Index: third_party/google-endpoints/Crypto/PublicKey/DSA.py |
diff --git a/third_party/google-endpoints/Crypto/PublicKey/DSA.py b/third_party/google-endpoints/Crypto/PublicKey/DSA.py |
new file mode 100644 |
index 0000000000000000000000000000000000000000..d6bffd673ba17ec5052873925349d8523fcb587f |
--- /dev/null |
+++ b/third_party/google-endpoints/Crypto/PublicKey/DSA.py |
@@ -0,0 +1,379 @@ |
+# -*- coding: utf-8 -*- |
+# |
+# PublicKey/DSA.py : DSA signature primitive |
+# |
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net> |
+# |
+# =================================================================== |
+# The contents of this file are dedicated to the public domain. To |
+# the extent that dedication to the public domain is not available, |
+# everyone is granted a worldwide, perpetual, royalty-free, |
+# non-exclusive license to exercise all rights associated with the |
+# contents of this file for any purpose whatsoever. |
+# No rights are reserved. |
+# |
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
+# SOFTWARE. |
+# =================================================================== |
+ |
+"""DSA public-key signature algorithm. |
+ |
+DSA_ is a widespread public-key signature algorithm. Its security is |
+based on the discrete logarithm problem (DLP_). Given a cyclic |
+group, a generator *g*, and an element *h*, it is hard |
+to find an integer *x* such that *g^x = h*. The problem is believed |
+to be difficult, and it has been proved such (and therefore secure) for |
+more than 30 years. |
+ |
+The group is actually a sub-group over the integers modulo *p*, with *p* prime. |
+The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*. |
+The cryptographic strength is linked to the magnitude of *p* and *q*. |
+The signer holds a value *x* (*0<x<q-1*) as private key, and its public |
+key (*y* where *y=g^x mod p*) is distributed. |
+ |
+In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*. |
+For more information, see the most recent ECRYPT_ report. |
+ |
+DSA is reasonably secure for new designs. |
+ |
+The algorithm can only be used for authentication (digital signature). |
+DSA cannot be used for confidentiality (encryption). |
+ |
+The values *(p,q,g)* are called *domain parameters*; |
+they are not sensitive but must be shared by both parties (the signer and the verifier). |
+Different signers can share the same domain parameters with no security |
+concerns. |
+ |
+The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit |
+long). |
+ |
+This module provides facilities for generating new DSA keys and for constructing |
+them from known components. DSA keys allows you to perform basic signing and |
+verification. |
+ |
+ >>> from Crypto.Random import random |
+ >>> from Crypto.PublicKey import DSA |
+ >>> from Crypto.Hash import SHA |
+ >>> |
+ >>> message = "Hello" |
+ >>> key = DSA.generate(1024) |
+ >>> h = SHA.new(message).digest() |
+ >>> k = random.StrongRandom().randint(1,key.q-1) |
+ >>> sig = key.sign(h,k) |
+ >>> ... |
+ >>> if key.verify(h,sig): |
+ >>> print "OK" |
+ >>> else: |
+ >>> print "Incorrect signature" |
+ |
+.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm |
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf |
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf |
+""" |
+ |
+__revision__ = "$Id$" |
+ |
+__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj'] |
+ |
+import sys |
+if sys.version_info[0] == 2 and sys.version_info[1] == 1: |
+ from Crypto.Util.py21compat import * |
+ |
+from Crypto.PublicKey import _DSA, _slowmath, pubkey |
+from Crypto import Random |
+ |
+try: |
+ from Crypto.PublicKey import _fastmath |
+except ImportError: |
+ _fastmath = None |
+ |
+class _DSAobj(pubkey.pubkey): |
+ """Class defining an actual DSA key. |
+ |
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__ |
+ """ |
+ #: Dictionary of DSA parameters. |
+ #: |
+ #: A public key will only have the following entries: |
+ #: |
+ #: - **y**, the public key. |
+ #: - **g**, the generator. |
+ #: - **p**, the modulus. |
+ #: - **q**, the order of the sub-group. |
+ #: |
