| Index: third_party/google-endpoints/Crypto/PublicKey/RSA.py
|
| diff --git a/third_party/google-endpoints/Crypto/PublicKey/RSA.py b/third_party/google-endpoints/Crypto/PublicKey/RSA.py
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..99d851ddb6961d1d7b4248b8dfa815950277378d
|
| --- /dev/null
|
| +++ b/third_party/google-endpoints/Crypto/PublicKey/RSA.py
|
| @@ -0,0 +1,719 @@
|
| +# -*- coding: utf-8 -*-
|
| +#
|
| +# PublicKey/RSA.py : RSA public key primitive
|
| +#
|
| +# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
| +#
|
| +# ===================================================================
|
| +# The contents of this file are dedicated to the public domain. To
|
| +# the extent that dedication to the public domain is not available,
|
| +# everyone is granted a worldwide, perpetual, royalty-free,
|
| +# non-exclusive license to exercise all rights associated with the
|
| +# contents of this file for any purpose whatsoever.
|
| +# No rights are reserved.
|
| +#
|
| +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
| +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
| +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
| +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
| +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
| +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
| +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| +# SOFTWARE.
|
| +# ===================================================================
|
| +
|
| +"""RSA public-key cryptography algorithm (signature and encryption).
|
| +
|
| +RSA_ is the most widespread and used public key algorithm. Its security is
|
| +based on the difficulty of factoring large integers. The algorithm has
|
| +withstood attacks for 30 years, and it is therefore considered reasonably
|
| +secure for new designs.
|
| +
|
| +The algorithm can be used for both confidentiality (encryption) and
|
| +authentication (digital signature). It is worth noting that signing and
|
| +decryption are significantly slower than verification and encryption.
|
| +The cryptograhic strength is primarily linked to the length of the modulus *n*.
|
| +In 2012, a sufficient length is deemed to be 2048 bits. For more information,
|
| +see the most recent ECRYPT_ report.
|
| +
|
| +Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
|
| +bytes if *n* is 2048 bit long).
|
| +
|
| +This module provides facilities for generating fresh, new RSA keys, constructing
|
| +them from known components, exporting them, and importing them.
|
| +
|
| + >>> from Crypto.PublicKey import RSA
|
| + >>>
|
| + >>> key = RSA.generate(2048)
|
| + >>> f = open('mykey.pem','w')
|
| + >>> f.write(RSA.exportKey('PEM'))
|
| + >>> f.close()
|
| + ...
|
| + >>> f = open('mykey.pem','r')
|
| + >>> key = RSA.importKey(f.read())
|
| +
|
| +Even though you may choose to directly use the methods of an RSA key object
|
| +to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
|
| +it is recommended to use one of the standardized schemes instead (like
|
| +`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
|
| +
|
| +.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
|
| +.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
| +
|
| +:sort: generate,construct,importKey,error
|
| +"""
|
| +
|
| +__revision__ = "$Id$"
|
| +
|
| +__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
|
| +
|
| +import sys
|
| +if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
| + from Crypto.Util.py21compat import *
|
| +from Crypto.Util.py3compat import *
|
| +#from Crypto.Util.python_compat import *
|
| +from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
|
| +
|
| +from Crypto.PublicKey import _RSA, _slowmath, pubkey
|
| +from Crypto import Random
|
| +
|
| +from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
|
| +import binascii
|
| +import struct
|
| +
|
| +from Crypto.Util.number import inverse
|
| +
|
| +from Crypto.Util.number import inverse
|
| +
|
| +try:
|
| + from Crypto.PublicKey import _fastmath
|
| +except ImportError:
|
| + _fastmath = None
|
| +
|
| +class _RSAobj(pubkey.pubkey):
|
| + """Class defining an actual RSA key.
|
| +
|
| + :undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
| + """
|
| + #: Dictionary of RSA parameters.
|
| + #:
|
| + #: A public key will only have the following entries:
|
| + #:
|
| + #: - **n**, the modulus.
|
| + #: - **e**, the public exponent.
|
| + #:
|
| + #: A private key will also have:
|
| + #:
|
| + #: - **d**, the private exponent.
|
| + #: - **p**, the first factor of n.
|
| + #: - **q**, the second factor of n.
|
| + #: - **u**, the CRT coefficient (1/p) mod q.
