Index: third_party/google-endpoints/rsa/key.py |
diff --git a/third_party/google-endpoints/rsa/key.py b/third_party/google-endpoints/rsa/key.py |
new file mode 100644 |
index 0000000000000000000000000000000000000000..64600a2785deae00baec97fb0fbf8b7d6e2f8fb4 |
--- /dev/null |
+++ b/third_party/google-endpoints/rsa/key.py |
@@ -0,0 +1,739 @@ |
+# -*- coding: utf-8 -*- |
+# |
+# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu> |
+# |
+# Licensed under the Apache License, Version 2.0 (the "License"); |
+# you may not use this file except in compliance with the License. |
+# You may obtain a copy of the License at |
+# |
+# https://www.apache.org/licenses/LICENSE-2.0 |
+# |
+# Unless required by applicable law or agreed to in writing, software |
+# distributed under the License is distributed on an "AS IS" BASIS, |
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
+# See the License for the specific language governing permissions and |
+# limitations under the License. |
+ |
+"""RSA key generation code. |
+ |
+Create new keys with the newkeys() function. It will give you a PublicKey and a |
+PrivateKey object. |
+ |
+Loading and saving keys requires the pyasn1 module. This module is imported as |
+late as possible, such that other functionality will remain working in absence |
+of pyasn1. |
+ |
+.. note:: |
+ |
+ Storing public and private keys via the `pickle` module is possible. |
+ However, it is insecure to load a key from an untrusted source. |
+ The pickle module is not secure against erroneous or maliciously |
+ constructed data. Never unpickle data received from an untrusted |
+ or unauthenticated source. |
+ |
+""" |
+ |
+import logging |
+from rsa._compat import b |
+ |
+import rsa.prime |
+import rsa.pem |
+import rsa.common |
+import rsa.randnum |
+import rsa.core |
+ |
+log = logging.getLogger(__name__) |
+DEFAULT_EXPONENT = 65537 |
+ |
+ |
+class AbstractKey(object): |
+ """Abstract superclass for private and public keys.""" |
+ |
+ __slots__ = ('n', 'e') |
+ |
+ def __init__(self, n, e): |
+ self.n = n |
+ self.e = e |
+ |
+ @classmethod |
+ def load_pkcs1(cls, keyfile, format='PEM'): |
+ """Loads a key in PKCS#1 DER or PEM format. |
+ |
+ :param keyfile: contents of a DER- or PEM-encoded file that contains |
+ the public key. |
+ :param format: the format of the file to load; 'PEM' or 'DER' |
+ |
+ :return: a PublicKey object |
+ """ |
+ |
+ methods = { |
+ 'PEM': cls._load_pkcs1_pem, |
+ 'DER': cls._load_pkcs1_der, |
+ } |
+ |
+ method = cls._assert_format_exists(format, methods) |
+ return method(keyfile) |
+ |
+ @staticmethod |
+ def _assert_format_exists(file_format, methods): |
+ """Checks whether the given file format exists in 'methods'. |
+ """ |
+ |
+ try: |
+ return methods[file_format] |
+ except KeyError: |
+ formats = ', '.join(sorted(methods.keys())) |
+ raise ValueError('Unsupported format: %r, try one of %s' % (file_format, |
+ formats)) |
+ |
+ def save_pkcs1(self, format='PEM'): |
+ """Saves the public key in PKCS#1 DER or PEM format. |
+ |
+ :param format: the format to save; 'PEM' or 'DER' |
+ :returns: the DER- or PEM-encoded public key. |
+ """ |
+ |
+ methods = { |
+ 'PEM': self._save_pkcs1_pem, |
+ 'DER': self._save_pkcs1_der, |
+ } |
+ |
+ method = self._assert_format_exists(format, methods) |
+ return method() |
+ |
+ def blind(self, message, r): |
+ """Performs blinding on the message using random number 'r'. |
+ |
+ :param message: the message, as integer, to blind. |
+ :type message: int |
+ :param r: the random number to blind with. |
+ :type r: int |
+ :return: the blinded message. |
+ :rtype: int |
+ |
