresses must appear after the types block.</p> |
+<p>The <em>globals block</em> [ref] defines global addresses for global variables and |
+constants, used in the program. This block not only defines the addresses, but |
+also the size of the corresponding memory associated with these addresses, and |
+how the memory should be initialized.</p> |
+<p>The globals block must appear in the module block, and after all function |
+address records. Global addresses (defined by the globals block) are of the |
+form <em>@gN</em>, where <em>N</em> is the (relative) position of the corresponding defining |
+records.</p> |
+<p>The <em>valuesymtab block</em> [ref] does not define any values. Rather, its only goal |
+is to associate text names with previously defined global addresses |
+(i.e. function, constant, and variable). Each association is defined by a |
+record in the valuesymtab block. Currently, only <em>intrinsic</em> [ref] function |
+addresses need a name. All other entries in this block are considered as a hint |
+for debugging. The PNaCl translator may (or may not) pass these names to the |
+running executable, allowing the (runtime) debugger to associate names with |
+addresses.</p> |
+<p>Each <em>function block</em> [ref] defines the implementation of a single |
+function. Each function block defines the intermediate representation of the |
+function, consisting of basic blocks and instructions. If constants are used |
+within instructions, they are defined in a <em>constants block</em>, nested within the |
+corresponding function block.</p> |
+<p>All function blocks are associated with a corresponding function address. This |
+association is (again) positional rather than explicit. That is, the Nth |
+function block in a module block corresponds to the Nth defining (rather than |
+declared) function address record in the module block.</p> |
+<p>Hence, within a function block, there is no explicit reference to the |
+function address the block defines. For readability, PNaClAsm uses the |
+corresponding function heading, associated with the corresponding |
+function address record, even though that data does not appear in the |
+corresponding records.</p> |
+<p>Unlike other blocks, a function block defines multiple kinds of |
+values: parameter, basic block, and instruction. Parameter IDs (in |
+PNaClAsm) are identified using local IDs of the form <em>%pN</em>. Basic |
+block IDs are identified using local IDs of the form |
+<em>%bN</em>. Instructions that generate values are identified using local |
+IDs of the form <em>%vN</em>.</p> |
+<p>Hence, <em>%pN</em> denotes the Nth parameter of the function. <em>%bN</em> denotes |
+the <em>Nth</em> basic block within the function. <em>%vN</em> denotes the value |
+generated by the <em>Nth</em> instruction that generates a value. Note: <em>%vN</em> |
+does not necessarily refer to the <em>Nth</em> instruction in the function |
+block, because not all instructions generate values.</p> |
+<p>Within a function block, basic blocks are not explicitly defined in the records |
+of a function block. Rather, the first record of the block identifies how many |
+basic blocks appear in the control flow graph of the function. This record is |
+then followed by a sequence of records, each record defining a single |
+instruction. Special <em>terminating</em> [ref] (e.g. branch) instructions are used to |
+determine block boundaries.</p> |
+<p>Each <em>constants block</em> [ref] defines constants that are used by the enclosing |
+function block. The purpose of the constants block is to merge all uses of a |
+constant (within a function) into a single defining ID. Constant IDs are of the |
+form <em>%cN</em>, where <em>N</em> corresponds to the (relative) position of the constant |
+defined in the corresponding constants block. The constants block must appear |
+before any instruction.</p> |
+</section><section id="pnacl-records"> |
+<h2 id="pnacl-records">PNaCl Records</h2> |
+<p>A PNaCl record is a non-empty sequence of unsigned, 64-bit, integers. A record |
+is identified by the record <em>code</em>, which is the first element in the |
+sequence. Record codes are unique within a specific kind of block, but are not |
+necessarily unique across different kinds of blocks. The record code acts as the |
+variant discriminator (i.e. tag) within a block, to identify what kind of record |
+it is.</p> |
+<p>Record codes are typically small numbers. In an ideal world, they would be a |
+consecutive sequence of integers, starting at zero. However, the reality is that |
+PNaCl records evolved over time (and actually started as LLVM records [ref]). |
+For backwards compatibility, old numbers have not been reused, leaving gaps in |
+the actual record code values used.</p> |
+<p>The exception of using small numbers for record codes, are four special kinds of |
+records. What makes these four kinds of records special is that they either |
+apply in multiple blocks, or don’t occur in any block. To make these cases |
+clear, and to leave room for lots of future growth in PNaClAsm, these special |
+records have record codes close to the value 2**16. Note: Well-formed PNaCl |
+bitcode files do not have record codes >= 2**16.</p> |
+<p>A PNaCl record is denoted as follows:</p> |
+<pre class="prettyprint"> |
+a: <v0, v1, ... , vN> |
+</pre> |
+<p>The value <em>v0</em> is the record code. The remaining values, <em>v1</em> through <em>vN</em>, are |
+parameters that fill in additional information needed by the construct it |
+represents. All records must have a record code. Hence, empty PNaCl records are |
+not allowed.</p> |
+<p>While most records (for a given record code) are of the same length, it is not |
+true of all record codes. Some record codes can have arbitrary length. In |
+particular, function type signatures, call instructions, phi nodes, switch |
+instructions, and global variable initialization records all have variable |
+length.</p> |
+<p>Records are converted to bit sequences using an abbreviation. Let <em>a</em> the the index |
+identifying the abbreviation that is used to convert the record to a sequence of |
+bits. If a user-defined abbreviation <em>%aA</em> (or <em>@aA</em> if global) is specified in |
+the syntax, then <em>a = AbbrevIndex(%aA)</em>.</p> |
+<p>The PNaCl bitcode writer, which converts records to bit sequences, does this by |
+writing out the abbreviation index used to encode the record, followed by the |
+contents of the record. The details of this are left to section on abbreviations |
+[ref]. However, at the record level, one important aspect of this appears in |
+block enter records. These records must define how many bits are required to |
+hold abbreviation indices associated with records of that block.</p> |
+<p>There are 4 predefined (default) abbreviation indices, used as the default |
+abbreviations for PNaCl records. They are:</p> |
+<dl class="docutils"> |
+<dt>0</dt> |
+<dd>Abbreviation index for the abbreviation used to bit-encode an exit block |
+record.</dd> |
+<dt>1</dt> |
+<dd>Abbreviation index for the abbreviation used to bit-encode a enter block |
+record.</dd> |
+<dt>2</dt> |
+<dd>Abbreviation index for the abbreviation used to bit-encode a user-defined |
+abbreviation record.</dd> |
+<dt>3</dt> |
+<dd>Abbreviation index for the default abbreviation to bit-encode all other |
+records in the bitcode file.</dd> |
+</dl> |
+<p>A block may (in addition), define a list of block specific, user-defined, |
+abbreviations (of length <em>U</em>). The number of bits <em>B</em> specified for an enter |
+record must be sufficiently large such that</p> |
+<pre class="prettyprint"> |
+2**B >= U + 4 |
+</pre> |
+<p>In addition, the upper limit for B is 32.</p> |
+<p>PNaClAsm requires that you specify the number of bits needed to read |
+abbreviations as part of the enter block record. This allows the PNaCl bitcode |
+reader/writer to use the specified number of bits to encode abbreviation |
+indices.</p> |
+</section><section id="conventions-for-describing-records"> |
+<h2 id="conventions-for-describing-records">Conventions for describing records</h2> |
+<p>PNaClAsm is the textual representation of PNaCl records. Each PNaCl record is |
+described by a corresponding PNaClAsm construct. These constructs are described |
+using syntax rules, and semantics on how they are converted to records. The |
+parser also has state, that is updated after the record is processed. These |
+state updates are part of the semantics of the corresponding record construct.</p> |
+<p>For each PNaCl construct, we define multiple subsections. The <strong>Syntax</strong> |
+subsection defines a syntax rule for the construct. The <strong>Record</strong> subsection |
+defines the corresponding record associated with the syntax rule. The |
+<strong>Semantics</strong> subsection describes the semantics associated with the record, in |
+terms of data within the parse state and the corresponding syntax.</p> |
+<p>The <strong>Constraints</strong> subsection (if present) defines any constraints associated |
+with the construct. The <strong>Updates</strong> subsection (if present) defines how the |
+parse state is updated when the construct is parsed. The <strong>Examples</strong> |
+subsection gives one (or more) examples of using the corresponding PNaClAsm |
+construct.</p> |
+<p>Some semantics subsections use functions to compute values. The meaning of |
+functions can be found in <em>Support Functions</em> [ref].</p> |
+<p>Within a syntax rule, there may specifications about abbreviations. These |
+abbreviation specifications, if allowed, are at the end of the construct, and |
+enclosed in <em><</em> and <em>></em> brackets. These abbreviation specifications are optional |
+in the syntax, and can be omitted. If they are used, the abbreviation brackets |
+are part of the actual syntax of the construct. To make it clear that |
+abbreviation specifications are optional, syntax rules separate abbreviation |
+specifications using plenty of whitespace.</p> |
+<p>Abbreviation specifications consist of user-defined abbreviations, abbreviation |
+identifiers, and the number of bits required to represent abbreviations in a |
+block. These notations appear, as appropriate, in the corresponding syntax |
+rules.</p> |
+<p>The most common abbreviation syntax is the corresponding abbreviation identifier |
+to use to read/write the corresponding record. In such cases, if the specified |
+abbreviation identifier is omitted, the corresponding default abbreviation will |
+be used by the PNaCl reader/writer.</p> |
+<p>Also, within the syntax rule, all alphabetic characters are lower case unless |
+they appear within a literal value. Hence, if we mix lower and upper case |
+letters within a name appearing in a syntax rule, the lower case letters are |
+literal while the upper case sequence of letters denote (rule specific) |
+values. If an upper case sequence of letters is followed by digits, the |
+corresponding embedded name includes both the upper case letters and the digits. |
+The valid values for each of these names will be defined in the corresponding |
+semantics subsection.</p> |
+<p>For example, consider the following syntax rule:</p> |
+<pre class="prettyprint"> |
+%vN = add T O1, O2; <A> |
+</pre> |
+<p>This rule defines a PNaClAsm add instruction. This construct defines an |
+instruction that adds to two values (<em>O1</em> and <em>O2</em>) to generate instruction |
+value <em>%vN</em>. The types of the arguments, and the result, are all of type |
+<em>T</em>. Since abbreviation ID <em>A</em> is present, the record is encoded using that |
+abbreviation.</p> |
+<p>To be concrete, the syntactic rule above defines the structure of the following |
+PNaClAsm examples.</p> |
+<pre class="prettyprint"> |
+%v10 = add i32 %v1, %v2; <@a5> |
+%v11 = add i32 %v10, %v3; |
+</pre> |
+<p>In addition to specifying the syntax, each syntax rule also specifies the |
+contents of the corresponding record in the corresponding record subsection. In |
+simple cases, the elements of the corresponding record are predefined (literal) |
+constants. Otherwise the record element is a name that is defined by the other |
+subsections associated with the construct.</p> |
+</section><section id="factorial-example"> |
+<h2 id="factorial-example">Factorial Example</h2> |
+<p>This section provides a simple example of a PNaCl bticode file. Its contents |
+describes a bitcode file that only defines a function to compute the factorial |
+value of a number.</p> |
+<p>In C, the factorial function can be defined as:</p> |
+<pre class="prettyprint"> |
+int fact(int n) { |
+ if (n == 0) return 1; |
+ return n * fact(n-1); |
+} |
+</pre> |
+<p>Compiling this into a PEXE file, and dumping out its contents with utility |
+<em>pnacl-bcdis</em>, the corresponding output is:</p> |
+<pre class="prettyprint"> |
+ 0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69) |
+ | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2 |
+ | 0> | |
+ 16:0|1: <65535, 8, 3> |module { // BlockID = 8 |
+ 24:0| 3: <1, 1> | version 1; |
+ 26:5| 1: <65535, 0, 2> | abbreviations { // BlockID = 0 |
+ 36:0| 0: <65534> | } |
+ 40:0| 1: <65535, 17, 4> | types { // BlockID = 17 |
+ 48:0| 3: <1, 4> | count 4; |
+ 50:6| 3: <7, 32> | @t0 = i32; |
+ 54:2| 3: <2> | @t1 = void; |
+ 56:2| 3: <21, 0, 0, 0> | @t2 = i32 (i32); |
+ 60:4| 3: <7, 1> | @t3 = i1; |
+ 63:2| 0: <65534> | } |
+ 64:0| 3: <8, 2, 0, 0, 0> | define external i32 @f0(i32); |
+ 68:7| 1: <65535, 19, 4> | globals { // BlockID = 19 |
+ 76:0| 3: <5, 0> | count 0; |
+ 78:6| 0: <65534> | } |
+ 80:0| 1: <65535, 14, 4> | valuesymtab { // BlockID = 14 |
+ 88:0| 3: <1, 0, 102, 97, 99, | @f0 : "fact"; |
+ | 116> | |
+ 96:6| 0: <65534> | } |
+100:0| 1: <65535, 12, 5> | function i32 @f0(i32 %p0) { |
+ | | // BlockID = 12 |
+108:0| 3: <1, 3> | blocks 3; |
+110:7| 1: <65535, 11, 4> | constants { // BlockID = 11 |
+120:0| 3: <1, 0> | i32: |
+122:6| 3: <4, 2> | %c0 = i32 1; |
+125:4| 3: <4, 0> | %c1 = i32 0; |
+128:2| 0: <65534> | } |
+ | | %b0: |
+132:0| 3: <28, 1, 2, 32> | %v0 = icmp eq i32 %c1, %c0; |
+137:1| 3: <11, 1, 2, 1> | br i1 %v0, %b1, %b2; |
+ | | %b1: |
+141:4| 3: <10, 3> | ret i32 %c0; |
+ | | %b2: |
+144:3| 3: <2, 4, 3, 1> | %v1 = sub i32 %p0, %c0; |
+148:6| 3: <34, 0, 6, 1> | %v2 = call i32 @f0(i32 %p0); |
+153:7| 3: <2, 6, 1, 2> | %v2 = mul i32 @f0, %v1; |
+158:2| 3: <10, 1> | ret i32 %v2; |
+161:1| 0: <65534> | } |
+164:0|0: <65534> |} |
+</pre> |
+<p>Note that there are three columns in this output. The first column contains the |
+bit positions of the records within the bitcode file. The second column contains |
+the sequence of records within the bitcode file. The third column contains the |
+corresponding PNaClAsm program.</p> |
+<p>Bit positions are defined by a pair <em>B:N</em>. <em>B</em> is the number of bytes, while <em>N</em> |
+is the bit offset within the <em>B+1</em> byte. Hence, the bit position (in bits) is:</p> |
+<pre class="prettyprint"> |
+B*8 + N |
+</pre> |
+<p>Hence, the first <em>header</em> record is at bit offset 0 (0*8+0). The second record |
+is at bit offset 128 (16*8+0). The third record is at bit offset 192 (24*8+0). |
+The fourth record is at bit offset 213 (26*8+5).</p> |
+<p>The header record is a sequence of 16 bytes, defining the contents of the first |