|
| + keydata = ['n', 'e', 'd', 'p', 'q', 'u']
|
| +
|
| + def __init__(self, implementation, key, randfunc=None):
|
| + self.implementation = implementation
|
| + self.key = key
|
| + if randfunc is None:
|
| + randfunc = Random.new().read
|
| + self._randfunc = randfunc
|
| +
|
| + def __getattr__(self, attrname):
|
| + if attrname in self.keydata:
|
| + # For backward compatibility, allow the user to get (not set) the
|
| + # RSA key parameters directly from this object.
|
| + return getattr(self.key, attrname)
|
| + else:
|
| + raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
|
| +
|
| + def encrypt(self, plaintext, K):
|
| + """Encrypt a piece of data with RSA.
|
| +
|
| + :Parameter plaintext: The piece of data to encrypt with RSA. It may not
|
| + be numerically larger than the RSA module (**n**).
|
| + :Type plaintext: byte string or long
|
| +
|
| + :Parameter K: A random parameter (*for compatibility only. This
|
| + value will be ignored*)
|
| + :Type K: byte string or long
|
| +
|
| + :attention: this function performs the plain, primitive RSA encryption
|
| + (*textbook*). In real applications, you always need to use proper
|
| + cryptographic padding, and you should not directly encrypt data with
|
| + this method. Failure to do so may lead to security vulnerabilities.
|
| + It is recommended to use modules
|
| + `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
|
| +
|
| + :Return: A tuple with two items. The first item is the ciphertext
|
| + of the same type as the plaintext (string or long). The second item
|
| + is always None.
|
| + """
|
| + return pubkey.pubkey.encrypt(self, plaintext, K)
|
| +
|
| + def decrypt(self, ciphertext):
|
| + """Decrypt a piece of data with RSA.
|
| +
|
| + Decryption always takes place with blinding.
|
| +
|
| + :attention: this function performs the plain, primitive RSA decryption
|
| + (*textbook*). In real applications, you always need to use proper
|
| + cryptographic padding, and you should not directly decrypt data with
|
| + this method. Failure to do so may lead to security vulnerabilities.
|
| + It is recommended to use modules
|
| + `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
|
| +
|
| + :Parameter ciphertext: The piece of data to decrypt with RSA. It may
|
| + not be numerically larger than the RSA module (**n**). If a tuple,
|
| + the first item is the actual ciphertext; the second item is ignored.
|
| +
|
| + :Type ciphertext: byte string, long or a 2-item tuple as returned by
|
| + `encrypt`
|
| +
|
| + :Return: A byte string if ciphertext was a byte string or a tuple
|
| + of byte strings. A long otherwise.
|
| + """
|
| + return pubkey.pubkey.decrypt(self, ciphertext)
|
| +
|
| + def sign(self, M, K):
|
| + """Sign a piece of data with RSA.
|
| +
|
| + Signing always takes place with blinding.
|
| +
|
| + :attention: this function performs the plain, primitive RSA decryption
|
| + (*textbook*). In real applications, you always need to use proper
|
| + cryptographic padding, and you should not directly sign data with
|
| + this method. Failure to do so may lead to security vulnerabilities.
|
| + It is recommended to use modules
|
| + `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
|
| +
|
| + :Parameter M: The piece of data to sign with RSA. It may
|
| + not be numerically larger than the RSA module (**n**).
|
| + :Type M: byte string or long
|
| +
|
| + :Parameter K: A random parameter (*for compatibility only. This
|
| + value will be ignored*)
|
| + :Type K: byte string or long
|
| +
|
| + :Return: A 2-item tuple. The first item is the actual signature (a
|
| + long). The second item is always None.
|
| + """
|
| + return pubkey.pubkey.sign(self, M, K)
|
| +
|
| + def verify(self, M, signature):
|
| + """Verify the validity of an RSA signature.
|
| +
|
| + :attention: this function performs the plain, primitive RSA encryption
|
| + (*textbook*). In real applications, you always need to use proper
|
| + cryptographic padding, and you should not directly verify data with
|
| + this method. Failure to do so may lead to security vulnerabilities.
|
| + It is recommended to use modules
|
| + `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
|
| +
|
| + :Parameter M: The expected message.
|
| + :Type M: byte string or long
|
| +
|
| + :Parameter signature: The RSA signature to verify. The first item of
|
| + the tuple is the actual signature (a long not larger than the modulus
|
| + **n**), whereas the second item is always ignored.
|
| + :Type signature: A 2-item tuple as return by `sign`
|
| +
|
| + :Return: True if the signature is correct, False otherwise.