+ The blinding is such that message = unblind(decrypt(blind(encrypt(message))). |
+ |
+ See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 |
+ """ |
+ |
+ return (message * pow(r, self.e, self.n)) % self.n |
+ |
+ def unblind(self, blinded, r): |
+ """Performs blinding on the message using random number 'r'. |
+ |
+ :param blinded: the blinded message, as integer, to unblind. |
+ :param r: the random number to unblind with. |
+ :return: the original message. |
+ |
+ The blinding is such that message = unblind(decrypt(blind(encrypt(message))). |
+ |
+ See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29 |
+ """ |
+ |
+ return (rsa.common.inverse(r, self.n) * blinded) % self.n |
+ |
+ |
+class PublicKey(AbstractKey): |
+ """Represents a public RSA key. |
+ |
+ This key is also known as the 'encryption key'. It contains the 'n' and 'e' |
+ values. |
+ |
+ Supports attributes as well as dictionary-like access. Attribute accesss is |
+ faster, though. |
+ |
+ >>> PublicKey(5, 3) |
+ PublicKey(5, 3) |
+ |
+ >>> key = PublicKey(5, 3) |
+ >>> key.n |
+ 5 |
+ >>> key['n'] |
+ 5 |
+ >>> key.e |
+ 3 |
+ >>> key['e'] |
+ 3 |
+ |
+ """ |
+ |
+ __slots__ = ('n', 'e') |
+ |
+ def __getitem__(self, key): |
+ return getattr(self, key) |
+ |
+ def __repr__(self): |
+ return 'PublicKey(%i, %i)' % (self.n, self.e) |
+ |
+ def __getstate__(self): |
+ """Returns the key as tuple for pickling.""" |
+ return self.n, self.e |
+ |
+ def __setstate__(self, state): |
+ """Sets the key from tuple.""" |
+ self.n, self.e = state |
+ |
+ def __eq__(self, other): |
+ if other is None: |
+ return False |
+ |
+ if not isinstance(other, PublicKey): |
+ return False |
+ |
+ return self.n == other.n and self.e == other.e |
+ |
+ def __ne__(self, other): |
+ return not (self == other) |
+ |
+ @classmethod |
+ def _load_pkcs1_der(cls, keyfile): |
+ """Loads a key in PKCS#1 DER format. |
+ |
+ :param keyfile: contents of a DER-encoded file that contains the public |
+ key. |
+ :return: a PublicKey object |
+ |
+ First let's construct a DER encoded key: |
+ |
+ >>> import base64 |
+ >>> b64der = 'MAwCBQCNGmYtAgMBAAE=' |
+ >>> der = base64.standard_b64decode(b64der) |
+ |
+ This loads the file: |
+ |
+ >>> PublicKey._load_pkcs1_der(der) |
+ PublicKey(2367317549, 65537) |
+ |
+ """ |
+ |
+ from pyasn1.codec.der import decoder |
+ from rsa.asn1 import AsnPubKey |
+ |
+ (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey()) |
+ return cls(n=int(priv['modulus']), e=int(priv['publicExponent'])) |
+ |
+ def _save_pkcs1_der(self): |
+ """Saves the public key in PKCS#1 DER format. |
+ |
+ @returns: the DER-encoded public key. |
+ """ |
+ |
+ from pyasn1.codec.der import encoder |
+ from rsa.asn1 import AsnPubKey |
+ |
+ # Create the ASN object |
+ asn_key = AsnPubKey() |
+ asn_key.setComponentByName('modulus', self.n) |
+ asn_key.setComponentByName('publicExponent', self.e) |
+ |
+ return encoder.encode(asn_key) |
+ |
+ @classmethod |
+ def _load_pkcs1_pem(cls, keyfile): |
+ """Loads a PKCS#1 PEM-encoded public key file. |
+ |
+ The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and |
+ after the "-----END RSA PUBLIC KEY-----" lines is ignored. |
+ |
+ :param keyfile: contents of a PEM-encoded file that contains the public |
+ key. |
+ :return: a PublicKey object |
+ """ |
+ |
+ der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY') |
+ return cls._load_pkcs1_der(der) |
+ |
+ def _save_pkcs1_pem(self): |
+ """Saves a PKCS#1 PEM-encoded public key file. |
+ |
+ :return: contents of a PEM-encoded file that contains the public key. |
+ """ |
+ |
+ der = self._save_pkcs1_der() |
+ return rsa.pem.save_pem(der, 'RSA PUBLIC KEY') |
+ |
+ @classmethod |