+16 bytes of the bitcode file. The first four bytes define the magic number of |
+the file. That is, ‘PEXE’. All PEXE bitcode files begin with these four bytes. |
+Byte 13 defines the PNaCl bitcode version of the file. Currently, only version 2 |
+is allowed.</p> |
+<p>All but the header record has an abbreviation index associated with it. Since no |
+user-defined abbreviations are provided, all records use the default |
+abbreviation.</p> |
+<p>The types block (starting at bit address 40:0), defines 4 types: <em>i1</em>, <em>i32</em>, |
+<em>void</em>, and function signature <em>i32(i32)</em>.</p> |
+<p>Bit address 64:0 declares the factorial function address @f0, and its |
+corresponding type signature. Bit address 88:0 associates the name “fact” with |
+function address @f0.</p> |
+<p>Bit address 100:0 defines the function block that implemnts function “fact”. The |
+entry point is %b0 (at bit address 132:0). It uses the 32-bit integer constants |
+1 and 0 (defined at bit addresses 122:6 and 125:4). Bit address 132:0 defines an |
+equality comparison of the argument %p0 with 0 (constant %c1). Bit address 137:1 |
+defines a conditional branch. If the result of the previous comparison (%v0) is true, |
+the program will branch to block %b1. Otherwise it will branch to block %b2.</p> |
+<p>Bit address 141:4 returns constant 1 (%c0) when the input parameter is 0. |
+Instructions between bit address 144:3 and 158:2 compute and return “n * |
+fact(n-1)”.</p> |
+</section><section id="parse-state"> |
+<h2 id="parse-state">Parse State</h2> |
+<p>This section describes the parse state of the PNaClAsm assembler. It is used to |
+define contextual data that is carried between records. The following |
+subsections describe each element of the parse state.</p> |
+<section id="typing"> |
+<h3 id="typing">Typing</h3> |
+<p>Associated with most identifiers is a type. This type defines what type the |
+corresponding value has. It is defined by the (initially empty) map</p> |
+<pre class="prettyprint"> |
+TypeOf: ID -> Type |
+</pre> |
+<p>For each type in the <em>types block</em> [ref], a corresponding inverse map</p> |
+<pre class="prettyprint"> |
+TypeID: Type -> ID |
+</pre> |
+<p>is maintained to convert syntactic types to the corresponding type ID.</p> |
+<p>Note: This document assumes that map <em>TypeID</em> is automatically maintained during |
+updates to map <em>TypeOf</em> (when given a type ID). Hence, <em>updates</em> subsections |
+will not contain assignments to this map.</p> |
+<p>Associated with each function identifier is its type signature. This is |
+different than the type of the function identifier, since function identifiers |
+are pointers (and always implemented as a 32-bit integer).</p> |
+<p>Function type signatures are maintained using:</p> |
+<pre class="prettyprint"> |
+TypeOfFcn: ID -> Type |
+</pre> |
+<p>In addition, if a function address has an implementing block, there is a |
+corresponding implementation associated with the function address. To capture |
+this association, we use the set:</p> |
+<pre class="prettyprint"> |
+DefiningFcnIDs: set(ID) |
+</pre> |
+</section><section id="id-counters"> |
+<h3 id="id-counters">ID Counters</h3> |
+<p>Each block defines one (or more) kinds of values. Value indices are generated |
+sequentially, starting at zero. To capture this, the following counters are |
+defined:</p> |
+<dl class="docutils"> |
+<dt>NumTypes</dt> |
+<dd>The number of types defined so far (in the types block)</dd> |
+<dt>NumFuncAddresses</dt> |
+<dd>The number of function addresses defined so far (in the module block).</dd> |
+<dt>NumDefinedFcnAddresses</dt> |
+<dd>The number of defining function addresses defined so far (in the module |
+block).</dd> |
+<dt>NumFuncImpls</dt> |
+<dd>The number of implemented functions defined so far (in the module block).</dd> |
+<dt>NumGlobalAddresses</dt> |
+<dd>The number of global variable/constant addresses defined so far (in the |
+globals block).</dd> |
+<dt>NumParams</dt> |
+<dd>The number of parameters defined for a function.</dd> |
+<dt>NumFcnConsts</dt> |
+<dd>The number of constants defined in a function.</dd> |
+<dt>NumBasicBlocks</dt> |
+<dd>The number of basic blocks defined so far (within a function block).</dd> |
+<dt>NumValuedInsts</dt> |
+<dd>The number of instructions, generating values, defined so far (within a |
+function block).</dd> |
+</dl> |
+</section><section id="size-variables"> |
+<h3 id="size-variables">Size Variables</h3> |
+<p>A number of blocks define expected sizes of constructs. These sizes are recorded |
+in the following size variables:</p> |
+<dl class="docutils"> |
+<dt>ExpectedBasicBlocks</dt> |
+<dd>The expected number of basic blocks within a function implementation.</dd> |
+<dt>ExpectTypes</dt> |
+<dd>The expected number of types defined in the types block.</dd> |
+<dt>ExpectedGlobals</dt> |
+<dd>The expected number of global variable/constant addresses in the globals |
+block.</dd> |
+<dt>ExpectedInitializers</dt> |
+<dd>The expected number of initializers for a global variable/constant address in |
+the globals block.</dd> |
+</dl> |
+</section><section id="other-variables"> |
+<h3 id="other-variables">Other Variables</h3> |
+<dl class="docutils"> |
+<dt>EnclosingFcnID</dt> |
+<dd>The function ID of the function block being processed.</dd> |
+</dl> |
+</section></section><section id="special-records"> |
+<h2 id="special-records">Special records</h2> |
+<p>There are four special PNaCl records, each having its own record code. These |
+special records are:</p> |
+<dl class="docutils"> |
+<dt>Header</dt> |
+<dd>The header record is the first record of a PNaCl bitcode file, and identifies |
+the file’s magic number, as well as the bitcode version it uses. The record |
+defines the sequence of bytes that make up the header and uniquely identifies |
+the file as a PNaCl bitcode file.</dd> |
+<dt>Enter</dt> |
+<dd>An enter record defines the beginning of a block. Since blocks can be nested, |
+one can appear inside other blocks, as well as at the top level.</dd> |
+<dt>Exit</dt> |
+<dd>An exit record defines the end of a block. Hence, it must appear in every |
+block, to end the block.</dd> |
+<dt>Abbreviation</dt> |
+<dd>An abbreviation record defines a user-defined abbreviation to be applied to |
+records within blocks. Abbreviation records appearing in the abbreviations |
+block define global abbreviations. All other abbreviations are local to the |
+block they appear in, and can only be used in that block.</dd> |
+</dl> |
+<p>All special records can’t have user-defined abbreviations associated with |
+them. The default abbreviation is always used.</p> |
+<p>The following subsections define valid special records, other than abbreviation |
+records. Abbreviation records are described in the Abbreviations [ref] section.</p> |
+<section id="header-record"> |
+<h3 id="header-record">Header Record</h3> |
+<p>The header record must be the first record in the file. It is the only record in |
+the bitcode file that doesn’t have a corresponding construct in |
+PNaClAsm.</p> |
+<p><strong>Syntax</strong></p> |
+<p>There is no syntax for header records in PNaClAsm. It is automatically inserted |
+by the PNaCl bitcode writer.</p> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+<65532, 80, 69, 88, 69, 1, 0, 8, 0, 17, 0, 4, 0, 2, 0, 0, 0> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The header record defines the initial sequence of bytes that must appear at the |
+beginning of all (PNaCl bitcode version 2) files. That sequence is the list of |
+bytes inside the record (excluding the record code). As such, it uniquely |
+identifies PNaCl bitcode files.</p> |
+<p><strong>Examples</strong></p> |
+<p>There are no examples for the header record, since it is not part of PNaClAsm.</p> |
+</section><section id="enter-block-record"> |
+<h3 id="enter-block-record">Enter Block Record</h3> |
+<p>Block records can be top-level, as well as nested in other blocks. Blocks must |
+begin with an <em>enter</em> record, and end with an <em>exit</em> record.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+N { <B> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+1: <65535, ID, B> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>Enter block records define the beginning of a block. <em>B</em>, if present, is the |
+number of bits needed to represent all possible abbreviation indices used within |
+the block. If omitted, B=2 is assumed.</p> |
+<p>The block <em>ID</em> value is dependent on the name <em>N</em>. Valid names and corresponding |
+<em>BlockID</em> values are defined as follows:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">N</th> |
+<th class="head">Block ID</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>abbreviations</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-odd"><td>constants</td> |
+<td>11</td> |
+</tr> |
+<tr class="row-even"><td>function</td> |
+<td>12</td> |
+</tr> |
+<tr class="row-odd"><td>globals</td> |
+<td>19</td> |
+</tr> |
+<tr class="row-even"><td>module</td> |
+<td>8</td> |
+</tr> |
+<tr class="row-odd"><td>types</td> |
+<td>17</td> |
+</tr> |
+<tr class="row-even"><td>valuesymtab</td> |
+<td>14</td> |
+</tr> |
+</tbody> |
+</table> |
+<p>Note: For readability, PNaClAsm allows a more readable form of a function block |
+enter record. See <em>function blocks</em> [ref] for more details.</p> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+module { |
+ types { |
+ count: 0; |
+ } |
+ globals { |
+ count: 0; |
+ } |
+} |
+</pre> |
+<p>This example defines a module, types, and globals block. Both the type and the |
+globals block appear within the module block.</p> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 8, 2> |
+1: <65535, 17, 2> |
+3: <1, 0> |
+0: <65534> |
+1: <65535, 19, 2> |
+3: <5, 0> |
+0: <65534> |
+0: <65534> |
+</pre> |
+</section><section id="exit-block-record"> |
+<h3 id="exit-block-record">Exit Block Record</h3> |
+<p>Block records can be top-level, as well as nested, records. Blocks must begin |
+with an <em>enter</em> record, and end with an <em>exit</em> record.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+} |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+0: <65534> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>All exit records are identical, no matter what block they are ending. An exit |
+record defines the end of the block.</p> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+module { |
+ types { |
+ count: 0; |
+ } |
+ globals { |
+ count: 0; |
+ } |
+} |
+</pre> |
+<p>This example defines a module, types, and globals block. Both the type and the |
+globals block appear within the module block.</p> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 8, 2> |
+1: <65535, 17, 2> |
+3: <1, 0> |
+0: <65534> |
+1: <65535, 19, 2> |
+3: <5, 0> |
+0: <65534> |
+0: <65534> |
+</pre> |
+</section></section><section id="types-block"> |
+<h2 id="types-block">Types Block</h2> |
+<p>The types block defines all types used in a program. It must appear in the |
+module block, before any function address records, the globals block, the |
+valuesymtab block, and any function blocks.</p> |
+<p>Each record in the types block defines a type used by the program. Types can be |
+broken into the following groups:</p> |
+<dl class="docutils"> |
+<dt>Primitive Value types</dt> |
+<dd>Defines the set of base types for values. This includes various sizes of |
+integral and floating types.</dd> |
+<dt>Void type</dt> |
+<dd>A primitive type that doesn’t represent any value and has no size.</dd> |
+<dt>Function types</dt> |
+<dd>The type signatures of functions.</dd> |
+<dt>Vector type</dt> |
+<dd>Defines vectors of primitive types.</dd> |
+</dl> |
+<p>In addition, any type that is not defined using another type is a primitive |
+type. All other types (i.e. function and vector) are composite types.</p> |
+<p>Types must be defined in a topological order, causing primitive types to appear |
+before the composite types that use them. Each type must be unique. There are no |
+additional restrictions on the order that types can be defined in a types block.</p> |
+<p>The following subsections introduce each valid PNaClAsm type, and the |
+corresponding PNaClAsm construct that defines the type. Types not defined in the |
+types block, can’t be used in a PNaCl program.</p> |
+<p>The first record of a types block must be a <em>count</em> record, defining how many |
+types are defined by the types block. All remaining records defines a type. The |
+following subsections define valid records within a types block. The order of |
+type records is important. The position of each defining record implicitly |
+defines the type ID that will be used to denote that type, within other PNaCl |
+records of the bitcode file.</p> |
+<p>To make this more concrete, consider the following example types block:</p> |
+<pre class="prettyprint"> |
+types { |
+ count: 4; |
+ @t0 = void; |
+ @t1 = i32; |
+ @t2 = float; |
+ @t3 = void (i32, float); |
+} |
+</pre> |
+<p>This example defines a types block that defines four type IDs:</p> |
+<ol class="arabic simple" start="0"> |
+<li>The void type.</li> |
+<li>A 32-bit integer type.</li> |
+<li>A 32-bit floating type.</li> |
+<li>A function, taking 32-bit integer and float arguments that returns void.</li> |
+</ol> |
+<p>Note that the order defines the corresponding identifier that will be used for |
+that type, and is based on the position of the type within the types |
+record. Hence, the assignment to identifier <em>@tN</em> can never appear before the |
+assignment to identifier <em>@tN-1</em>. Further, if type identifier <em>@tN</em> is assigned, |
+it must appear immediately after the assignment to identifier <em>@tN-1</em>.</p> |
+<section id="count-record"> |
+<h3 id="count-record">Count Record</h3> |
+<p>The <em>count record</em> defines how many types are defined in the types |
+block. Following the types count record are records that define types used by |
+the PNaCl program.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+count: N; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<blockquote> |
+<div>AA: <1, N></div></blockquote> |
+<p><strong>Semantics</strong></p> |
+<p>This construct defines the number of types used by the PNaCl program. <em>N</em> is |
+the number of types defined in the types block. It is an error to define more |
+(or fewer) types than value <em>N</em>, within the enclosing types block. <em>A</em> is the |
+(optional) abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+0 == NumTypes |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+ExpectedTypes = N; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+types { |
+ count: 2; |
+ @t0 = float; |
+ @t1 = i32; |
+} |
+</pre> |
+<p>This example defines two types. A 32 bit integer and a 32 bit floating types. |
+The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 17, 2> |
+3: <1, 2> |
+3: <3> |
+3: <7, 32> |
+0: <65534> |
+</pre> |
+</section><section id="void-type"> |
+<h3 id="void-type">Void Type</h3> |
+<p>The <em>void</em> type record defines the void type, which corresponds to the type that |
+doesn’t define any value, and has no size.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+@tN = void; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The void type record defines the type that has no values and has no size. <em>A</em> |