|
| + """
|
| + return pubkey.pubkey.verify(self, M, signature)
|
| +
|
| + def _encrypt(self, c, K):
|
| + return (self.key._encrypt(c),)
|
| +
|
| + def _decrypt(self, c):
|
| + #(ciphertext,) = c
|
| + (ciphertext,) = c[:1] # HACK - We should use the previous line
|
| + # instead, but this is more compatible and we're
|
| + # going to replace the Crypto.PublicKey API soon
|
| + # anyway.
|
| +
|
| + # Blinded RSA decryption (to prevent timing attacks):
|
| + # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
|
| + r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
|
| + # Step 2: Compute c' = c * r**e mod n
|
| + cp = self.key._blind(ciphertext, r)
|
| + # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
|
| + mp = self.key._decrypt(cp)
|
| + # Step 4: Compute m = m**(r-1) mod n
|
| + return self.key._unblind(mp, r)
|
| +
|
| + def _blind(self, m, r):
|
| + return self.key._blind(m, r)
|
| +
|
| + def _unblind(self, m, r):
|
| + return self.key._unblind(m, r)
|
| +
|
| + def _sign(self, m, K=None):
|
| + return (self.key._sign(m),)
|
| +
|
| + def _verify(self, m, sig):
|
| + #(s,) = sig
|
| + (s,) = sig[:1] # HACK - We should use the previous line instead, but
|
| + # this is more compatible and we're going to replace
|
| + # the Crypto.PublicKey API soon anyway.
|
| + return self.key._verify(m, s)
|
| +
|
| + def has_private(self):
|
| + return self.key.has_private()
|
| +
|
| + def size(self):
|
| + return self.key.size()
|
| +
|
| + def can_blind(self):
|
| + return True
|
| +
|
| + def can_encrypt(self):
|
| + return True
|
| +
|
| + def can_sign(self):
|
| + return True
|
| +
|
| + def publickey(self):
|
| + return self.implementation.construct((self.key.n, self.key.e))
|
| +
|
| + def __getstate__(self):
|
| + d = {}
|
| + for k in self.keydata:
|
| + try:
|
| + d[k] = getattr(self.key, k)
|
| + except AttributeError:
|
| + pass
|
| + return d
|
| +
|
| + def __setstate__(self, d):
|
| + if not hasattr(self, 'implementation'):
|
| + self.implementation = RSAImplementation()
|
| + t = []
|
| + for k in self.keydata:
|
| + if not d.has_key(k):
|
| + break
|
| + t.append(d[k])
|
| + self.key = self.implementation._math.rsa_construct(*tuple(t))
|
| +
|
| + def __repr__(self):
|
| + attrs = []
|
| + for k in self.keydata:
|
| + if k == 'n':
|
| + attrs.append("n(%d)" % (self.size()+1,))
|
| + elif hasattr(self.key, k):
|
| + attrs.append(k)
|
| + if self.has_private():
|
| + attrs.append("private")
|
| + # PY3K: This is meant to be text, do not change to bytes (data)
|
| + return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
|
| +
|
| + def exportKey(self, format='PEM', passphrase=None, pkcs=1):
|
| + """Export this RSA key.
|
| +
|
| + :Parameter format: The format to use for wrapping the key.
|
| +
|
| + - *'DER'*. Binary encoding, always unencrypted.
|
| + - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
|
| + Unencrypted (default) or encrypted.
|
| + - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
|
| + Only suitable for public keys (not private keys).
|
| + :Type format: string
|
| +
|
| + :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
|
| + :Type passphrase: string
|
| +
|
| + :Parameter pkcs: The PKCS standard to follow for assembling the key.
|
| + You have two choices:
|
| +
|
| + - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
|
| + The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
|
| + This mode is the default.
|
| + - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
|
| + This mode is not available for public keys.
|
| +
|
| + PKCS standards are not relevant for the *OpenSSH* format.
|
| + :Type pkcs: integer
|
| +
|
| + :Return: A byte string with the encoded public or private half.
|
| + :Raise ValueError:
|
| + When the format is unknown.
|
| +
|
| + .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
| + .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
| + .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
| + .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
| + """
|
| + if passphrase is not None:
|
| + passphrase = tobytes(passphrase)
|
| + if format=='OpenSSH':
|
| + eb = long_to_bytes(self.e)
|
| + nb = long_to_bytes(self.n)
|
| + if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
|
| + if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
|
| + keyparts = [ 'ssh-rsa', eb, nb ]
|
| + keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
|
| + return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
|
| +
|
| + # DER format is always used, even in case of PEM, which simply
|
| + # encodes it into BASE64.