+ def load_pkcs1_openssl_pem(cls, keyfile): |
+ """Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL. |
+ |
+ These files can be recognised in that they start with BEGIN PUBLIC KEY |
+ rather than BEGIN RSA PUBLIC KEY. |
+ |
+ The contents of the file before the "-----BEGIN PUBLIC KEY-----" and |
+ after the "-----END PUBLIC KEY-----" lines is ignored. |
+ |
+ :param keyfile: contents of a PEM-encoded file that contains the public |
+ key, from OpenSSL. |
+ :return: a PublicKey object |
+ """ |
+ |
+ der = rsa.pem.load_pem(keyfile, 'PUBLIC KEY') |
+ return cls.load_pkcs1_openssl_der(der) |
+ |
+ @classmethod |
+ def load_pkcs1_openssl_der(cls, keyfile): |
+ """Loads a PKCS#1 DER-encoded public key file from OpenSSL. |
+ |
+ :param keyfile: contents of a DER-encoded file that contains the public |
+ key, from OpenSSL. |
+ :return: a PublicKey object |
+ |
+ """ |
+ |
+ from rsa.asn1 import OpenSSLPubKey |
+ from pyasn1.codec.der import decoder |
+ from pyasn1.type import univ |
+ |
+ (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey()) |
+ |
+ if keyinfo['header']['oid'] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'): |
+ raise TypeError("This is not a DER-encoded OpenSSL-compatible public key") |
+ |
+ return cls._load_pkcs1_der(keyinfo['key'][1:]) |
+ |
+ |
+class PrivateKey(AbstractKey): |
+ """Represents a private RSA key. |
+ |
+ This key is also known as the 'decryption key'. It contains the 'n', 'e', |
+ 'd', 'p', 'q' and other values. |
+ |
+ Supports attributes as well as dictionary-like access. Attribute accesss is |
+ faster, though. |
+ |
+ >>> PrivateKey(3247, 65537, 833, 191, 17) |
+ PrivateKey(3247, 65537, 833, 191, 17) |
+ |
+ exp1, exp2 and coef can be given, but if None or omitted they will be calculated: |
+ |
+ >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287, exp2=4) |
+ >>> pk.exp1 |
+ 55063 |
+ >>> pk.exp2 # this is of course not a correct value, but it is the one we passed. |
+ 4 |
+ >>> pk.coef |
+ 50797 |
+ |
+ If you give exp1, exp2 or coef, they will be used as-is: |
+ |
+ >>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8) |
+ >>> pk.exp1 |
+ 6 |
+ >>> pk.exp2 |
+ 7 |
+ >>> pk.coef |
+ 8 |
+ |
+ """ |
+ |
+ __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef') |
+ |
+ def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None): |
+ AbstractKey.__init__(self, n, e) |
+ self.d = d |
+ self.p = p |
+ self.q = q |
+ |
+ # Calculate the other values if they aren't supplied |
+ if exp1 is None: |
+ self.exp1 = int(d % (p - 1)) |
+ else: |
+ self.exp1 = exp1 |
+ |
+ if exp2 is None: |
+ self.exp2 = int(d % (q - 1)) |
+ else: |
+ self.exp2 = exp2 |
+ |
+ if coef is None: |
+ self.coef = rsa.common.inverse(q, p) |
+ else: |
+ self.coef = coef |
+ |
+ def __getitem__(self, key): |
+ return getattr(self, key) |
+ |
+ def __repr__(self): |
+ return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self |
+ |
+ def __getstate__(self): |
+ """Returns the key as tuple for pickling.""" |
+ return self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef |
+ |
+ def __setstate__(self, state): |
+ """Sets the key from tuple.""" |
+ self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef = state |
+ |
+ def __eq__(self, other): |
+ if other is None: |
+ return False |
+ |
+ if not isinstance(other, PrivateKey): |
+ return False |
+ |
+ return (self.n == other.n and |
+ self.e == other.e and |
+ self.d == other.d and |
+ self.p == other.p and |
+ self.q == other.q and |
+ self.exp1 == other.exp1 and |
+ self.exp2 == other.exp2 and |
+ self.coef == other.coef) |
+ |
+ def __ne__(self, other): |
+ return not (self == other) |