+ #: A private key will also have: |
+ #: |
+ #: - **x**, the private key. |
+ keydata = ['y', 'g', 'p', 'q', 'x'] |
+ |
+ def __init__(self, implementation, key): |
+ self.implementation = implementation |
+ self.key = key |
+ |
+ def __getattr__(self, attrname): |
+ if attrname in self.keydata: |
+ # For backward compatibility, allow the user to get (not set) the |
+ # DSA key parameters directly from this object. |
+ return getattr(self.key, attrname) |
+ else: |
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,)) |
+ |
+ def sign(self, M, K): |
+ """Sign a piece of data with DSA. |
+ |
+ :Parameter M: The piece of data to sign with DSA. It may |
+ not be longer in bit size than the sub-group order (*q*). |
+ :Type M: byte string or long |
+ |
+ :Parameter K: A secret number, chosen randomly in the closed |
+ range *[1,q-1]*. |
+ :Type K: long (recommended) or byte string (not recommended) |
+ |
+ :attention: selection of *K* is crucial for security. Generating a |
+ random number larger than *q* and taking the modulus by *q* is |
+ **not** secure, since smaller values will occur more frequently. |
+ Generating a random number systematically smaller than *q-1* |
+ (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general, |
+ it shall not be possible for an attacker to know the value of `any |
+ bit of K`__. |
+ |
+ :attention: The number *K* shall not be reused for any other |
+ operation and shall be discarded immediately. |
+ |
+ :attention: M must be a digest cryptographic hash, otherwise |
+ an attacker may mount an existential forgery attack. |
+ |
+ :Return: A tuple with 2 longs. |
+ |
+ .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm |
+ """ |
+ return pubkey.pubkey.sign(self, M, K) |
+ |
+ def verify(self, M, signature): |
+ """Verify the validity of a DSA signature. |
+ |
+ :Parameter M: The expected message. |
+ :Type M: byte string or long |
+ |
+ :Parameter signature: The DSA signature to verify. |
+ :Type signature: A tuple with 2 longs as return by `sign` |
+ |
+ :Return: True if the signature is correct, False otherwise. |
+ """ |
+ return pubkey.pubkey.verify(self, M, signature) |
+ |
+ def _encrypt(self, c, K): |
+ raise TypeError("DSA cannot encrypt") |
+ |
+ def _decrypt(self, c): |
+ raise TypeError("DSA cannot decrypt") |
+ |
+ def _blind(self, m, r): |
+ raise TypeError("DSA cannot blind") |
+ |
+ def _unblind(self, m, r): |
+ raise TypeError("DSA cannot unblind") |
+ |
+ def _sign(self, m, k): |
+ return self.key._sign(m, k) |
+ |
+ def _verify(self, m, sig): |
+ (r, s) = sig |
+ return self.key._verify(m, r, s) |
+ |
+ def has_private(self): |
+ return self.key.has_private() |
+ |
+ def size(self): |
+ return self.key.size() |
+ |
+ def can_blind(self): |
+ return False |
+ |
+ def can_encrypt(self): |
+ return False |
+ |
+ def can_sign(self): |
+ return True |
+ |
+ def publickey(self): |
+ return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q)) |
+ |
+ def __getstate__(self): |
+ d = {} |
+ for k in self.keydata: |
+ try: |
+ d[k] = getattr(self.key, k) |
+ except AttributeError: |
+ pass |
+ return d |
+ |
+ def __setstate__(self, d): |
+ if not hasattr(self, 'implementation'): |
+ self.implementation = DSAImplementation() |
+ t = [] |
+ for k in self.keydata: |
+ if not d.has_key(k): |
+ break |
+ t.append(d[k]) |
+ self.key = self.implementation._math.dsa_construct(*tuple(t)) |
+ |
+ def __repr__(self): |
+ attrs = [] |
+ for k in self.keydata: |
+ if k == 'p': |
+ attrs.append("p(%d)" % (self.size()+1,)) |
+ elif hasattr(self.key, k): |
+ attrs.append(k) |
+ if self.has_private(): |
+ attrs.append("private") |
+ # PY3K: This is meant to be text, do not change to bytes (data) |
+ return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs)) |
+ |
+class DSAImplementation(object): |
+ """ |
+ A DSA key factory. |
+ |
+ This class is only internally used to implement the methods of the |
+ `Crypto.PublicKey.DSA` module. |
+ """ |
+ |
+ def __init__(self, **kwargs): |
+ """Create a new DSA key factory. |
+ |
+ :Keywords: |
+ use_fast_math : bool |
+ Specify which mathematic library to use: |