+is the (optional) abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+N == NumTypes |
+NumTypes < ExpectedTypes |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumTypes; |
+TypeOf(@tN) = void; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+@t0 = void; |
+</pre> |
+<p>defines the record</p> |
+<pre class="prettyprint"> |
+3: <2> |
+</pre> |
+</section><section id="integer-types"> |
+<h3 id="integer-types">Integer Types</h3> |
+<p>PNaClAsm allows integral types for various bit sizes. Valid bit sizes are 1, 8, |
+16, 32, and 64. Integers can be signed or unsigned, but the signed component of |
+an integer is not specified by the type. Rather, individual instructions |
+determine whether the value is assumed to be signed or unsigned.</p> |
+<p>It should be noted that in PNaClAsm, all pointers are implemented as 32-bit |
+(unsigned) integers. There isn’t a separate type for pointers. The only way to |
+tell that a 32-bit integer is a pointer, is when it is used in an instruction |
+that requires a pointer (such as load and store instructions).</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+@tN = iB; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<blockquote> |
+<div>AA: <7, B></div></blockquote> |
+<p><strong>Semantics</strong></p> |
+<p>An integer type record defines an integral type. <em>B</em> defines the number of bits |
+of the integral type. <em>A</em> is the (optional) abbreviation associated with the |
+record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+N == NumTypes |
+NumTypes < ExpectedTypes |
+B in {1, 8, 16, 32, 64} |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumTypes; |
+TypeOf(@tN) = iB; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+@t1 = i32; |
+@t2 = i1; |
+@t3 = i64; |
+</pre> |
+<p>defines the records</p> |
+<pre class="prettyprint"> |
+3: <7, 32> |
+3: <7, 1> |
+3: <7, 64> |
+</pre> |
+</section><section id="bit-floating-type"> |
+<h3 id="bit-floating-type">32-Bit Floating Type</h3> |
+<p>PNaClAsm allows computation on 32-bit floating values. A floating type record |
+defines the 32-bit floating type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+@tN = float; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <3> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A floating type record defines the 32-bit floating type. <em>A</em> is the (optional) |
+abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A). |
+N == NumTypes |
+NumTypes < ExpectedTypes |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumTypes; |
+TypeOf(@tN) = float; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+@t5 = float; |
+</pre> |
+<p>defines the record</p> |
+<pre class="prettyprint"> |
+3: <3> |
+</pre> |
+</section><section id="id1"> |
+<h3 id="id1">64-bit Floating Type</h3> |
+<p>PNaClAsm allows computation on 64-bit floating values. A double type record |
+defines the 64-bit floating type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+@tN = double; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <4> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A double type record defines the 64-bit floating type. <em>A</em> is the (optional) |
+abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+N == NumTypes |
+NumTypes < ExpectedTypes |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumTypes; |
+TypeOf(@tN) = double; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+@t3 = double; |
+</pre> |
+<p>defines the record</p> |
+<pre class="prettyprint"> |
+3: <4> |
+</pre> |
+</section><section id="vector-types"> |
+<h3 id="vector-types">Vector Types</h3> |
+<p>TODO(kschimpf) <N x T></p> |
+<p>TODO(kschimpf) Define integral and floating vector types.</p> |
+</section><section id="function-type"> |
+<h3 id="function-type">Function Type</h3> |
+<p>The <em>function</em> type can be thought of as a function signature. It consists of a |
+return type, and a (possibly empty) list of formal parameter types.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%tN = RT (T1, ... , TM) <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <21, 0, IRT, IT1, ... , ITM> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The function type defines the signature of a function. <em>RT</em> is the return type |
+of the function, while types <em>T1</em> through <em>TM</em> are the types of the |
+arguments. Indicies to the corresponding type identifiers is stored in the |
+corresponding record.</p> |
+<p>The return value must either be a primitive type, type <em>void</em>, or a vector type. |
+Parameter types can be a primitive or vector type.</p> |
+<p>For the integral types, only i32 and i64 can be used for a return or parameter |
+type. All other integral types are not allowed.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+M >= 0 |
+IRT = AbsoluteIndex(TypeID(RT)) |
+IT1 = AbsoluteIndex(TypeID(T1)) |
+... |
+ITM = AbsoluteIndex(TypeID(TM)) |
+N == NumTypes |
+NumTypes < ExpectedTypes |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumTypes; |
+TypeOf(@tN) = RT (T1, ... , TM) |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following example defines two function signatures (<em>@t4</em> and <em>@t5</em>):</p> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 17, 2> |
+3: <1, 6> |
+3: <7, 32> |
+3: <7, 64> |
+3: <3> |
+3: <2> |
+3: <21, 3, 0, 2, 1> |
+3: <21, 0> |
+0: <65534> |
+</pre> |
+</section></section><section id="globals-block"> |
+<h2 id="globals-block">Globals block</h2> |
+<p>The globals block defines global addresses of variables and constants, used by |
+the PNaCl program. It also defines the memory associated with the global |
+addresses, and how to initialize each global variable/constant. It must appear |
+in the module block. It must appear after the types block, as well as after all |
+function address records. But, it must also appear before the valuesymtab block, |
+and any function blocks.</p> |
+<p>The globals block begins with a count record, defining how many global addresses |
+are defined by the PNaCl program. It is then followed by a sequence of records |
+that defines how each global address is initialized.</p> |
+<p>The standard sequence, for defining global addresses, begins with a global |
+address record. It is then followed by a sequence of records defining how the |
+global address is initialized. If the initializer is simple, a single record is |
+used. Otherwise, the initializer is preceded with a compound record, specifying |
+a number <em>N</em>, followed by sequence of <em>N</em> simple initializer records.</p> |
+<p>The size of the memory referenced by each global address is defined by its |
+initializer records. All simple initializer records define a sequence of |
+bytes. A compound initializer defines the sequence of bytes by concatenating the |
+corresponding sequence of bytes for each of its simple initializer records.</p> |
+<p>For notational convenience, PNaClAsm begins a compound record with a “{”, and |
+inserts a “}” after the last initializer record associated compound record. This |
+latter “}” does not correspond to any record. It is implicitly assumed by the |
+size specified in the compound record, and is added only to improve readability.</p> |
+<p>Explicit alignment is specified for global addresses, and must be a power |
+of 2. If the alignment is 0, the alignment of the global is set by the target to |
+whatever it feels convenient. If the value is greater than zero, the global is |
+forced to have exactly that alignment.</p> |
+<p>For example, consider the following:</p> |
+<pre class="prettyprint"> |
+globals { |
+ count: 2; |
+ const @g0 = |
+ zerofill 8; |
+ var @g1 = |
+ initializers 2 { |
+ {1, 2, 3, 4}, |
+ zerofill 2; |
+ } |
+} |
+</pre> |
+<p>TODO: Rewrite this: Base example by line number and corresponding record.</p> |
+<p>In this example, the globals block contains 9 records. All lines, inside the |
+block delimiters of this example (except the second to last) defines a |
+record. The first record, “globals {”, is the beginning of the globals block. |
+The second record, “count: 2;”, defines the number of global addresses defined |
+by the program, i.e. 2.</p> |
+<p>The third record, “const @g0 = ”, defines the global constant address <em>@g0</em>. |
+The forth record, “zerofill 8;”, defines to initialize the constant with 8 |
+bytes, all with the value zero. Thus, the size of <em>@g0</em> is 8 bytes.</p> |
+<p>The fifth record, “var @g1 =”, defines the global variable address <em>@g1</em>. The |
+sixth record, “initializers 2 ..”, defines that the initial value of <em>@g1</em> is |
+defined by the sequence of bytes defined by the following 2 initializer |
+records. The seventh record, “{1, 2, 3, 4}, defines that the first 4 bytes of |
+<em>@g1</em> are initialized with bytes 1, 2, 3, 4. The eighth record, “zerofill 2”; |
+initializes bytes 5 and 6 to zero. The size of <em>@g1</em> is therefore 6 bytes.</p> |
+<p>The nine record is the exit block record.</p> |
+<p>In other words, the corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 19, 2> |
+3: <5, 2> |
+3: <0, 0, 1> |
+3: <2, 8> |
+3: <0, 0, 0> |
+3: <1, 2> |
+3: <3, 1, 2, 3, 4> |
+3: <2, 2> |
+0: <65534> |
+</pre> |
+<section id="id2"> |
+<h3 id="id2">Count Record</h3> |
+<p>The count record defines the number of global addresses used by the PNaCl |
+program.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+count: N; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <5, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This record must appear first in the globals block. The count record defines |
+the number of global addresses used by the program. <em>A</em> is the (optional) |
+abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+ExpectedGlobals = N; |
+ExpectedInitializers = 0; |
+</pre> |
+</section><section id="global-variable-addressses"> |
+<h3 id="global-variable-addressses">Global Variable Addressses</h3> |
+<p>A global variable address record defines a global address to global data. The |
+global variable address record must be immediatedly followed by initializer |
+record(s) that define how the corresponding global variable is initialized.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+var @gN, align V = <A> |
+var @gN = <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <0, VV, 0> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A global varaible address record defines a global address for a global variable. |
+<em>V</em> is the alignment to for the global variable. <em>VVA</em> is the corresponding |
+number of bits associated with alignment <em>V</em> (see <em>constraints</em>). The alignment |
+<em>V</em> clause can be omitted if <em>V</em> is zero. <em>A</em> is the (optional) abbreviation |
+associated with the record.</p> |
+<p>It is assumed that the memory, referenced by the global variable address, can be |
+both read and written to.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+N = NumGlobalAddresses |
+NumGlobalAddresses < ExpectedGlobals |
+ExpectedInitializers = 0 |
+VV = Log2(V+1) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumGlobalAddresses; |
+ExpectedInitializers = 1; |
+TypeOf(@gN) = i32; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+var @g0 = |
+ zerofill 8; |
+var @g1 = |
+ {1, 2, 3, 4} |
+</pre> |
+<p>This example defines two global variable addresses, <em>@g0</em> and <em>@g1</em>. Both use |
+memory alignment of 0. <em>@g0</em> is an 8 byte variable initialized to zero. <em>@g1</em> |
+is a 4 byte variable, initialized by the sequence of bytes 1, 2, 3, and 4.</p> |
+<p>The corresponding records defined by the example above are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 0> |
+3: <2, 8> |
+3: <0, 0, 0> |
+3: <3, 1, 2, 3, 4> |
+</pre> |
+</section><section id="global-constant-addresses"> |
+<h3 id="global-constant-addresses">Global Constant Addresses</h3> |
+<p>A global constant address record defines an address corresponding to a global |
+constant that can’t be modified by the program. The global constant address |
+record must be immediatedly followed by initializer record(s) that define how |
+the corresponding global constant is initialized.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+const @gN, align V = <A> |
+const @gN = <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <0, VV, 1> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A global constant address record defines a global address for a global constant. |
+<em>V</em> is the memory alignment for the global constant. <em>VV</em> is the corresponding |
+number of bits associated with alignment <em>V</em> (see <em>constraints</em>). The alignment |
+<em>V</em> caluse can be omitted if <em>V</em> is zero. <em>A</em> is the (optional) abbreviation |
+associated with the record.</p> |
+<p>It is assumed that the memory, referenced by the global constant |
+address, is only read, and can’t be written to.</p> |
+<p>Note that the only difference between a global variable address and a global |
+constant address record is the third element of the record. If the value is |
+zero, it defines a global variable address. If the value is one, it defines a |
+global constant address.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+N = NumGlobalAddresses |
+NumGlobalAddresses < ExpectedGlobals |
+ExpectedInitializers = 0 |
+VV = Log2(V+1) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumGlobalAddresses; |
+ExpectedInitializers = 1; |
+TypeOf(@gN) = i32; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+const @g0 = |
+ zerofill 8; |
+var @g1 = |
+ {1, 2} |
+</pre> |
+<p>This example defines two global constants, with global addresses <em>@g0</em> and |
+<em>@g1</em>. <em>@g0</em> is an 8 byte constant initialized to zero. <em>@g1</em> is a 2 byte |
+variable, initialized by the sequence of bytes 1 and 2.</p> |
+<p>The corresponding PNaCl bitcode records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 1> |
+3: <2, 8> |
+3: <0, 0, 1> |
+3: <3, 1, 2> |
+</pre> |
+</section><section id="zerofill-initializer"> |
+<h3 id="zerofill-initializer">Zerofill Initializer</h3> |
+<p>The zerofill initializer record intializes a sequence of bytes, associated with |
+a global address, with zeros.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+zerofill N; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A zerofill initializer record intializes a sequence of bytes, associated with a |
+global address, with zeros. <em>A</em> is the (optional) abbreviation of the associated |
+record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+ExpectedInitializers > 0; |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+--ExpectedInitializers; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+const @g0 = |
+ zerofill 8; |
+var @g1 = |
+ zerofill 4; |
+</pre> |
+<p>This example defines two global constants, with global addresses <em>@g0</em> and |
+<em>@g1</em>. The global memory associated with address <em>@g0</em>, is an eight byte value, |
+initialized to zero. The global memory associated with address <em>@g1</em>, is a 4 |
+byte value, initialized to zero.</p> |
+<p>The corresponding PNaCl records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 1> |
+3: <2, 8> |
+3: <0, 0, 1> |
+3: <2, 4> |
+</pre> |
+</section><section id="data-initializer"> |