+ |
+ def blinded_decrypt(self, encrypted): |
+ """Decrypts the message using blinding to prevent side-channel attacks. |
+ |
+ :param encrypted: the encrypted message |
+ :type encrypted: int |
+ |
+ :returns: the decrypted message |
+ :rtype: int |
+ """ |
+ |
+ blind_r = rsa.randnum.randint(self.n - 1) |
+ blinded = self.blind(encrypted, blind_r) # blind before decrypting |
+ decrypted = rsa.core.decrypt_int(blinded, self.d, self.n) |
+ |
+ return self.unblind(decrypted, blind_r) |
+ |
+ def blinded_encrypt(self, message): |
+ """Encrypts the message using blinding to prevent side-channel attacks. |
+ |
+ :param message: the message to encrypt |
+ :type message: int |
+ |
+ :returns: the encrypted message |
+ :rtype: int |
+ """ |
+ |
+ blind_r = rsa.randnum.randint(self.n - 1) |
+ blinded = self.blind(message, blind_r) # blind before encrypting |
+ encrypted = rsa.core.encrypt_int(blinded, self.d, self.n) |
+ return self.unblind(encrypted, blind_r) |
+ |
+ @classmethod |
+ def _load_pkcs1_der(cls, keyfile): |
+ """Loads a key in PKCS#1 DER format. |
+ |
+ :param keyfile: contents of a DER-encoded file that contains the private |
+ key. |
+ :return: a PrivateKey object |
+ |
+ First let's construct a DER encoded key: |
+ |
+ >>> import base64 |
+ >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt' |
+ >>> der = base64.standard_b64decode(b64der) |
+ |
+ This loads the file: |
+ |
+ >>> PrivateKey._load_pkcs1_der(der) |
+ PrivateKey(3727264081, 65537, 3349121513, 65063, 57287) |
+ |
+ """ |
+ |
+ from pyasn1.codec.der import decoder |
+ (priv, _) = decoder.decode(keyfile) |
+ |
+ # ASN.1 contents of DER encoded private key: |
+ # |
+ # RSAPrivateKey ::= SEQUENCE { |
+ # version Version, |
+ # modulus INTEGER, -- n |
+ # publicExponent INTEGER, -- e |
+ # privateExponent INTEGER, -- d |
+ # prime1 INTEGER, -- p |
+ # prime2 INTEGER, -- q |
+ # exponent1 INTEGER, -- d mod (p-1) |
+ # exponent2 INTEGER, -- d mod (q-1) |
+ # coefficient INTEGER, -- (inverse of q) mod p |
+ # otherPrimeInfos OtherPrimeInfos OPTIONAL |
+ # } |
+ |
+ if priv[0] != 0: |
+ raise ValueError('Unable to read this file, version %s != 0' % priv[0]) |
+ |
+ as_ints = tuple(int(x) for x in priv[1:9]) |
+ return cls(*as_ints) |
+ |
+ def _save_pkcs1_der(self): |
+ """Saves the private key in PKCS#1 DER format. |
+ |
+ @returns: the DER-encoded private key. |
+ """ |
+ |
+ from pyasn1.type import univ, namedtype |
+ from pyasn1.codec.der import encoder |
+ |
+ class AsnPrivKey(univ.Sequence): |
+ componentType = namedtype.NamedTypes( |
+ namedtype.NamedType('version', univ.Integer()), |
+ namedtype.NamedType('modulus', univ.Integer()), |
+ namedtype.NamedType('publicExponent', univ.Integer()), |
+ namedtype.NamedType('privateExponent', univ.Integer()), |
+ namedtype.NamedType('prime1', univ.Integer()), |
+ namedtype.NamedType('prime2', univ.Integer()), |
+ namedtype.NamedType('exponent1', univ.Integer()), |
+ namedtype.NamedType('exponent2', univ.Integer()), |
+ namedtype.NamedType('coefficient', univ.Integer()), |
+ ) |
+ |
+ # Create the ASN object |
+ asn_key = AsnPrivKey() |
+ asn_key.setComponentByName('version', 0) |
+ asn_key.setComponentByName('modulus', self.n) |
+ asn_key.setComponentByName('publicExponent', self.e) |
+ asn_key.setComponentByName('privateExponent', self.d) |
+ asn_key.setComponentByName('prime1', self.p) |
+ asn_key.setComponentByName('prime2', self.q) |
+ asn_key.setComponentByName('exponent1', self.exp1) |
+ asn_key.setComponentByName('exponent2', self.exp2) |
+ asn_key.setComponentByName('coefficient', self.coef) |
+ |
+ return encoder.encode(asn_key) |
+ |
+ @classmethod |