|
| + der = DerSequence()
|
| + if self.has_private():
|
| + keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
|
| + der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
|
| + self.d % (self.p-1), self.d % (self.q-1),
|
| + inverse(self.q, self.p) ]
|
| + if pkcs==8:
|
| + derkey = der.encode()
|
| + der = DerSequence([0])
|
| + der.append(algorithmIdentifier)
|
| + der.append(DerObject('OCTET STRING', derkey).encode())
|
| + else:
|
| + keyType = "PUBLIC"
|
| + der.append(algorithmIdentifier)
|
| + bitmap = DerObject('BIT STRING')
|
| + derPK = DerSequence( [ self.n, self.e ] )
|
| + bitmap.payload = bchr(0x00) + derPK.encode()
|
| + der.append(bitmap.encode())
|
| + if format=='DER':
|
| + return der.encode()
|
| + if format=='PEM':
|
| + pem = b("-----BEGIN " + keyType + " KEY-----\n")
|
| + objenc = None
|
| + if passphrase and keyType.endswith('PRIVATE'):
|
| + # We only support 3DES for encryption
|
| + import Crypto.Hash.MD5
|
| + from Crypto.Cipher import DES3
|
| + from Crypto.Protocol.KDF import PBKDF1
|
| + salt = self._randfunc(8)
|
| + key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
|
| + key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
| + objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
|
| + pem += b('Proc-Type: 4,ENCRYPTED\n')
|
| + pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
|
| +
|
| + binaryKey = der.encode()
|
| + if objenc:
|
| + # Add PKCS#7-like padding
|
| + padding = objenc.block_size-len(binaryKey)%objenc.block_size
|
| + binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
|
| +
|
| + # Each BASE64 line can take up to 64 characters (=48 bytes of data)
|
| + chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
|
| + pem += b('').join(chunks)
|
| + pem += b("-----END " + keyType + " KEY-----")
|
| + return pem
|
| + return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
|
| +
|
| +class RSAImplementation(object):
|
| + """
|
| + An RSA key factory.
|
| +
|
| + This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
|
| +
|
| + :sort: __init__,generate,construct,importKey
|
| + :undocumented: _g*, _i*
|
| + """
|
| +
|
| + def __init__(self, **kwargs):
|
| + """Create a new RSA key factory.
|
| +
|
| + :Keywords:
|
| + use_fast_math : bool
|
| + Specify which mathematic library to use:
|
| +
|
| + - *None* (default). Use fastest math available.
|
| + - *True* . Use fast math.
|
| + - *False* . Use slow math.
|
| + default_randfunc : callable
|
| + Specify how to collect random data:
|
| +
|
| + - *None* (default). Use Random.new().read().
|
| + - not *None* . Use the specified function directly.
|
| + :Raise RuntimeError:
|
| + When **use_fast_math** =True but fast math is not available.
|
| + """
|
| + use_fast_math = kwargs.get('use_fast_math', None)
|
| + if use_fast_math is None: # Automatic
|
| + if _fastmath is not None:
|
| + self._math = _fastmath
|
| + else:
|
| + self._math = _slowmath
|
| +
|
| + elif use_fast_math: # Explicitly select fast math
|
| + if _fastmath is not None:
|
| + self._math = _fastmath
|
| + else:
|
| + raise RuntimeError("fast math module not available")
|
| +
|
| + else: # Explicitly select slow math
|
| + self._math = _slowmath
|
| +
|
| + self.error = self._math.error
|
| +
|
| + self._default_randfunc = kwargs.get('default_randfunc', None)
|
| + self._current_randfunc = None
|
| +
|
| + def _get_randfunc(self, randfunc):
|
| + if randfunc is not None:
|
| + return randfunc
|
| + elif self._current_randfunc is None:
|
| + self._current_randfunc = Random.new().read
|
| + return self._current_randfunc
|
| +
|
| + def generate(self, bits, randfunc=None, progress_func=None, e=65537):
|
| + """Randomly generate a fresh, new RSA key.
|
| +
|
| + :Parameters:
|
| + bits : int
|
| + Key length, or size (in bits) of the RSA modulus.
|
| + It must be a multiple of 256, and no smaller than 1024.
|
| +
|
| + randfunc : callable
|
| + Random number generation function; it should accept
|
| + a single integer N and return a string of random data
|
| + N bytes long.
|
| + If not specified, a new one will be instantiated
|
| + from ``Crypto.Random``.