+<h3 id="data-initializer">Data Initializer</h3> |
+<p>Data records define a sequence of bytes. These bytes define the initial value of |
+the contents of the corresponding memory.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+{ B1 , .... , BN } <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <3, B1, ..., BN> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A data record defines a sequence of bytes <em>B1</em> throught <em>BN</em>, that intialize <em>N</em> |
+bytes of memory. <em>A</em> is the (optional) abbreviation associated with the |
+record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+ExpectedInitializers > 0 |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+--ExpectedInitializers; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+const @g0 = |
+ {1, 2, 97, 36, 44, 88, 44} |
+const @g1 = |
+ initializers 3 { |
+ {4, 5, 6, 7} |
+ reloc @f1; |
+ {99, 66, 22, 12} |
+ } |
+</pre> |
+<p>The corresponding PNaCl records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 1> |
+3: <3, 1, 2, 97, 36, 44, 88, 44> |
+3: <0, 0, 1> |
+3: <1, 3> |
+3: <3, 4, 5, 6, 7> |
+3: <4, 1> |
+3: <3, 99, 66, 22, 12> |
+</pre> |
+</section><section id="relocation-initializer"> |
+<h3 id="relocation-initializer">Relocation Initializer</h3> |
+<p>A relocation initializer record allows one to define the initial value of a |
+global address with the value of another global address (i.e. either function, |
+variable, or constant). Since addresses are pointers, a relocation initializer |
+record defines 4 bytes of memory.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+reloc V; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <4, VV> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A relocation initializer record defines a 4-byte value containing the specified |
+global address <em>V</em>. <em>A</em> is the (optional) abbreviation associated with the |
+record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+VV = AbsoluteIndex(V); |
+ExpectedInitializers > 0 |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+--ExpectedInitializers; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+var @g0 = |
+ initializers 3 { |
+ reloc @f1; |
+ reloc @g0; |
+ reloc @g10; |
+ } |
+</pre> |
+<p>This example defines global address <em>@g0</em>. It defines 12 bytes of memory, and is |
+initialized with three addresses <em>@f1</em>, <em>@g0</em>, and <em>@g10</em>. Note that all globals |
+can be used in a relocation initialization record, even if it isn’t defined yet.</p> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+100 = AbsoluteIndex(@g0)) |
+</pre> |
+<p>The corresponding PNaCl bitcode records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 0> |
+3: <1, 3> |
+3: <4, 1> |
+3: <4, 100> |
+3: <4, 110> |
+</pre> |
+</section><section id="subfield-relocation-initializer"> |
+<h3 id="subfield-relocation-initializer">Subfield Relocation Initializer</h3> |
+<p>A subfield relocation initializer record allows one to define the initial value |
+of a global address with the value of another (non-function) global address |
+(i.e. either variable or constant), plus a constant. Since addresses are |
+pointers, a relocation initializer record defines 4 bytes of memory.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+reloc V + O; <A> |
+reloc V - O; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <4, VV, OOO> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>A relocation initializer record defines a 4-byte value containing the specified |
+global (non-funciton) address <em>V</em>, modified by the unsigned offset <em>O</em>. <em>OO</em> is |
+the corresponding signed offset. In the first form, <em>OO == O</em>. In the second |
+form, <em>OO == - O</em>. <em>A</em> is the (optional) abbreviation associated with the |
+record. <em>a</em> is the corresponding abbreviation index of <em>A</em>. When <em>A</em> is omitted, |
+<em>a=3</em>.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+VV == AbsoluteIndex(V) |
+ExpectedInitializers > 0 |
+OOO == SignRotate(OO) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+--ExpectedInitializers; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+var @g0 = |
+ initializers 3 { |
+ reloc @f1; |
+ reloc @g0 + 4; |
+ reloc @g10 - 3; |
+ } |
+</pre> |
+<p>This example defines global address <em>@g0</em>, and is initialized with three |
+pointers, addresses <em>@f1</em>, <em>@g0+4</em>, and <em>@g10-3</em>. Note that all global addresses |
+can be used in a relocation initialization record, even if it isn’t defined |
+yet. Validity of the reference can be verified, since a global address <em>@g10</em> |
+must be smaller than the value specified in the globals count record.</p> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+100 = AbsoluteIndex(@g0)) |
+</pre> |
+<p>The corresponding PNaCl bitcode records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 0> |
+3: <1, 3> |
+3: <4, 1> |
+3: <4, 100, 8> |
+3: <4, 110, 7> |
+</pre> |
+</section><section id="compound-initializer"> |
+<h3 id="compound-initializer">Compound Initializer</h3> |
+<p>The compound initializer record must immediately follow a global |
+variable/constant address record. It defines how many (non-compound) initializer |
+records are used to define the initializer. The size of the corresponding memory |
+is the sum of the bytes needed for each of the succeeding initializers.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+initializers N { <A> |
+ ... |
+} |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <1, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>Defines that the next <em>N</em> initializers should be associated with the global |
+address of the previous record. <em>A</em> is the (optional) abbreviation index |
+associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+ExpectedInitializers == 1 |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+ExpectedInitializers = N; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+const @g1 = |
+ initializers 3 { |
+ {4, 5, 6, 7} |
+ reloc @f1; |
+ {99, 66, 22, 12} |
+ } |
+</pre> |
+<p>The corresponding PNaCl records are:</p> |
+<pre class="prettyprint"> |
+3: <0, 0, 1> |
+3: <1, 3> |
+3: <3, 4, 5, 6, 7> |
+3: <4, 1> |
+3: <3, 99, 66, 22, 12> |
+</pre> |
+</section></section><section id="valuesymtab-block"> |
+<h2 id="valuesymtab-block">Valuesymtab Block</h2> |
+<p>TODO(kschimpf)</p> |
+</section><section id="module-block"> |
+<h2 id="module-block">Module Block</h2> |
+<p>The module block, like all blocks, are enclosed in a pair of enter/exit records, |
+using block ID 8. A well-formed module block consists The following records (in |
+order):</p> |
+<dl class="docutils"> |
+<dt>A version record</dt> |
+<dd>The version record communicates which version of the PNaCl bitcode |
+reader/writer should be used. Note that this is different than the PNaCl |
+bitcode (ABI) verion. The PNaCl bitcode (ABI) version defines what is |
+expected in records, and is defined in the header record of the bitcode |
+file. The version record defines the version of the PNaC bitcode |
+reader/writer to use to convert records into bit sequences.</dd> |
+<dt>Optional local abbreviations</dt> |
+<dd>Defines a list of local abbreviations to use for records within the module |
+block.</dd> |
+<dt>An abbreviations block</dt> |
+<dd>The abbreviations block defines user-defined, global abbreviations that are |
+used to convert PNaCl records to bit sequences in blocks following the |
+abbreviations block.</dd> |
+<dt>A types block</dt> |
+<dd>The types block defines the set of all types used in the program.</dd> |
+<dt>A non-empty sequence of function address records</dt> |
+<dd>Each record defines a function address used by the program. Function |
+addresses must either be external, or defined internally by the program. If |
+they are defined by the program, there must be a function block (appearing |
+later in the module) that defines the sequence of instructions for each |
+defined function.</dd> |
+<dt>A globals block defining the global variables.</dt> |
+<dd>This block defines the set of global variable (addresses) used by the |
+program. In addition to the addresses, each global variable also defines how |
+the corresponding global variable is initialized.</dd> |
+<dt>An optional value symbol table block.</dt> |
+<dd>This block, if defined, provides textual names for function and global |
+variable addresses (previously defined in the module). Note that only names |
+for instrinsic functions must be provided. Any additional names are hints |
+that may (or may not) be used by the PNaCl translator, and be available for |
+debugging when executed.</dd> |
+<dt>A sequence of function blocks.</dt> |
+<dd>Each function block defines the corresponding control flow graph for each |
+defined function. The order of function blocks is used to associate them with |
+function addresses. The order of the defined function blocks must follow the |
+same order as the corresponding function addresses defined in the module |
+block.</dd> |
+</dl> |
+<p>Descriptions of the abbreviations [ref], types [ref], global variables [ref], |
+value symbol table [ref], and function [ref] blocks are not provided here. See |
+the appropriate reference for more details. The following subsections describe |
+each of the records that can appear in a module block.</p> |
+<section id="version"> |
+<h3 id="version">Version</h3> |
+<p>The version record defines the implementation of the PNaCl reader/writer to |
+use. That is, the implementation that converts PNaCl records to bit |
+sequences. Note that this is different than the PNaCl version of the bitcode |
+file (encoded in the header record of the bitcode file). The PNaCl version |
+defines the valid forms of PNaCl records. The version record is specific to the |
+PNaCl version, and may have different values for different PNaCl versions.</p> |
+<p>Note that currently, only PNaCl bitcode version 2, and version record value 1 is |
+defined.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+version N; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <1, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The version record defines which PNaCl reader/writer rules should be |
+followed. <em>N</em> is the version number. Currently <em>N</em> must be 1. Future versions of |
+PNaCl may define additional legal values. <em>A</em> is the (optional) abbreviation |
+index associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+</pre> |
+<p><em>Examples</em></p> |
+<pre class="prettyprint"> |
+version 1; |
+</pre> |
+<p>The corresponding record is:</p> |
+<pre class="prettyprint"> |
+3: <1, 1> |
+</pre> |
+</section><section id="function-address"> |
+<h3 id="function-address">Function Address</h3> |
+<p>A function address record defines a function address. Defining function |
+addresses can also imply a corresponding implementation. <em>Defined</em> function |
+addresses define implementations while <em>declared</em> function addresses do not.</p> |
+<p>The implementation of a <em>defined</em> function address is provided by a |
+corresponding function block, appearing later in the module block. The |
+association of defining function address with the corresponding function block |
+is based on position. The <em>Nth</em> defining function address record, in the module |
+block, has its implementation in the <em>Nth</em> function block of that module block.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+PN LN T0 @fN ( T1 , ... , TM ); <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <8, T, C, P, L> |
+</pre> |
+<p><strong>Semnatics</strong></p> |
+<p>Defines the function address <em>@fN</em>. <em>PN</em> is the name that specifies |
+the prototype value <em>P</em> associated with the function. A function |
+address is defining only if <em>P==0</em>. Otherwise, it is only declared. |
+The type of the function is defined by function type <em>@tT</em>. <em>L</em> |
+is the linkage specification corresponding to name <em>LN</em>. <em>C</em> is the |
+calling convention used by the function. <em>A</em> is the |
+(optional) abbreviation associated with the record.</p> |
+<p>Note that the function signature must be defined by a function type in the types |
+block. Hence, the return value must either be a primitive type, type <em>void</em>, or |
+a vector type. Parameter types can be a primitive or vector type. For the |
+integral types, only i32 and i64 can be used for a return or parameter type. All |
+other integer types are not allowed.</p> |
+<p>Valid prototype names <em>PN</em>, and corresponding <em>P</em> values, are:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">P</th> |
+<th class="head">PN</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>1</td> |
+<td>declare</td> |
+</tr> |
+<tr class="row-odd"><td>0</td> |
+<td>define</td> |
+</tr> |
+</tbody> |
+</table> |
+<p>Valid linkage names <em>LN</em>, and corresponding <em>L</em> values, are:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">L</th> |
+<th class="head">LN</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>3</td> |
+<td>internal</td> |
+</tr> |
+<tr class="row-odd"><td>0</td> |
+<td>external</td> |
+</tr> |
+</tbody> |
+</table> |
+<p>Currently, only one calling convention <em>C</em> is supported:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">C</th> |
+<th class="head">Calling Convention</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>0</td> |
+<td>C calling convention</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraint</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+T = TypeID(TypeOf(T0 ( T1 , ... , TN ))) |
+N = NumFuncAddresses |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumFuncAddresses; |
+TypeOf(@fN) = TypeOf(TypeID(i32)); |
+TypeOfFcn(@fN) = TypeOf(@tT); |
+ |
+if PN == 0: |
+ DefiningFcnIDs += @FN; |
+ ++NumDefinedFunctionAddresses; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+module { |
+ ... |
+ types { |
+ @t0 = void; |
+ @t1 = i32; |
+ @t3 = float; |
+ @t4 = void (i32, float); |
+ @t5 = i32 (); |
+ } |
+ ... |
+ declare external void @f0(i32, float); |
+ define internal i32 @f1(); |
+</pre> |
+<p>This defines function addresses <em>@f0</em> and <em>@f1</em>. Function address <em>@f0</em> is |
+defined externally while <em>@f1</em> has an implementation (defined by a corresponding |
+function block). The type signature of <em>@f0</em> is defined by type <em>@t4</em> while the |
+type signature of <em>@f1</em> is <em>@t5</em>.</p> |
+<p>The corresopnding records for these two function addresses are:</p> |
+<pre class="prettyprint"> |
+3: <8, 4, 0, 1, 0> |
+3: <8, 5, 0, 0, 1> |
+</pre> |
+</section></section><section id="constants-blocks"> |
+<h2 id="constants-blocks">Constants Blocks</h2> |
+<p>TODO(kschimpf)</p> |
+</section><section id="function-blocks"> |
+<h2 id="function-blocks">Function Blocks</h2> |
+<p>A function block defines the implementation of a <em>defined</em> function address. The |
+function address it defines is based on the position of the corresponding |
+<em>defined</em> function address. The Nth <em>defined</em> function address always |
+corresponds to the Nth function block in the module block.</p> |
+<p>A function definition contains a list of basic block, forming the CFG (control |
+flow graph). Each basic block contains a list of instructions, and ends with a |
