OLD | NEW |
(Empty) | |
| 1 # -*- coding: utf-8 -*- |
| 2 # |
| 3 # Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu> |
| 4 # |
| 5 # Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 # you may not use this file except in compliance with the License. |
| 7 # You may obtain a copy of the License at |
| 8 # |
| 9 # https://www.apache.org/licenses/LICENSE-2.0 |
| 10 # |
| 11 # Unless required by applicable law or agreed to in writing, software |
| 12 # distributed under the License is distributed on an "AS IS" BASIS, |
| 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 # See the License for the specific language governing permissions and |
| 15 # limitations under the License. |
| 16 |
| 17 """Numerical functions related to primes. |
| 18 |
| 19 Implementation based on the book Algorithm Design by Michael T. Goodrich and |
| 20 Roberto Tamassia, 2002. |
| 21 """ |
| 22 |
| 23 import rsa.randnum |
| 24 |
| 25 __all__ = ['getprime', 'are_relatively_prime'] |
| 26 |
| 27 |
| 28 def gcd(p, q): |
| 29 """Returns the greatest common divisor of p and q |
| 30 |
| 31 >>> gcd(48, 180) |
| 32 12 |
| 33 """ |
| 34 |
| 35 while q != 0: |
| 36 (p, q) = (q, p % q) |
| 37 return p |
| 38 |
| 39 |
| 40 def miller_rabin_primality_testing(n, k): |
| 41 """Calculates whether n is composite (which is always correct) or prime |
| 42 (which theoretically is incorrect with error probability 4**-k), by |
| 43 applying Miller-Rabin primality testing. |
| 44 |
| 45 For reference and implementation example, see: |
| 46 https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test |
| 47 |
| 48 :param n: Integer to be tested for primality. |
| 49 :type n: int |
| 50 :param k: Number of rounds (witnesses) of Miller-Rabin testing. |
| 51 :type k: int |
| 52 :return: False if the number is composite, True if it's probably prime. |
| 53 :rtype: bool |
| 54 """ |
| 55 |
| 56 # prevent potential infinite loop when d = 0 |
| 57 if n < 2: |
| 58 return False |
| 59 |
| 60 # Decompose (n - 1) to write it as (2 ** r) * d |
| 61 # While d is even, divide it by 2 and increase the exponent. |
| 62 d = n - 1 |
| 63 r = 0 |
| 64 |
| 65 while not (d & 1): |
| 66 r += 1 |
| 67 d >>= 1 |
| 68 |
| 69 # Test k witnesses. |
| 70 for _ in range(k): |
| 71 # Generate random integer a, where 2 <= a <= (n - 2) |
| 72 a = rsa.randnum.randint(n - 4) + 2 |
| 73 |
| 74 x = pow(a, d, n) |
| 75 if x == 1 or x == n - 1: |
| 76 continue |
| 77 |
| 78 for _ in range(r - 1): |
| 79 x = pow(x, 2, n) |
| 80 if x == 1: |
| 81 # n is composite. |
| 82 return False |
| 83 if x == n - 1: |
| 84 # Exit inner loop and continue with next witness. |
| 85 break |
| 86 else: |
| 87 # If loop doesn't break, n is composite. |
| 88 return False |
| 89 |
| 90 return True |
| 91 |
| 92 |
| 93 def is_prime(number): |
| 94 """Returns True if the number is prime, and False otherwise. |
| 95 |
| 96 >>> is_prime(2) |
| 97 True |
| 98 >>> is_prime(42) |
| 99 False |
| 100 >>> is_prime(41) |
| 101 True |
| 102 >>> [x for x in range(901, 1000) if is_prime(x)] |
| 103 [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] |
| 104 """ |
| 105 |
| 106 # Check for small numbers. |
| 107 if number < 10: |
| 108 return number in [2, 3, 5, 7] |
| 109 |
| 110 # Check for even numbers. |
| 111 if not (number & 1): |
| 112 return False |
| 113 |
| 114 # According to NIST FIPS 186-4, Appendix C, Table C.3, minimum number of |
| 115 # rounds of M-R testing, using an error probability of 2 ** (-100), for |
| 116 # different p, q bitsizes are: |
| 117 # * p, q bitsize: 512; rounds: 7 |
| 118 # * p, q bitsize: 1024; rounds: 4 |
| 119 # * p, q bitsize: 1536; rounds: 3 |
| 120 # See: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf |
| 121 return miller_rabin_primality_testing(number, 7) |
| 122 |
| 123 |
| 124 def getprime(nbits): |
| 125 """Returns a prime number that can be stored in 'nbits' bits. |
| 126 |
| 127 >>> p = getprime(128) |
| 128 >>> is_prime(p-1) |
| 129 False |
| 130 >>> is_prime(p) |
| 131 True |
| 132 >>> is_prime(p+1) |
| 133 False |
| 134 |
| 135 >>> from rsa import common |
| 136 >>> common.bit_size(p) == 128 |
| 137 True |
| 138 """ |
| 139 |
| 140 assert nbits > 3 # the loop wil hang on too small numbers |
| 141 |
| 142 while True: |
| 143 integer = rsa.randnum.read_random_odd_int(nbits) |
| 144 |
| 145 # Test for primeness |
| 146 if is_prime(integer): |
| 147 return integer |
| 148 |
| 149 # Retry if not prime |
| 150 |
| 151 |
| 152 def are_relatively_prime(a, b): |
| 153 """Returns True if a and b are relatively prime, and False if they |
| 154 are not. |
| 155 |
| 156 >>> are_relatively_prime(2, 3) |
| 157 True |
| 158 >>> are_relatively_prime(2, 4) |
| 159 False |
| 160 """ |
| 161 |
| 162 d = gcd(a, b) |
| 163 return d == 1 |
| 164 |
| 165 |
| 166 if __name__ == '__main__': |
| 167 print('Running doctests 1000x or until failure') |
| 168 import doctest |
| 169 |
| 170 for count in range(1000): |
| 171 (failures, tests) = doctest.testmod() |
| 172 if failures: |
| 173 break |
| 174 |
| 175 if count and count % 100 == 0: |
| 176 print('%i times' % count) |
| 177 |
| 178 print('Doctests done') |
OLD | NEW |