+ |
+ - *None* (default). Use fastest math available. |
+ - *True* . Use fast math. |
+ - *False* . Use slow math. |
+ default_randfunc : callable |
+ Specify how to collect random data: |
+ |
+ - *None* (default). Use Random.new().read(). |
+ - not *None* . Use the specified function directly. |
+ :Raise RuntimeError: |
+ When **use_fast_math** =True but fast math is not available. |
+ """ |
+ use_fast_math = kwargs.get('use_fast_math', None) |
+ if use_fast_math is None: # Automatic |
+ if _fastmath is not None: |
+ self._math = _fastmath |
+ else: |
+ self._math = _slowmath |
+ |
+ elif use_fast_math: # Explicitly select fast math |
+ if _fastmath is not None: |
+ self._math = _fastmath |
+ else: |
+ raise RuntimeError("fast math module not available") |
+ |
+ else: # Explicitly select slow math |
+ self._math = _slowmath |
+ |
+ self.error = self._math.error |
+ |
+ # 'default_randfunc' parameter: |
+ # None (default) - use Random.new().read |
+ # not None - use the specified function |
+ self._default_randfunc = kwargs.get('default_randfunc', None) |
+ self._current_randfunc = None |
+ |
+ def _get_randfunc(self, randfunc): |
+ if randfunc is not None: |
+ return randfunc |
+ elif self._current_randfunc is None: |
+ self._current_randfunc = Random.new().read |
+ return self._current_randfunc |
+ |
+ def generate(self, bits, randfunc=None, progress_func=None): |
+ """Randomly generate a fresh, new DSA key. |
+ |
+ :Parameters: |
+ bits : int |
+ Key length, or size (in bits) of the DSA modulus |
+ *p*. |
+ It must be a multiple of 64, in the closed |
+ interval [512,1024]. |
+ randfunc : callable |
+ Random number generation function; it should accept |
+ a single integer N and return a string of random data |
+ N bytes long. |
+ If not specified, a new one will be instantiated |
+ from ``Crypto.Random``. |
+ progress_func : callable |
+ Optional function that will be called with a short string |
+ containing the key parameter currently being generated; |
+ it's useful for interactive applications where a user is |
+ waiting for a key to be generated. |
+ |
+ :attention: You should always use a cryptographically secure random number generator, |
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the |
+ current time and the ``random`` module. |
+ |
+ :Return: A DSA key object (`_DSAobj`). |
+ |
+ :Raise ValueError: |
+ When **bits** is too little, too big, or not a multiple of 64. |
+ """ |
+ |
+ # Check against FIPS 186-2, which says that the size of the prime p |
+ # must be a multiple of 64 bits between 512 and 1024 |
+ for i in (0, 1, 2, 3, 4, 5, 6, 7, 8): |
+ if bits == 512 + 64*i: |
+ return self._generate(bits, randfunc, progress_func) |
+ |
+ # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit |
+ # primes, but only with longer q values. Since the current DSA |
+ # implementation only supports a 160-bit q, we don't support larger |
+ # values. |
+ raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,)) |
+ |
+ def _generate(self, bits, randfunc=None, progress_func=None): |
+ rf = self._get_randfunc(randfunc) |
+ obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module |
+ key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x) |
+ return _DSAobj(self, key) |
+ |
+ def construct(self, tup): |
+ """Construct a DSA key from a tuple of valid DSA components. |
+ |
+ The modulus *p* must be a prime. |
+ |
+ The following equations must apply: |
+ |
+ - p-1 = 0 mod q |
+ - g^x = y mod p |
+ - 0 < x < q |
+ - 1 < g < p |
+ |
+ :Parameters: |
+ tup : tuple |
+ A tuple of long integers, with 4 or 5 items |
+ in the following order: |
+ |
+ 1. Public key (*y*). |
+ 2. Sub-group generator (*g*). |
+ 3. Modulus, finite field order (*p*). |
+ 4. Sub-group order (*q*). |
+ 5. Private key (*x*). Optional. |
+ |
+ :Return: A DSA key object (`_DSAobj`). |
+ """ |
+ key = self._math.dsa_construct(*tup) |
+ return _DSAobj(self, key) |
+ |
+_impl = DSAImplementation() |
+generate = _impl.generate |
+construct = _impl.construct |
+error = _impl.error |
+ |
+# vim:set ts=4 sw=4 sts=4 expandtab: |
+ |