+<em>terminator</em> [ref] (branch) instruction.</p> |
+<p>Basic blocks are not represented by records. Rather, context is implicit. The |
+first basic block begins with the first instruction record in the function |
+block. Blocks boundaries are determined by <em>terminator</em> instructions. The |
+instruction that follows a temrinator instruction begins a new basic block.</p> |
+<p>The first basic block in a function is special in two ways: it is immediately |
+executed on entrance to the function, and it is not allowed to have predecessor |
+basic blocks (i.e. there can’t be any branches to the entry block of a |
+function). Because the entry block has no predecessors, it also can’t have any |
+<em>PHI nodes</em> [ref].</p> |
+<p>The parameters are implied by the type of the corresponding function |
+address. One parameter is defined for each argument of the function type |
+signature.</p> |
+<p>The number of basic blocks are defined by the count record. Each termimintor |
+instruction ends the current basic block, and the next instruction begins a new |
+basic block. Basic blocks are numbered by the order they appear (starting with |
+index 0). Basic block IDs have the form <em>%bN</em>, where <em>N</em> corresponds to the |
+position of the basic block within the function block.</p> |
+<p>Each instruction, within a function block, corresponds to a corresponding PNaCl |
+record. The layout of a function block is the (basic block) count record, |
+followed by a sequence of instruction records.</p> |
+<p>For readability, PNaClAsm introduces block IDs. These block IDs do not |
+correspond to PNaCl records, since basic block boundaries are defined |
+implicitly, after terminator instructions. They appear only for readability.</p> |
+<p>Operands are typically defined using an <em>absolute index</em> [ref]. This absolute |
+index implicitly encodes function addresses, global addresses, parameters, |
+constants, and instructions that generate values. The encoding takes advantage |
+of the implied ordering of these values in the bitcode file, defining a block of |
+indices for each kind of identifier. That is, Indices are ordered by putting |
+function identifier indices first, followed by global address identifiers, |
+followed by parameter identifiers, followed by constant identifiers, and lastly |
+instruction value identifiers.</p> |
+<p>Most operands of instructions are encoded using a relative index value, rather |
+than abolute. The is done because most instruction operands refer to values |
+defined earlier in the (same) basic block. As a result, the relative distance |
+(back) from the next value defining instruction is frequently a small |
+number. Small numbers tend to require less bits when they are converted to bit |
+sequences.</p> |
+<p>The following subsections define records that can appear in a function block.</p> |
+<section id="function-enter"> |
+<h3 id="function-enter">Function enter</h3> |
+<p>PNaClAsm defines a function enter block construct. The corresponding record is |
+simply an enter block record, with BlockID value 12. All context about the |
+defining address is implicit by the position of the function block, and the |
+corresponding defining function address. To improve readability, PNaClAsm |
+includes the function signature into the syntax rule.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+function TR @fN ( T0 %p0, ... , TM %pM) { <B> |
+</pre> |
+<p><strong>Record</strong></p> |
+<blockquote> |
+<div>1: <65535, 12, B></div></blockquote> |
+<p><strong>Semantics</strong></p> |
+<p><em>B</em> is the number of bits reserved for abbreviations in the block. See |
+enter block records [ref] for more details.</p> |
+<p>The value of <em>N</em> corresponds the the positional index of the corresponding |
+defining function address this block is associated with. <em>M</em> is the number of |
+defined paramaters (minus one) in the function heading.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+N == NumFcnImpls |
+@fN in DefiningFcnIDs |
+TypeOfFcn(@fN) == TypeOf(TypeID(TR (T0, ... , TM))) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumFcnImpls; |
+EnclosingFcnID = @fN; |
+NumBasicBlocks = 0; |
+ExpectedBlocks = 0; |
+NumParams = M; |
+for I in [0..M]: |
+ TypeOf(%pI) = TypeOf(TypeID(TI)); |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+types { |
+ ... |
+ @t10 = void (i32, float); |
+ ... |
+} |
+... |
+define internal void @f12(i32, float); |
+... |
+function void @f12(i32 %p0, float %p1) { |
+... |
+} |
+</pre> |
+<p>defines the enter block record:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+</pre> |
+</section><section id="id3"> |
+<h3 id="id3">Count Record</h3> |
+<p>The count record, within a function block, defines the number of basic blocks |
+used to define the function implementation. It should be the first record in the |
+function block.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ blocks: N; <A> |
+%b0: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <1, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The count record defines the number <em>N</em> of basic blocks in the implemented |
+function. <em>A</em> is the (optional) abbreviation associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+ExpectedBasicBlocks = 0 |
+NumBasicBlocks = 0 |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+ExpectedBlocks = N; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+blocks: 5 |
+</pre> |
+<p>The corresponding PNaCl bitcode record is:</p> |
+<pre class="prettyprint"> |
+3: <1, 5> |
+</pre> |
+</section><section id="terminator-instructions"> |
+<h3 id="terminator-instructions">Terminator Instructions</h3> |
+<p>Terminator instructions are instructions that appear in a function block, and |
+define the end of the current basic block. A terminator instuction indicates |
+which block should be executed after the current block is finished. The function |
+block is well formed only if the number of terminator instructions, in the |
+function block, corresponds to the value defined by the corresponding count |
+block.</p> |
+<section id="return-void-instruction"> |
+<h4 id="return-void-instruction">Return Void Instruction</h4> |
+<p>The return void instruction is used to return control from a function back to |
+the caller, without returning any value.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ ret; <A> |
+%bB: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <10> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The return instruction returns control to the calling function.</p> |
+<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only |
+appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this |
+terminator instruction is the last instruction in the function block. <em>A</em> is |
+the (optional) abbreviation index associated with the record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+B == NumBasicBlocks + 1 |
+NumBasicBlocks < ExpectedBasicBLocks |
+ReturnType(TypeOf(EnclosingFcnID)) == void |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumBasicBlocks; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following shows the implementation of a function that simply returns.</p> |
+<pre class="prettyprint"> |
+function void @f5() { |
+ blocks: 1; |
+%b0: |
+ ret; |
+} |
+</pre> |
+<p>The corresponding PNaCl records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <10> |
+0: <65534> |
+</pre> |
+</section><section id="return-value-instruction"> |
+<h4 id="return-value-instruction">Return Value Instruction</h4> |
+<p>The return value instruction is used to return control from a function back to |
+the caller, including a value. The value must correspond to the return type of |
+the enclosing function.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ ret T V; <A> |
+%bB: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <10, VV> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The return instruction returns control to the calling function, returning the |
+provided value.</p> |
+<p><em>V</em> is the value to return. Type <em>T</em> must be of the type returned by the |
+function. It must also be the type associated with value <em>V</em>. <em>A</em> is the |
+(optional) abbreviation index associated with the record.</p> |
+<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only |
+appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this |
+terminator instruction is the last instruction in the function block.</p> |
+<p>The return type <em>T</em> must either be a primitive type, or a vector type. If the |
+return type is an integral type, it must be either i32 or i64.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+VV = RelativeIndex(V) |
+B = NumBasicBlocks + 1 |
+NumBasicBlocks < ExpectedBasicBlocks |
+T = TypeOf(V) = ReturnType(TypeOf(EnclosingFcnID)) |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumBasicBlocks; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following shows a return statement that returns the value generated by the |
+previous instruction:</p> |
+<pre class="prettyprint"> |
+function i32 @f5(i32 %p0) { |
+ blocks: 1; |
+@b0: |
+ ret i32 @p0; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="unconditional-branch-instruction"> |
+<h4 id="unconditional-branch-instruction">Unconditional Branch Instruction</h4> |
+<p>The unconditional branch instruction is used to cause control flow to transfer |
+to a different basic block of the function.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ br %bN; <A> |
+%bB: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <11, N> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The unconditional branch instruction causes control flow to transfer to basic |
+block <em>N</em>. <em>A</em> is the (optional) abbreviation index associated with the record.</p> |
+<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only |
+appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this |
+terminator instruction is the last instruction in the function block.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+0 < N |
+N < ExpectedBasicBlocks |
+B = NumBasicBlocks + 1 |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumBasicBlocks; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+br %b2; |
+</pre> |
+<p>This branch instruction branches to the 3rd basic block of the function. It |
+defines the following PNaCL record:</p> |
+<pre class="prettyprint"> |
+3: <11, 2> |
+</pre> |
+</section><section id="conditional-branch-instruction"> |
+<h4 id="conditional-branch-instruction">Conditional Branch Instruction</h4> |
+<p>The conditional branch instruction is used to cause control flow to transfer to |
+a different basic block of the function, based on a boolean test condition.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ br i1 C, %bT, %bBF; <A> |
+%bB: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <11, T, F, V> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>Upon execution of a conditional branch instruction, the <em>i1</em> (boolean) argument |
+<em>C</em> is evaluated. If the value is <em>true</em>, control flows to basic block |
+<em>%bT</em>. Otherwise control flows to basic block <em>%bF</em>. <em>A</em> is the (optional) |
+abbreviation index associated with the record.</p> |
+<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only |
+appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this |
+terminator instruction is the last instruction in the function block.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+V = RelativeIndex(C) |
+0 < T |
+B1 < ExpectedBasicBlocks |
+0 < F |
+B2 < ExpectedBasicBlocks |
+B = NumBasicBlocks + 1 |
+NumBasicBlocks < ExpectedBasicBlocks |
+TypeOf(C) == i1 |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumBasicBlocks; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f2(i32 %p0, i32 %p1) { |
+ blocks: 3; |
+%b0: |
+ %v0 = cmp eq i32 %p0, %p1; |
+ br i1 %v0, %b1, %b2; |
+%b1: |
+ ret i32 %p0; |
+%b2: |
+ ret i32 %p1; |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 3> |
+3: <28, 2, 1, 32> |
+3: <11, 2, 1, 1> |
+3: <10, 3> |
+3: <10, 2> |
+0: <65534> |
+</pre> |
+</section><section id="unreachable"> |
+<h4 id="unreachable">Unreachable</h4> |
+<p>The unreachable instruction has no defined semantics. The instruction is used to |
+inform the <em>PNaCl translator</em> that control can’t reach this instruction.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+ unreachable; <A> |
+%bB: |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <15> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>Directive to the <em>PNaCl translator</em> that this instruction is unreachable. <em>A</em> |
+is the (optional) abbreviation index associated with the record.</p> |
+<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only |
+appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this |
+terminator instruction is the last instruction in the function block.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+B = NumBasicBlocks + 1 |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumBasicBlocks; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>TODO(kschimpf)</p> |
+</section><section id="switch-instruction"> |
+<h4 id="switch-instruction">Switch Instruction</h4> |
+<p>TODO(kschimpf)</p> |
+</section></section><section id="integer-binary-inststructions"> |
+<h3 id="integer-binary-inststructions">Integer Binary Inststructions</h3> |
+<p>Binary instructions are used to do most of the computation in a program. This |
+section focusses on binary instructions that operator on integral values, or |
+vectors of integral values.</p> |
+<p>All binary operations require two operands of the same type, execute an |
+operation on them, and produce a value. The value may represent multiple values |
+if the type is a vector type. The result value always has the same type as its |
+operands.</p> |
+<p>Some integer binary operations can be applied to both signed and unsigned |
+integers. Others, the sign is significant. In general, if the sign plays a role |
+in the instruction, the sign information is encoded into the name of the |
+instruction.</p> |
+<p>For most binary operations (except some of the logical operations), integral |
+type i1 is disallowed.</p> |
+<section id="integer-add"> |
+<h4 id="integer-add">Integer Add</h4> |
+<p>The integer add instruction returns the sum of its two arguments. Both arguments |
+and the result must be of the same type. That type must be integral, or an |
+integral vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = add T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<blockquote> |
+<div>AA: <2, VV1, VV2, 0></div></blockquote> |
+<p><strong>Semantics</strong></p> |
+<p>The integer add instruction returns the sum of its two arguments. Arguments <em>V1</em> and |
+<em>V2</em>, and the result <em>%vN</em>, must be of type <em>T</em>. <em>T</em> must be an integral type, |
+or an integral vector type. <em>N</em> is defined by the record position, defining the |
+corresponding value generated by the instruction. <em>A</em> is the (optional) |
+abbreviation associated with the corresponding record.</p> |
+<p>Overflow conditions are ignored, and the result returned is the mathematical |
+result modulo <em>exp(2,n)</em>, where <em>n</em> is the bitwidth of the integer result.</p> |