+ def _load_pkcs1_pem(cls, keyfile): |
+ """Loads a PKCS#1 PEM-encoded private key file. |
+ |
+ The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and |
+ after the "-----END RSA PRIVATE KEY-----" lines is ignored. |
+ |
+ :param keyfile: contents of a PEM-encoded file that contains the private |
+ key. |
+ :return: a PrivateKey object |
+ """ |
+ |
+ der = rsa.pem.load_pem(keyfile, b('RSA PRIVATE KEY')) |
+ return cls._load_pkcs1_der(der) |
+ |
+ def _save_pkcs1_pem(self): |
+ """Saves a PKCS#1 PEM-encoded private key file. |
+ |
+ :return: contents of a PEM-encoded file that contains the private key. |
+ """ |
+ |
+ der = self._save_pkcs1_der() |
+ return rsa.pem.save_pem(der, b('RSA PRIVATE KEY')) |
+ |
+ |
+def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True): |
+ """Returns a tuple of two different primes of nbits bits each. |
+ |
+ The resulting p * q has exacty 2 * nbits bits, and the returned p and q |
+ will not be equal. |
+ |
+ :param nbits: the number of bits in each of p and q. |
+ :param getprime_func: the getprime function, defaults to |
+ :py:func:`rsa.prime.getprime`. |
+ |
+ *Introduced in Python-RSA 3.1* |
+ |
+ :param accurate: whether to enable accurate mode or not. |
+ :returns: (p, q), where p > q |
+ |
+ >>> (p, q) = find_p_q(128) |
+ >>> from rsa import common |
+ >>> common.bit_size(p * q) |
+ 256 |
+ |
+ When not in accurate mode, the number of bits can be slightly less |
+ |
+ >>> (p, q) = find_p_q(128, accurate=False) |
+ >>> from rsa import common |
+ >>> common.bit_size(p * q) <= 256 |
+ True |
+ >>> common.bit_size(p * q) > 240 |
+ True |
+ |
+ """ |
+ |
+ total_bits = nbits * 2 |
+ |
+ # Make sure that p and q aren't too close or the factoring programs can |
+ # factor n. |
+ shift = nbits // 16 |
+ pbits = nbits + shift |
+ qbits = nbits - shift |
+ |
+ # Choose the two initial primes |
+ log.debug('find_p_q(%i): Finding p', nbits) |
+ p = getprime_func(pbits) |
+ log.debug('find_p_q(%i): Finding q', nbits) |
+ q = getprime_func(qbits) |
+ |
+ def is_acceptable(p, q): |
+ """Returns True iff p and q are acceptable: |
+ |
+ - p and q differ |
+ - (p * q) has the right nr of bits (when accurate=True) |
+ """ |
+ |
+ if p == q: |
+ return False |
+ |
+ if not accurate: |
+ return True |
+ |
+ # Make sure we have just the right amount of bits |
+ found_size = rsa.common.bit_size(p * q) |
+ return total_bits == found_size |
+ |
+ # Keep choosing other primes until they match our requirements. |
+ change_p = False |
+ while not is_acceptable(p, q): |
+ # Change p on one iteration and q on the other |
+ if change_p: |
+ p = getprime_func(pbits) |
+ else: |
+ q = getprime_func(qbits) |
+ |
+ change_p = not change_p |
+ |
+ # We want p > q as described on |
+ # http://www.di-mgt.com.au/rsa_alg.html#crt |
+ return max(p, q), min(p, q) |
+ |
+ |
+def calculate_keys_custom_exponent(p, q, exponent): |
+ """Calculates an encryption and a decryption key given p, q and an exponent, |
+ and returns them as a tuple (e, d) |
+ |
+ :param p: the first large prime |
+ :param q: the second large prime |
+ :param exponent: the exponent for the key; only change this if you know |
+ what you're doing, as the exponent influences how difficult your |
+ private key can be cracked. A very common choice for e is 65537. |
+ :type exponent: int |
+ |
+ """ |
+ |
+ phi_n = (p - 1) * (q - 1) |
+ |
+ try: |
+ d = rsa.common.inverse(exponent, phi_n) |
+ except ValueError: |
+ raise ValueError("e (%d) and phi_n (%d) are not relatively prime" % |
+ (exponent, phi_n)) |
+ |
+ if (exponent * d) % phi_n != 1: |
+ raise ValueError("e (%d) and d (%d) are not mult. inv. modulo " |