|
| +
|
| + progress_func : callable
|
| + Optional function that will be called with a short string
|
| + containing the key parameter currently being generated;
|
| + it's useful for interactive applications where a user is
|
| + waiting for a key to be generated.
|
| +
|
| + e : int
|
| + Public RSA exponent. It must be an odd positive integer.
|
| + It is typically a small number with very few ones in its
|
| + binary representation.
|
| + The default value 65537 (= ``0b10000000000000001`` ) is a safe
|
| + choice: other common values are 5, 7, 17, and 257.
|
| +
|
| + :attention: You should always use a cryptographically secure random number generator,
|
| + such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
| + current time and the ``random`` module.
|
| +
|
| + :attention: Exponent 3 is also widely used, but it requires very special care when padding
|
| + the message.
|
| +
|
| + :Return: An RSA key object (`_RSAobj`).
|
| +
|
| + :Raise ValueError:
|
| + When **bits** is too little or not a multiple of 256, or when
|
| + **e** is not odd or smaller than 2.
|
| + """
|
| + if bits < 1024 or (bits & 0xff) != 0:
|
| + # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
|
| + raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
|
| + if e%2==0 or e<3:
|
| + raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
|
| + rf = self._get_randfunc(randfunc)
|
| + obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
|
| + key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
|
| + return _RSAobj(self, key)
|
| +
|
| + def construct(self, tup):
|
| + """Construct an RSA key from a tuple of valid RSA components.
|
| +
|
| + The modulus **n** must be the product of two primes.
|
| + The public exponent **e** must be odd and larger than 1.
|
| +
|
| + In case of a private key, the following equations must apply:
|
| +
|
| + - e != 1
|
| + - p*q = n
|
| + - e*d = 1 mod (p-1)(q-1)
|
| + - p*u = 1 mod q
|
| +
|
| + :Parameters:
|
| + tup : tuple
|
| + A tuple of long integers, with at least 2 and no
|
| + more than 6 items. The items come in the following order:
|
| +
|
| + 1. RSA modulus (n).
|
| + 2. Public exponent (e).
|
| + 3. Private exponent (d). Only required if the key is private.
|
| + 4. First factor of n (p). Optional.
|
| + 5. Second factor of n (q). Optional.
|
| + 6. CRT coefficient, (1/p) mod q (u). Optional.
|
| +
|
| + :Return: An RSA key object (`_RSAobj`).
|
| + """
|
| + key = self._math.rsa_construct(*tup)
|
| + return _RSAobj(self, key)
|
| +
|
| + def _importKeyDER(self, externKey):
|
| + """Import an RSA key (public or private half), encoded in DER form."""
|
| +
|
| + try:
|
| +
|
| + der = DerSequence()
|
| + der.decode(externKey, True)
|
| +
|
| + # Try PKCS#1 first, for a private key
|
| + if len(der)==9 and der.hasOnlyInts() and der[0]==0:
|
| + # ASN.1 RSAPrivateKey element
|
| + del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
|
| + der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
|
| + del der[0] # Remove version
|
| + return self.construct(der[:])
|
| +
|
| + # Keep on trying PKCS#1, but now for a public key
|
| + if len(der)==2:
|
| + # The DER object is an RSAPublicKey SEQUENCE with two elements
|
| + if der.hasOnlyInts():
|
| + return self.construct(der[:])
|
| + # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
|
| + # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
|
| + # 'algorithm' takes the value given a few lines above.
|
| + # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
|
| + if der[0]==algorithmIdentifier:
|
| + bitmap = DerObject()
|
| + bitmap.decode(der[1], True)
|
| + if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
|
| + der.decode(bitmap.payload[1:], True)
|
| + if len(der)==2 and der.hasOnlyInts():
|
| + return self.construct(der[:])
|
| +
|
| + # Try unencrypted PKCS#8
|
| + if der[0]==0:
|
| + # The second element in the SEQUENCE is algorithmIdentifier.
|
| + # It must say RSA (see above for description).
|
| + if der[1]==algorithmIdentifier:
|
| + privateKey = DerObject()
|
| + privateKey.decode(der[2], True)
|
| + if privateKey.isType('OCTET STRING'):
|
| + return self._importKeyDER(privateKey.payload)
|
| +
|
| + except ValueError, IndexError:
|
| + pass
|
| +
|
| + raise ValueError("RSA key format is not supported")
|
| +
|
| + def importKey(self, externKey, passphrase=None):
|
| + """Import an RSA key (public or private half), encoded in standard form.
|
| +
|
| + :Parameter externKey:
|
| + The RSA key to import, encoded as a string.