+<p>Because integers are assumed to use a two’s complement representation, |
+this instruction is appropriate for both signed and unsigned integers.</p> |
+<p>In the add instruction, Integral type i1 (and vectors on integral type i1) is |
+disallowed.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+VV1 = RelativeIndex(V1) |
+VV2 = RelativeIndex(V2) |
+T = TypeOf(V1) = TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N = NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = add i32 %p0, %p1; |
+ %v1 = add i32 %p0, %v0; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 0> |
+3: <2, 3, 1, 0> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="integer-subtract"> |
+<h4 id="integer-subtract">Integer Subtract</h4> |
+<p>The integer subtract instruction returns the difference of its two arguments. |
+Both arguments and the result must be of the same type. That type must be |
+integral, or an integral vector type.</p> |
+<p>Note: Since there isn’t a negate instruction, subtraction from constant zero |
+should be used to negate values.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = sub T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 1> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The integer subtract returns the difference of its two arguments. Arguments <em>V1</em> |
+and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> must be an integral |
+type, or an integral vector type. <em>N</em> is defined by the record position, defining |
+the corresponding value generated by the instruction. <em>A</em> is the (optional) |
+abbreviation ¯associated with the corresponding record.</p> |
+<p>Underflow conditions are ignored, and the result returned is the mathematical |
+result modulo <em>exp(2, n)</em>, where <em>n</em> is the integer bitwidth of the result.</p> |
+<p>Because integers are assumed to use a two’s complement representation, |
+this instruction is appropriate for both signed and unsigned integers.</p> |
+<p>In the subtract instruction, Integral type i1 is disallowed.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = sub i32 %p0, %p1; |
+ %v1 = sub i32 %p0, %v0; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 1> |
+3: <2, 3, 1, 1> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="integer-multiply"> |
+<h4 id="integer-multiply">Integer Multiply</h4> |
+<p>The integer multiply instruction returns the product of its two arguments. Both |
+arguments and the result must be of the same type. That type must be integral, |
+or an integral based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+&vN = mul T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 2> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The intebger multiply instruction returns the product of its two |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of type <em>T</em>. |
+<em>T</em> must be an integral type, or an integral vector type. <em>N</em> is defined by the |
+record position, defining the corresponding value generated by the |
+instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p>Overflow conditions are ignored, and the result returned is the mathematical |
+result modulo <em>exp(2, n)</em>, where <em>n</em> is the bitwidth of the result.</p> |
+<p>Because integers are assumed to use a two’s complement representation, |
+this instruction is appropriate for both signed and unsigned integers.</p> |
+<p>In the subtract instruction, Integral type i1 is disallowed.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = mul i32 %p0, %p1; |
+ %v1 = mul i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 2> |
+3: <2, 1, 2, 2> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="signed-integer-divide"> |
+<h4 id="signed-integer-divide">Signed Integer Divide</h4> |
+<p>The signed integer divide instruction returns the quotient of its two arguments. |
+Both arguments and the result must be of the same type. That type must be |
+integral, or an integral vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = sdiv T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 4> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The divide instruction returns the quotient of its two arguments. Arguments <em>V1</em> |
+and <em>V2</em>, and the result <em>%vN</em>, must be of type <em>T</em>. <em>T</em> must be a integral |
+type, or an integral vector type. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p>Signed values are assumed. Note that signed and unsigned integer division are |
+distinct operations. For unsigned integer division use the unsigned integer |
+divide instruction (udiv).</p> |
+<p>In the signed integer divide instruction, integral type i1 is |
+disallowed. Integer division by zero is guaranteed to trap. Overflow is also |
+undefined.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = sdiv i32 %p0, %p1; |
+ %v1 = sdiv i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 4> |
+3: <2, 1, 2, 4> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="unsigned-integer-divide"> |
+<h4 id="unsigned-integer-divide">Unsigned Integer Divide</h4> |
+<p>The unsigned integer divide instruction returns the quotient of its two |
+arguments. Both the arguments and the result must be of the same type. That type |
+must be integral, or an integral vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = udiv T V1, V2; <a> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, A1, A2, 3> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The unsigned integer divide instruction returns the quotient of its two |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of type |
+<em>T</em>. <em>T</em> must be an integral type, or an integral vector type. <em>N</em> is defined |
+by the record position, defining the corresponding value generated by the |
+instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p>Unsigned integral values are assumed. Note that signed and unsigned integer |
+division are distinct operations. For signed integer division use the signed |
+integer divide instruction (sdiv).</p> |
+<p>In the unsigned integer divide instruction, Integral type i1 is |
+disallowed. Division by zero is guaranteed to trap. Overflow is also undefined.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = udiv i32 %p0, %p1; |
+ %v1 = udiv i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 3> |
+3: <2, 1, 2, 3> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="signed-integer-remainder"> |
+<h4 id="signed-integer-remainder">Signed Integer Remainder</h4> |
+<p>The signed integer remainder instruction returns the remainder of the quotient |
+of its two arguments. Both arguments and the result must be of the same |
+type. That type must be integral, or an integral based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = srem T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 6> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The signed integer remainder instruction returns the remainder of the quotient |
+of its two arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of |
+type <em>T</em>. <em>T</em> must be a integral type, or an integral vector type. <em>N</em> is |
+defined by the record position, defining the corresponding value generated by |
+the instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p>Signed values are assumed. Note that signed and unsigned integer division are |
+distinct operations. For unsigned integer division use the unsigned integer |
+remainder instruction (urem).</p> |
+<p>In the signed integer remainder instruction, Integral type i1 is disallowed. |
+Division by zero is guaranteed to trap. Overflow is also undefined.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = srem i32 %p0, %p1; |
+ %v1 = srem i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 6> |
+3: <2, 1, 2, 6> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="unsigned-integer-remainder-instruction"> |
+<h4 id="unsigned-integer-remainder-instruction">Unsigned Integer Remainder Instruction</h4> |
+<p>The unsigned integer remainder instruction returns the remainder of the quotient |
+of its two arguments. Both the arguments and the result must be of the same |
+type. The type must be integral, or an integral vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = urem T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, A1, A2, 5> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The unsigned integer remainder instruction returns the remainder of the quotient |
+of its two arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of |
+type <em>T</em>. <em>T</em> must be an integral type, or an integral vector type. <em>N</em> is |
+defined by the record position, defining the corresponding value generated by |
+the instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p>Unsigned values are assumed. Note that signed and unsigned integer division are |
+distinct operations. For signed integer division use the remainder instruction |
+(srem).</p> |
+<p>In the unsigned integer remainder instruction, Integral type i1 is disallowed. |
+Division by zero is guaranteed to trap. Overflow is also undefined.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = srem i32 %p0, %p1; |
+ %v1 = srem i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 5> |
+3: <2, 1, 2, 5> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="shift-left"> |
+<h4 id="shift-left">Shift left</h4> |
+<p>The (integer) shift left instruction returns the first operand, shifted to the |
+left a specified number of bits with zero fill. The shifted value must be |
+integral, or an integral vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = shl T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 7> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs a shift left operation. Argument <em>V1</em> and the result |
+<em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral, or a vector of |
+integrals. <em>V2</em> must be an integral type. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p><em>V2</em> is assumed to be unsigned. The least significant bits of the result will |
+be filled with zero bits after the shift. If <em>V2</em> is (statically or dynamically) |
+is negative or equal to or larger than the number of bits in <em>V1</em>, the result is |
+undefined. If the arguments are vectors, each vector element of <em>V1</em> is shifted |
+by the corresponding shift amount in <em>V2</em>.</p> |
+<p>In the shift left instruction, Integral type i1 is disallowed for either |
+argument.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) |
+IsInteger(TypeOf(V2)) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+UnderlyingType(TypeOf(V2)) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = shl i32 %p0, %p1; |
+ %v1 = shl i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 7> |
+3: <2, 1, 2, 7> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="logical-shift-right"> |
+<h4 id="logical-shift-right">Logical Shift right</h4> |
+<p>The logical shift right instruction returns the first operand, shifted |
+to the right a specified number of bits with zero fill.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = lshr T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 8> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs a logical shift right operation. Arguments <em>V1</em> and |
+the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral, or a vector of |
+integrals. <em>V2</em> must be an integral type. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p><em>V2</em> is assumed to be unsigned. The most significant bits of the result will be |
+filled with zero bits after the shift. If <em>V2</em> is (statically or dynamically) |
+negative or equal to or larger than the number of bits in <em>V1</em>, the result is |
+undefined. If the arguments are vectors, each vector element of <em>V1</em> is shifted |
+by the corresponding shift amount in <em>V2</em>.</p> |
+<p>In the logical shift right instruction, Integral type i1 is disallowed for |
+either argument.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA = AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) |
+IsInteger(TypeOf(V2)) |
+IsInteger(UnderlyingType(T)) |
+UnderlyingType(T) != i1 |
+UnderlyingType(TypeOf(V2)) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = lshr i32 %p0, %p1; |
+ %v1 = lshr i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 8> |
+3: <2, 1, 2, 8> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="arithmetic-shift-right"> |
+<h4 id="arithmetic-shift-right">Arithmetic Shift Right</h4> |
+<p>The arithmetic shift right instruction returns the first operand, |
+shifted to the right a specified number of bits with sign extension.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = ashr T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VVA2, 9> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs an arithmetic shift right operation. Arguments <em>V1</em> |
+and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral, or a vector |
+of integrals. <em>V2</em> must be an integral type. <em>N</em> is defined by the record |
+position, defining the corresponding value generated by the instruction. <em>A</em> is |
+the (optional) abbreviation associated with the corresponding record.</p> |
+<p><em>V2</em> is assumed to be unsigned. The most significant bits of the result will be |
+filled with the sign bit of <em>V1</em>. If <em>V2</em> is (statically or dynamically) |
+negative or equal to or larger than the number of bits in <em>V1</em>, the result is |
+undefined. If the arguments are vectors, each vector element of <em>V1</em> is shifted |
+by the corresponding shift amount in <em>V2</em>.</p> |
+<p>In the arithmetic shift right instruction, integral type i1 is disallowed for |
+either argument.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) |
+IsInteger(TypeOf(V2)) |
+UnderlyingType(T) != i1 |
+UnderlyingType(TypeOf(V2)) != i1 |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = ashr i32 %p0, %p1; |
+ %v1 = ashr i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 9> |
+3: <2, 1, 2, 9> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="logical-and"> |
+<h4 id="logical-and">Logical And</h4> |
+<p>The <em>and</em> instruction returns the bitwise logical and of its two operands.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = and T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 10> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs a bitwise logical and of its arguments. Arguments |
+<em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an |
+integral, or a vector of integrals. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p>The truth table used for the <em>and</em> instruction is:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">Arg 1</th> |
+<th class="head">Arg 2</th> |
+<th class="head">Result</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>0</td> |
+<td>0</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-odd"><td>0</td> |
+<td>1</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-even"><td>1</td> |
+<td>0</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-odd"><td>1</td> |
+<td>1</td> |
+<td>1</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T))) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = and i32 %p0, %p1; |
+ %v1 = and i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 10> |