+ "phi_n (%d)" % (exponent, d, phi_n)) |
+ |
+ return exponent, d |
+ |
+ |
+def calculate_keys(p, q): |
+ """Calculates an encryption and a decryption key given p and q, and |
+ returns them as a tuple (e, d) |
+ |
+ :param p: the first large prime |
+ :param q: the second large prime |
+ |
+ :return: tuple (e, d) with the encryption and decryption exponents. |
+ """ |
+ |
+ return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT) |
+ |
+ |
+def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT): |
+ """Generate RSA keys of nbits bits. Returns (p, q, e, d). |
+ |
+ Note: this can take a long time, depending on the key size. |
+ |
+ :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and |
+ ``q`` will use ``nbits/2`` bits. |
+ :param getprime_func: either :py:func:`rsa.prime.getprime` or a function |
+ with similar signature. |
+ :param exponent: the exponent for the key; only change this if you know |
+ what you're doing, as the exponent influences how difficult your |
+ private key can be cracked. A very common choice for e is 65537. |
+ :type exponent: int |
+ """ |
+ |
+ # Regenerate p and q values, until calculate_keys doesn't raise a |
+ # ValueError. |
+ while True: |
+ (p, q) = find_p_q(nbits // 2, getprime_func, accurate) |
+ try: |
+ (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent) |
+ break |
+ except ValueError: |
+ pass |
+ |
+ return p, q, e, d |
+ |
+ |
+def newkeys(nbits, accurate=True, poolsize=1, exponent=DEFAULT_EXPONENT): |
+ """Generates public and private keys, and returns them as (pub, priv). |
+ |
+ The public key is also known as the 'encryption key', and is a |
+ :py:class:`rsa.PublicKey` object. The private key is also known as the |
+ 'decryption key' and is a :py:class:`rsa.PrivateKey` object. |
+ |
+ :param nbits: the number of bits required to store ``n = p*q``. |
+ :param accurate: when True, ``n`` will have exactly the number of bits you |
+ asked for. However, this makes key generation much slower. When False, |
+ `n`` may have slightly less bits. |
+ :param poolsize: the number of processes to use to generate the prime |
+ numbers. If set to a number > 1, a parallel algorithm will be used. |
+ This requires Python 2.6 or newer. |
+ :param exponent: the exponent for the key; only change this if you know |
+ what you're doing, as the exponent influences how difficult your |
+ private key can be cracked. A very common choice for e is 65537. |
+ :type exponent: int |
+ |
+ :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`) |
+ |
+ The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires |
+ Python 2.6 or newer. |
+ |
+ """ |
+ |
+ if nbits < 16: |
+ raise ValueError('Key too small') |
+ |
+ if poolsize < 1: |
+ raise ValueError('Pool size (%i) should be >= 1' % poolsize) |
+ |
+ # Determine which getprime function to use |
+ if poolsize > 1: |
+ from rsa import parallel |
+ import functools |
+ |
+ getprime_func = functools.partial(parallel.getprime, poolsize=poolsize) |
+ else: |
+ getprime_func = rsa.prime.getprime |
+ |
+ # Generate the key components |
+ (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent) |
+ |
+ # Create the key objects |
+ n = p * q |
+ |
+ return ( |
+ PublicKey(n, e), |
+ PrivateKey(n, e, d, p, q) |
+ ) |
+ |
+ |
+__all__ = ['PublicKey', 'PrivateKey', 'newkeys'] |
+ |
+if __name__ == '__main__': |
+ import doctest |
+ |
+ try: |
+ for count in range(100): |
+ (failures, tests) = doctest.testmod() |
+ if failures: |
+ break |
+ |
+ if (count and count % 10 == 0) or count == 1: |
+ print('%i times' % count) |
+ except KeyboardInterrupt: |
+ print('Aborted') |
+ else: |
+ print('Doctests done') |