Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(61)

Side by Side Diff: third_party/google-endpoints/rsa/common.py

Issue 2666783008: Add google-endpoints to third_party/. (Closed)
Patch Set: Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/google-endpoints/rsa/cli.py ('k') | third_party/google-endpoints/rsa/core.py » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # https://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 """Common functionality shared by several modules."""
18
19
20 def bit_size(num):
21 """
22 Number of bits needed to represent a integer excluding any prefix
23 0 bits.
24
25 As per definition from https://wiki.python.org/moin/BitManipulation and
26 to match the behavior of the Python 3 API.
27
28 Usage::
29
30 >>> bit_size(1023)
31 10
32 >>> bit_size(1024)
33 11
34 >>> bit_size(1025)
35 11
36
37 :param num:
38 Integer value. If num is 0, returns 0. Only the absolute value of the
39 number is considered. Therefore, signed integers will be abs(num)
40 before the number's bit length is determined.
41 :returns:
42 Returns the number of bits in the integer.
43 """
44 if num == 0:
45 return 0
46 if num < 0:
47 num = -num
48
49 # Make sure this is an int and not a float.
50 num & 1
51
52 hex_num = "%x" % num
53 return ((len(hex_num) - 1) * 4) + {
54 '0': 0, '1': 1, '2': 2, '3': 2,
55 '4': 3, '5': 3, '6': 3, '7': 3,
56 '8': 4, '9': 4, 'a': 4, 'b': 4,
57 'c': 4, 'd': 4, 'e': 4, 'f': 4,
58 }[hex_num[0]]
59
60
61 def _bit_size(number):
62 """
63 Returns the number of bits required to hold a specific long number.
64 """
65 if number < 0:
66 raise ValueError('Only nonnegative numbers possible: %s' % number)
67
68 if number == 0:
69 return 0
70
71 # This works, even with very large numbers. When using math.log(number, 2),
72 # you'll get rounding errors and it'll fail.
73 bits = 0
74 while number:
75 bits += 1
76 number >>= 1
77
78 return bits
79
80
81 def byte_size(number):
82 """
83 Returns the number of bytes required to hold a specific long number.
84
85 The number of bytes is rounded up.
86
87 Usage::
88
89 >>> byte_size(1 << 1023)
90 128
91 >>> byte_size((1 << 1024) - 1)
92 128
93 >>> byte_size(1 << 1024)
94 129
95
96 :param number:
97 An unsigned integer
98 :returns:
99 The number of bytes required to hold a specific long number.
100 """
101 quanta, mod = divmod(bit_size(number), 8)
102 if mod or number == 0:
103 quanta += 1
104 return quanta
105 # return int(math.ceil(bit_size(number) / 8.0))
106
107
108 def extended_gcd(a, b):
109 """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
110 """
111 # r = gcd(a,b) i = multiplicitive inverse of a mod b
112 # or j = multiplicitive inverse of b mod a
113 # Neg return values for i or j are made positive mod b or a respectively
114 # Iterateive Version is faster and uses much less stack space
115 x = 0
116 y = 1
117 lx = 1
118 ly = 0
119 oa = a # Remember original a/b to remove
120 ob = b # negative values from return results
121 while b != 0:
122 q = a // b
123 (a, b) = (b, a % b)
124 (x, lx) = ((lx - (q * x)), x)
125 (y, ly) = ((ly - (q * y)), y)
126 if lx < 0:
127 lx += ob # If neg wrap modulo orignal b
128 if ly < 0:
129 ly += oa # If neg wrap modulo orignal a
130 return a, lx, ly # Return only positive values
131
132
133 def inverse(x, n):
134 """Returns x^-1 (mod n)
135
136 >>> inverse(7, 4)
137 3
138 >>> (inverse(143, 4) * 143) % 4
139 1
140 """
141
142 (divider, inv, _) = extended_gcd(x, n)
143
144 if divider != 1:
145 raise ValueError("x (%d) and n (%d) are not relatively prime" % (x, n))
146
147 return inv
148
149
150 def crt(a_values, modulo_values):
151 """Chinese Remainder Theorem.
152
153 Calculates x such that x = a[i] (mod m[i]) for each i.
154
155 :param a_values: the a-values of the above equation
156 :param modulo_values: the m-values of the above equation
157 :returns: x such that x = a[i] (mod m[i]) for each i
158
159
160 >>> crt([2, 3], [3, 5])
161 8
162
163 >>> crt([2, 3, 2], [3, 5, 7])
164 23
165
166 >>> crt([2, 3, 0], [7, 11, 15])
167 135
168 """
169
170 m = 1
171 x = 0
172
173 for modulo in modulo_values:
174 m *= modulo
175
176 for (m_i, a_i) in zip(modulo_values, a_values):
177 M_i = m // m_i
178 inv = inverse(M_i, m_i)
179
180 x = (x + a_i * M_i * inv) % m
181
182 return x
183
184
185 if __name__ == '__main__':
186 import doctest
187
188 doctest.testmod()
OLDNEW
« no previous file with comments | « third_party/google-endpoints/rsa/cli.py ('k') | third_party/google-endpoints/rsa/core.py » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698