+3: <2, 1, 2, 10> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="logical-or"> |
+<h4 id="logical-or">Logical Or</h4> |
+<p>The <em>or</em> instruction returns the bitwise logical inclusive or of its |
+two operands.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = or T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 11> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs a bitwise logical inclusive or of its arguments. |
+Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be |
+an integral, or a vector of integrals. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p>The truth table used for the <em>or</em> instruction is:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">Arg 1</th> |
+<th class="head">Arg 2</th> |
+<th class="head">Result</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>0</td> |
+<td>0</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-odd"><td>0</td> |
+<td>1</td> |
+<td>1</td> |
+</tr> |
+<tr class="row-even"><td>1</td> |
+<td>0</td> |
+<td>1</td> |
+</tr> |
+<tr class="row-odd"><td>1</td> |
+<td>1</td> |
+<td>1</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T))) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = or i32 %p0, %p1; |
+ %v1 = or i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 11> |
+3: <2, 1, 2, 11> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="logical-xor"> |
+<h4 id="logical-xor">Logical Xor</h4> |
+<p>The <em>xor</em> instruction returns the bitwise logical exclusive or of its |
+two operands.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = xor T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 12> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>This instruction performs a bitwise logical exclusive or of its |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of |
+type <em>T</em>. <em>T</em> nust be an integral, or a vector of integrals. <em>N</em> is |
+defined by the record position, defining the corresponding value |
+generated by the instruction. <em>A</em> is the (optional) abbreviation |
+associated with the corresponding record.</p> |
+<p>The truth table used for the <em>or</em> instruction is:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">Arg 1</th> |
+<th class="head">Arg 2</th> |
+<th class="head">Result</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>0</td> |
+<td>0</td> |
+<td>0</td> |
+</tr> |
+<tr class="row-odd"><td>0</td> |
+<td>1</td> |
+<td>1</td> |
+</tr> |
+<tr class="row-even"><td>1</td> |
+<td>0</td> |
+<td>1</td> |
+</tr> |
+<tr class="row-odd"><td>1</td> |
+<td>1</td> |
+<td>0</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+A1 == RelativeIndex(V1) |
+A2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsInteger(UnderlyingType(T))) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function i32 @f0(i32 %p0, i32 %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = xor i32 %p0, %p1; |
+ %v1 = xor i32 %v0, %p1; |
+ ret i32 %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 12> |
+3: <2, 1, 2, 12> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section></section><section id="floating-binary-inststructions"> |
+<h3 id="floating-binary-inststructions">Floating Binary Inststructions</h3> |
+<p>Floating Binary instructions require two operands of the same type, execute an |
+operation on them, and produce a value. The value may represent multiple values |
+if the type is a vector type. The result value always has the same type as its |
+operands.</p> |
+<section id="float-add"> |
+<h4 id="float-add">Float Add</h4> |
+<p>The float add instruction returns the sum of its two arguments. Both arguments |
+and the result must be of the same type. That type must be floating, or a |
+floating vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = add T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<blockquote> |
+<div>AA: <2, VV1, VV2, 0></div></blockquote> |
+<p><strong>Semantics</strong></p> |
+<p>The float add instruction returns the sum of its two arguments. Arguments <em>V1</em> |
+and <em>V2</em> and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> must be a floating type, |
+or a floating vector type. <em>N</em> is defined by the record position, defining the |
+corresponding value generated by the instruction. <em>A</em> is the (optional) |
+abbreviation associated with the corresponding record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsFloat(UnderlyingType(T)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function float @f0(float %p0, float %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = add float %p0, %p1; |
+ %v1 = add float %p0, %v0; |
+ ret float %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 0> |
+3: <2, 3, 1, 0> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="float-subtract"> |
+<h4 id="float-subtract">Float Subtract</h4> |
+<p>The floatsubtract instruction returns the difference of its two arguments. Both |
+arguments and the result must be of the same type. That type must be a floating, |
+or an floating based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = sub T V1, V2; <a> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 1> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The float subtract instruction returns the difference of its two |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type |
+<em>T</em>. <em>T</em> must be an floating type, or a floating vector type. <em>N</em> is defined by |
+the record position, defining the corresponding value generated by the |
+instruction. <em>A</em> is the (optional) abbreviation ¯associated with the |
+corresponding record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsFloat(UnderlyingType(T)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function float @f0(float %p0, float %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = sub float %p0, %p1; |
+ %v1 = sub float %p0, %v0; |
+ ret float %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 1> |
+3: <2, 3, 1, 1> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="float-multiply"> |
+<h4 id="float-multiply">Float Multiply</h4> |
+<p>The float multiply instruction returns the product of its two arguments. Both |
+arguments and the result must be of the same type. That type must be floating, |
+or a floating based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+&vN = mul T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 2> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The multiply instruction returns the product of its two arguments. Arguments |
+<em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> must be an |
+floating type, or a floating vector type. <em>N</em> is defined by the record position, |
+defining the corresponding value generated by the instruction. <em>A</em> is the |
+(optional) abbreviation associated with the corresponding record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsFloat(UnderlyingType(T)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function float @f0(float %p0, float %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = mul float %p0, %p1; |
+ %v1 = mul float %p0, %v0; |
+ ret float %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 2> |
+3: <2, 3, 1, 2> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="float-divide"> |
+<h4 id="float-divide">Float Divide</h4> |
+<p>The float divide instruction returns the quotient of its two arguments. Both |
+arguments and the result must be of the same type. That type must be a floating |
+type, or a floating based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = div T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, V1, V2, 4> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The float divide instruction returns the quotient of its two |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type |
+<em>T</em>. <em>T</em> must be a floating type, or a floating vector type. <em>N</em> is defined by |
+the record position, defining the corresponding value generated by the |
+instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV22 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsFloat(UnderlyingType(T)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function double @f0(double %p0, double %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = div double %p0, %p1; |
+ %v1 = div double %p0, %v0; |
+ ret double %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 4> |
+3: <2, 3, 1, 4> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section><section id="float-remainder"> |
+<h4 id="float-remainder">Float Remainder</h4> |
+<p>The float remainder instruction returns the remainder of the quotient of its two |
+arguments. Both arguments and the result must be of the same type. That type |
+must be a floating type, or a floating based vector type.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = rem T V1, V2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <2, VV1, VV2, 6> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The float remainder instruction returns the remainder of the quotient of its two |
+arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type |
+<em>T</em>. <em>T</em> must be a floating type, or a floating vector type. <em>N</em> is defined by |
+the record position, defining the corresponding value generated by the |
+instruction. <em>A</em> is the (optional) abbreviation associated with the |
+corresponding record.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV1 == RelativeIndex(V1) |
+VV2 == RelativeIndex(V2) |
+T == TypeOf(V1) == TypeOf(V2) |
+IsFloat(UnderlyingType(T)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+function double @f0(double %p0, double %p1) { |
+ blocks: 1; |
+%b0: |
+ %v0 = rem double %p0, %p1; |
+ %v1 = rem double %p0, %v0; |
+ ret double %v1; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <2, 2, 1, 6> |
+3: <2, 3, 1, 6> |
+3: <10, 1> |
+0: <65534> |
+</pre> |
+</section></section><section id="memory-creation-and-access-instructions"> |
+<h3 id="memory-creation-and-access-instructions">Memory creation and access Instructions</h3> |
+<p>A key design point of SSA-based representation is how it represents |
+memory. In PNaCl bitcode files, no memory locations are in SSA |
+form. This makes things very simple.</p> |
+<section id="alloca-instruction"> |
+<h4 id="alloca-instruction">Alloca Instruction</h4> |
+<p>The <em>alloca</em> instruction allocates memory on the stack frame of the |
+currently executing function. This memory is automatically released |
+when the function returns to its caller.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = alloca i8, i32 S, align V; <A> |
+%vN = alloca i8, i32 S; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <19, SS, VV> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The <em>alloca</em> instruction allocates memory on the stack frame of the currently |
+executing function. The resulting value is a pointer to the allocated memory |
+(i.e. of type i32). <em>S</em> is the number of bytes that are allocated on the |
+stack. <em>S</em> must be of integral type i32. <em>V</em> is the aligment of the generated |
+stack address. <em>A</em> is the corresponding number of bits associated with the |
+record.</p> |
+<p>Alignment must be a power of 2. A value of 0 means that the address |
+has the ABI alignment of the target. If alignment is not specified, |
+zero is used. Alignment on the stack is guaranteed to be aligned to at least |
+the boundary specified by the alignment.</p> |
+<p>TODO(kschimpf) Other alignment issues?</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+VV == Log2(V+1) |
+SS == RelativeIndex(S) |
+i32 == TypeOf(S) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = i32; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following instructions allocates memory for a 32-bit integer and a |
+64-bit floating value:</p> |
+<pre class="prettyprint"> |
+function void @f() { |
+ blocks: 1; |
+ constants { |
+ i32: |
+ %c0 = 4; // == sizeof(i32) |
+ %c1 = 8; // == sizeof(double) |
+ } |
+%b0: |
+ %v0 = alloca i8, i32 %c0; |
+ %v1 = alloca i8, i32 %c1; |
+ ret; |
+} |
+</pre> |
+<p>Assuming <em>TypeId(i32) == @t1</em>, the corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+1: <65535, 11, 2> |
+3: <1, 1> |
+3: <4, 8> |
+3: <4, 16> |
+0: <65534> |
+3: <19, 2, 0> |
+3: <19, 2, 0> |
+3: <10> |
+0: <65534> |
+</pre> |
+</section><section id="load-instruction"> |
+<h4 id="load-instruction">Load Instruction</h4> |
+<p>The <em>load</em> instruction is used to read from memory.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = load T* P, align V; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <20, PP, VV, TT> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The load instruction is used to read from memory. <em>P</em> is identifier of the |
+memory address to read. The type of <em>P</em> must be an i32 integer. <em>T</em> is the type |
+of value to read. <em>V</em> is the alignment of the memory address. <em>A</em> is the |
+(optional) abbreviation associated with the record.</p> |
+<p>Type <em>T</em> must be an integral or floating type. Both float and double types |
+are allowed for floating types. All integral types except i1 is allowed.</p> |
+<p>Valid alignment <em>V</em> values are:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head"><em>V</em></th> |
+<th class="head">Types</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>1</td> |
+<td>i8, i16, i32, i64</td> |
+</tr> |
+<tr class="row-odd"><td>4</td> |
+<td>float</td> |
+</tr> |
+<tr class="row-even"><td>8</td> |
+<td>double</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraints</strong></p> |
+<blockquote> |
+<div>AA == AbbrevIndex(A) |
+i32 == TypeOf(P) |
+PP == RelativeIndex(P) |
+VV == Log2(V+1) |
+%tTT == TypeID(T) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks</div></blockquote> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following instructions load an i32 integer and a 64-bit floating value:</p> |
+<pre class="prettyprint"> |
+function void @f(i32 %p0) { |
+ blocks: 1; |
+%b0: |
+ %v0 = load i32* %p0, align 1; |
+ %v1 = load double* %v0, align 8; |
+ ret; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <20, 1, 1> |
+3: <20, 1, 4> |
+3: <10> |
+0: <65534> |
+</pre> |
+</section><section id="store-instruction"> |
+<h4 id="store-instruction">Store Instruction</h4> |
+<p>The <em>store</em> instruction is used to write to memory.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+store T S, T* P, align V; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <24, PP, SS, VV> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The store instruction is used to write to memory. <em>P</em> is the identifier of the |
+memory address to write to. The type of <em>P</em> must be an i32 integer. <em>T</em> is the |
+type of value to store. <em>S</em> is the value to store, and must be of type <em>T</em>. <em>V</em> |
+is the alignment of the memory address. <em>A</em> is the (optional) abbreviation |
+index associated with the record.</p> |
+<p>Type <em>T</em> must be an integral or floating type. Both float and double types |
+are allowed for floating types. All integral types except i1 is allowed.</p> |
+<p>Valid alignment <em>V</em> values are:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head"><em>V</em></th> |