|
| +
|
| + An RSA public key can be in any of the following formats:
|
| +
|
| + - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
|
| + - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
|
| + - OpenSSH (textual public key only)
|
| +
|
| + An RSA private key can be in any of the following formats:
|
| +
|
| + - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
|
| + - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
|
| + - OpenSSH (textual public key only)
|
| +
|
| + For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
|
| +
|
| + In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
|
| + Only OpenSSL-compatible pass phrases are supported.
|
| + :Type externKey: string
|
| +
|
| + :Parameter passphrase:
|
| + In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
|
| + :Type passphrase: string
|
| +
|
| + :Return: An RSA key object (`_RSAobj`).
|
| +
|
| + :Raise ValueError/IndexError/TypeError:
|
| + When the given key cannot be parsed (possibly because the pass phrase is wrong).
|
| +
|
| + .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
| + .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
| + .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
| + .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
| + """
|
| + externKey = tobytes(externKey)
|
| + if passphrase is not None:
|
| + passphrase = tobytes(passphrase)
|
| +
|
| + if externKey.startswith(b('-----')):
|
| + # This is probably a PEM encoded key
|
| + lines = externKey.replace(b(" "),b('')).split()
|
| + keyobj = None
|
| +
|
| + # The encrypted PEM format
|
| + if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
|
| + DEK = lines[2].split(b(':'))
|
| + if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
|
| + raise ValueError("PEM encryption format not supported.")
|
| + algo, salt = DEK[1].split(b(','))
|
| + salt = binascii.a2b_hex(salt)
|
| + import Crypto.Hash.MD5
|
| + from Crypto.Cipher import DES, DES3
|
| + from Crypto.Protocol.KDF import PBKDF1
|
| + if algo==b("DES-CBC"):
|
| + # This is EVP_BytesToKey in OpenSSL
|
| + key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
| + keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
|
| + elif algo==b("DES-EDE3-CBC"):
|
| + # Note that EVP_BytesToKey is note exactly the same as PBKDF1
|
| + key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
|
| + key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
| + keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
|
| + else:
|
| + raise ValueError("Unsupport PEM encryption algorithm.")
|
| + lines = lines[2:]
|
| +
|
| + der = binascii.a2b_base64(b('').join(lines[1:-1]))
|
| + if keyobj:
|
| + der = keyobj.decrypt(der)
|
| + padding = bord(der[-1])
|
| + der = der[:-padding]
|
| + return self._importKeyDER(der)
|
| +
|
| + if externKey.startswith(b('ssh-rsa ')):
|
| + # This is probably an OpenSSH key
|
| + keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
|
| + keyparts = []
|
| + while len(keystring)>4:
|
| + l = struct.unpack(">I",keystring[:4])[0]
|
| + keyparts.append(keystring[4:4+l])
|
| + keystring = keystring[4+l:]
|
| + e = bytes_to_long(keyparts[1])
|
| + n = bytes_to_long(keyparts[2])
|
| + return self.construct([n, e])
|
| + if bord(externKey[0])==0x30:
|
| + # This is probably a DER encoded key
|
| + return self._importKeyDER(externKey)
|
| +
|
| + raise ValueError("RSA key format is not supported")
|
| +
|
| +#: This is the ASN.1 DER object that qualifies an algorithm as
|
| +#: compliant to PKCS#1 (that is, the standard RSA).
|
| +# It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
|
| +# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
|
| +# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
|
| +# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
|
| +# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
|
| +# 0x05 0x00 NULL
|
| +algorithmIdentifier = DerSequence(
|
| + [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
|
| + DerNull().encode() ]
|
| + ).encode()
|
| +
|
| +_impl = RSAImplementation()
|
| +#:
|
| +#: Randomly generate a fresh, new RSA key object.
|
| +#:
|
| +#: See `RSAImplementation.generate`.
|
| +#:
|
| +generate = _impl.generate
|
| +#:
|
| +#: Construct an RSA key object from a tuple of valid RSA components.
|
| +#:
|
| +#: See `RSAImplementation.construct`.
|
| +#:
|
| +construct = _impl.construct
|
| +#:
|
| +#: Import an RSA key (public or private half), encoded in standard form.
|
| +#:
|
| +#: See `RSAImplementation.importKey`.
|
| +#:
|
| +importKey = _impl.importKey
|
| +error = _impl.error
|
| +
|
| +# vim:set ts=4 sw=4 sts=4 expandtab:
|
| +
|
|
|