+<th class="head">Types</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>1</td> |
+<td>i8, i16, i32, i64</td> |
+</tr> |
+<tr class="row-odd"><td>4</td> |
+<td>float</td> |
+</tr> |
+<tr class="row-even"><td>8</td> |
+<td>double</td> |
+</tr> |
+</tbody> |
+</table> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+i32 == TypeOf(P) |
+PP == RelativeIndex(P) |
+VV == Log2(V+1) |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Examples</strong></p> |
+<p>The following instructions store an i32 integer and a 32-bit floating |
+value.</p> |
+<pre class="prettyprint"> |
+function void @f(i32 %p0, i32 %p1, i32 %p2, float %p3) { |
+ blocks: 1; |
+%b0: |
+ store i32 %p1, i32* %p2, align 1; |
+ store float %p3, float* %p3, align 4; |
+ ret; |
+} |
+</pre> |
+<p>The corresponding records are:</p> |
+<pre class="prettyprint"> |
+1: <65535, 12, 2> |
+3: <1, 1> |
+3: <24, 4, 3, 1> |
+3: <24, 1, 2, 4> |
+3: <10> |
+0: <65534> |
+</pre> |
+</section></section><section id="conversion-instructions"> |
+<h3 id="conversion-instructions">Conversion Instructions</h3> |
+<p>Conversion instructions all take a single operand and a type. The |
+value is converted to the corresponding type.</p> |
+<section id="integer-truncating-instruction"> |
+<h4 id="integer-truncating-instruction">Integer truncating Instruction</h4> |
+<p>The integer truncating instruction takes a value to truncate, and a type |
+defining the truncated type. Both types must be integer types, or integral |
+vectors of the same size. The bit size of the value must be larger than the bit |
+size of the destination type. Equal sized types are not allowed.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = trunc T1 V to T2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <3, VV, TT2, 0> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The integer truncating instruction takes a value <em>V</em>, and truncates to type |
+<em>T2</em>. <em>A</em> is the (optional) abbreviation associated with the corresponding |
+record. Both <em>T1</em> and <em>T2</em> must be integer types, or integral vectors of the |
+same size.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+TypeOf(V) = T1 |
+*VV* == RelativeIndex(*V*) |
+%tTT2 = TypeID(T2) |
+BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2)) |
+UnderlyingCount(T1) == UnderlyingCount(T2) |
+IsInteger(UnderlyingType(T1)) |
+IsInteger(UnderlyingType(T2)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T2; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+%v10 = trunc i32 %v9 to i8; |
+</pre> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+@t2 = i8; |
+</pre> |
+<p>the corresponding record is:</p> |
+<pre class="prettyprint"> |
+<3, 1, 2, 0> |
+</pre> |
+</section><section id="floating-truncating-instruction"> |
+<h4 id="floating-truncating-instruction">Floating truncating Instruction</h4> |
+<p>The floating truncating instruction takes a value to truncate, and a type |
+defining the truncated type. Both types must be floating types, or floating |
+vectors of the same size. The bit size of the value must be larger than the bit |
+size of the destination type. Equal sized types are not allowed.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = fptrunc T1 V to T2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <3, VV, TT2, 7> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The floating truncating instruction takes a value <em>V</em>, and truncates to type |
+<em>T2</em>. <em>A</em> is the (optional) abbreviation associated with the corresponding |
+record. Both <em>T1</em> and <em>T2</em> must be integer types, or integral vectors of the |
+same size.</p> |
+<p>If the value can’t fit within the destination type <em>T2</em>, the results are |
+undefined.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+TypeOf(V) = T1 |
+double == UnderlyingType(T1) |
+float == UnderlyingType(T2) |
+*VV* == RelativeIndex(*V*) |
+%tTT2 = TypeID(T2) |
+BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2)) |
+UnderlyingCount(T1) == UnderlyingCount(T2) |
+IsFloat(UnderlyingType(T1)) |
+IsFloat(UnderlyingType(T2)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T2; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+%v10 = fptrunc double %v9 to float; |
+</pre> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+@t4 = float; |
+</pre> |
+<p>the corresponding record is:</p> |
+<pre class="prettyprint"> |
+<3, 1, 4, 7> |
+</pre> |
+</section><section id="zero-extending-instruction"> |
+<h4 id="zero-extending-instruction">Zero Extending Instruction</h4> |
+<p>The zero extending instruction takes an value to cast, and a type to extend it |
+to. Both types must be integer types, or integral vectors of the same size. The |
+bit size of the value must be smaller than the bitsize of the destination |
+type. Equal sized types are not allowed.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = zext T1 V to T2; <A> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+AA: <3, VV, TT2, 1> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The zero extending instruction takes a value <em>V</em>, and expands it to type |
+<em>T2</em>. <em>I</em> is the (optional) abbreviation associated with the corresponding |
+record. Both <em>T1</em> and <em>T2</em> must be integer types, or vectors of the same number |
+of integers.</p> |
+<p>The instruction fills the high order bits of the value with zero bits |
+until it reaches the size of the destination type. When zero extending |
+from i1, the result will always be either 0 or 1.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+AA == AbbrevIndex(A) |
+TypeOf(V) = T1 |
+*VV* == RelativeIndex(*V*) |
+%tTT2 = TypeID(T2) |
+BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2)) |
+UnderlyingCount(T1) == UnderlyingCount(T2) |
+IsInteger(UnderlyingType(T1)) |
+IsInteger(UnderlyingType(T2)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T2; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+%v12 = zext i8 %v11 to i32; |
+</pre> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+@t0 = i32; |
+</pre> |
+<p>the corresponding record is:</p> |
+<pre class="prettyprint"> |
+<3, 1, 0, 2> |
+</pre> |
+</section><section id="sign-extending-instruction"> |
+<h4 id="sign-extending-instruction">Sign Extending Instruction</h4> |
+<p>The sign extending instruction takes an value to cast, and a type to |
+extend it to. Both types must be integer types, or vectors of the same |
+number of integers. The bit size of the value must be smaller than the |
+bitsize of the destination type. Equal sized types are not allowed.</p> |
+<p><strong>Syntax</strong></p> |
+<pre class="prettyprint"> |
+%vN = sext T1 V to T2; <I> |
+</pre> |
+<p><strong>Record</strong></p> |
+<pre class="prettyprint"> |
+I: <3, VV, TT2, 2> |
+</pre> |
+<p><strong>Semantics</strong></p> |
+<p>The sign extending instruction takes a value <em>V</em>, and expands it to |
+type <em>T2</em>. <em>VV</em> is the relative index of <em>V</em>. <em>I</em> is the (optional) |
+abbreviation associated with the corresponding record. Both <em>T1</em> and |
+<em>T2</em> must be integer types, or vectors of the same number of integers.</p> |
+<p>When sign extending, the instruction fills the high order bits of the |
+value with the (current) high order bit of the value. When sign |
+extending from i1, the extension always results in -1 or 0.</p> |
+<p><strong>Constraints</strong></p> |
+<pre class="prettyprint"> |
+TypeOf(V) = T1 |
+*VV* == RelativeIndex(*V*) |
+%tTT2 = TypeID(T2) |
+BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2)) |
+UnderlyingCount(T1) == UnderlyingCount(T2) |
+IsInteger(UnderlyingType(T1)) |
+IsInteger(UnderlyingType(T2)) |
+N == NumValuedInsts |
+NumBasicBlocks < ExpectedBasicBlocks |
+</pre> |
+<p><strong>Updates</strong></p> |
+<pre class="prettyprint"> |
+++NumValuedInsts; |
+TypeOf(%vN) = T2; |
+</pre> |
+<p><strong>Examples</strong></p> |
+<pre class="prettyprint"> |
+%v12 = sext i8 %v11 to i32; |
+</pre> |
+<p>Assuming</p> |
+<pre class="prettyprint"> |
+@t0 = i32; |
+</pre> |
+<p>the corresponding record is:</p> |
+<pre class="prettyprint"> |
+<3, 1, 0, 2> |
+</pre> |
+</section><section id="fpext"> |
+<h4 id="fpext">fpext</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="fptoui"> |
+<h4 id="fptoui">fptoui</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="fptosi"> |
+<h4 id="fptosi">fptosi</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="sitofp"> |
+<h4 id="sitofp">sitofp</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="bitcast"> |
+<h4 id="bitcast">bitcast</h4> |
+<p>TODO(kschimpf)</p> |
+</section></section><section id="comparison-instructions"> |
+<h3 id="comparison-instructions">Comparison Instructions</h3> |
+<p>TODO(kschimpf): cmp</p> |
+</section><section id="other-instructions"> |
+<h3 id="other-instructions">Other Instructions</h3> |
+<p>TODO(kschimpf)</p> |
+<section id="phi-instruction"> |
+<h4 id="phi-instruction">Phi Instruction</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="forward-type-declarations"> |
+<h4 id="forward-type-declarations">Forward type declarations</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="select-instruction"> |
+<h4 id="select-instruction">Select Instruction</h4> |
+<p>TODO(kschimpf)</p> |
+</section><section id="call-instructions"> |
+<h4 id="call-instructions">Call Instructions</h4> |
+<p>TODO(kschimpf)</p> |
+</section></section><section id="intrinsic-functions"> |
+<h3 id="intrinsic-functions">Intrinsic Functions</h3> |
+<p>TODO(kschimpf)</p> |
+</section></section><section id="support-functions"> |
+<h2 id="support-functions">Support Functions</h2> |
+<p>Defines functions used to convert syntactic representation to corresponding |
+records.</p> |
+<section id="signrotate"> |
+<h3 id="signrotate">SignRotate</h3> |
+<p>The SignRotate function encodes a signed integer in an easily compressable |
+form. This is done by rotating the sign bit to the rightmost bit, rather than |
+the leftmost bit. By doing this rotation, both small positive and negative |
+integers are small (unsigned) integers. Therefore, all small integers can be |
+encoded as a small (unsigned) integers.</p> |
+<p>The definition of SignRotate(N) is:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">Argument</th> |
+<th class="head">Value</th> |
+<th class="head">Condition</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>N</td> |
+<td>abs(N)<<1</td> |
+<td>N >= 0</td> |
+</tr> |
+<tr class="row-odd"><td>N</td> |
+<td>abs(N)<<1 + 1</td> |
+<td>N < 0</td> |
+</tr> |
+</tbody> |
+</table> |
+</section><section id="absoluteindex"> |
+<h3 id="absoluteindex">AbsoluteIndex</h3> |
+<p>Bitcode ID’s of the forms <em>@fN</em>, <em>@gN</em>, <em>%pN</em>, <em>%cN</em>, and <em>%vN</em>, are combined |
+into a single index space. This can be done because of the ordering imposed by |
+PNaClAsm. All function address bitcode IDs must be defined before any of the |
+other forms of bitcode IDs. All global address bitcode IDs must be defined |
+before any local bitcode IDs. Within a function block, the parameter bitcode IDs |
+must be defined before constant IDs, and constant IDs must be defined before |
+instruction value IDs.</p> |
+<p>Hence, within a function block, it is safe to refer to all of these |
+bitcode IDs using a single <em>absolute</em> index. The abolute index for |
+each kind of bitcode ID is computed as follows:</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">Bitcode ID</th> |
+<th class="head">AbsoluteIndex</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>@fN</td> |
+<td>N</td> |
+</tr> |
+<tr class="row-odd"><td>@gN</td> |
+<td>N + NumDefinedFcnAddresses</td> |
+</tr> |
+<tr class="row-even"><td>@pN</td> |
+<td>N + NumDefinedFcnAddresses + NumGlobalAddresses</td> |
+</tr> |
+<tr class="row-odd"><td>@cN</td> |
+<td>N + NumDefinedFcnAddresses + NumGlobalAddresses + NumParams</td> |
+</tr> |
+<tr class="row-even"><td>@vN</td> |
+<td>N + NumDefinedFcnAddresses + NumGlobalAddresses + NumParams + NumFcnConsts</td> |
+</tr> |
+</tbody> |
+</table> |
+</section><section id="relativeindex"> |
+<h3 id="relativeindex">RelativeIndex</h3> |
+<p>Relative indices are used to refer to values within instructions of a |
+function. The relative index of an ID is always defined in terms of |
+the index associated with the next value generating instruction. It is |
+defined as follows:</p> |
+<pre class="prettyprint"> |
+RelativeIndex(J) = AbsoluteIndex(NumValuedInsts) - AbsoluteIndex(J) |
+</pre> |
+</section><section id="abbrevindex"> |
+<h3 id="abbrevindex">AbbrevIndex</h3> |
+<p>This function converts user-defined abbreviation indices to the corresponding |
+internal abbreviation index saved in the bitcode file. It adds 4 to its argument, |
+since there are 4 predefined internal abbreviation indices (0, 1, 2, and 3).</p> |
+<table border="1" class="docutils"> |
+<colgroup> |
+</colgroup> |
+<thead valign="bottom"> |
+<tr class="row-odd"><th class="head">N</th> |
+<th class="head">AbbrevIndex(N)</th> |
+</tr> |
+</thead> |
+<tbody valign="top"> |
+<tr class="row-even"><td>undefined</td> |
+<td>3</td> |
+</tr> |
+<tr class="row-odd"><td>%aA</td> |
+<td>A + 4</td> |
+</tr> |
+<tr class="row-even"><td>@aA</td> |
+<td>A + 4</td> |
+</tr> |
+</tbody> |
+</table> |
+</section><section id="log2"> |
+<h3 id="log2">Log2</h3> |
+<p>This is the 32-bit log2 value of its argument.</p> |
+</section><section id="exp"> |
+<h3 id="exp">exp</h3> |
+<pre class="prettyprint"> |
+exp(n, m) |
+</pre> |
+<p>Denotes the <em>m</em> power of <em>n</em>.</p> |
+</section><section id="bitsizeof"> |
+<h3 id="bitsizeof">BitSizeOf</h3> |
+<p>Returns the number of bits needed to represent its argument (a type).</p> |
+</section><section id="underlyingtype"> |
+<h3 id="underlyingtype">UnderlyingType</h3> |
+<p>Returns the primitive type of the type construct. For primitive types, |
+the <em>UnderlyingType</em> is itself. For vector types, the base type of the |
+vector is the underlying type.</p> |
+</section><section id="underlyingcount"> |
+<h3 id="underlyingcount">UnderlyingCount</h3> |
+<p>Returns the number of primitive types in the construct. For primitive |
+types, the <em>UnderlyingCount</em> is 1. For vector types, it returns the |
+number of elements in the vector.</p> |
+</section><section id="isinteger"> |
+<h3 id="isinteger">IsInteger</h3> |
+<p>Returns true if the argument is in {i1, i8, i16, i32, i64}.</p> |
+</section><section id="isfloat"> |
+<h3 id="isfloat">IsFloat</h3> |
+<p>Returns true if the argument is in {float, double}.</p> |
+</section><section id="abbreviations"> |
+<h3 id="abbreviations">Abbreviations</h3> |
+<p>TODO(kschimpf)</p> |
+<section id="id4"> |
+<h4 id="id4">Introduction</h4> |
+<p>TODO(kschimpf)</p> |
+<ul class="small-gap"> |
+<li>Blocks</li> |
+<li>Data Records</li> |
+<li>Abbreviations</li> |
+<li>Abbreviation Ids.</li> |
+</ul> |
+</section><section id="bitstream-format"> |
+<h4 id="bitstream-format">Bitstream Format</h4> |
+<p>TODO(kschimpf)</p> |
+<ul class="small-gap"> |
+<li>Header</li> |
+<li>Block Structue</li> |
+<li>Primitives</li> |
+<li>Abbreviations</li> |
+<li>BlockInfoBlock</li> |
+</ul> |
+</section></section><section id="reference-implementation"> |
+<h3 id="reference-implementation">Reference Implementation</h3> |
+<p>TODO(kschimpf)</p> |
+</section></section></section> |
+ |
+{{/partials.standard_nacl_article}} |