Index: src/IceTargetLoweringX8632.cpp |
diff --git a/src/IceTargetLoweringX8632.cpp b/src/IceTargetLoweringX8632.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cca4c1fdeb0672d89e1cd7d6160ecf980278c38f |
--- /dev/null |
+++ b/src/IceTargetLoweringX8632.cpp |
@@ -0,0 +1,1869 @@ |
+//===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// |
+// |
+// The Subzero Code Generator |
+// |
+// This file is distributed under the University of Illinois Open Source |
+// License. See LICENSE.TXT for details. |
+// |
+//===----------------------------------------------------------------------===// |
+// |
+// This file implements the TargetLoweringX8632 class, which |
+// consists almost entirely of the lowering sequence for each |
+// high-level instruction. It also implements |
+// TargetX8632Fast::postLower() which does the simplest possible |
+// register allocation for the "fast" target. |
+// |
+//===----------------------------------------------------------------------===// |
+ |
+#include "IceDefs.h" |
+#include "IceCfg.h" |
+#include "IceCfgNode.h" |
+#include "IceInstX8632.h" |
+#include "IceOperand.h" |
+#include "IceTargetLoweringX8632.def" |
+#include "IceTargetLoweringX8632.h" |
+ |
+namespace Ice { |
+ |
+namespace { |
+ |
+// The following table summarizes the logic for lowering the fcmp instruction. |
+// There is one table entry for each of the 16 conditions. A comment in |
+// lowerFcmp() describes the lowering template. In the most general case, there |
+// is a compare followed by two conditional branches, because some fcmp |
+// conditions don't map to a single x86 conditional branch. However, in many |
+// cases it is possible to swap the operands in the comparison and have a single |
+// conditional branch. Since it's quite tedious to validate the table by hand, |
+// good execution tests are helpful. |
+ |
+const struct _TableFcmp { |
+ uint32_t Default; |
+ bool SwapOperands; |
+ InstX8632Br::BrCond C1, C2; |
+} TableFcmp[] = { |
+#define X(val, dflt, swap, C1, C2) \ |
+ { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \ |
+ , |
+ FCMPX8632_TABLE |
+#undef X |
+ }; |
+const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp); |
+ |
+// The following table summarizes the logic for lowering the icmp instruction |
+// for i32 and narrower types. Each icmp condition has a clear mapping to an |
+// x86 conditional branch instruction. |
+ |
+const struct _TableIcmp32 { |
+ InstX8632Br::BrCond Mapping; |
+} TableIcmp32[] = { |
+#define X(val, C_32, C1_64, C2_64, C3_64) \ |
+ { InstX8632Br::C_32 } \ |
+ , |
+ ICMPX8632_TABLE |
+#undef X |
+ }; |
+const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32); |
+ |
+// The following table summarizes the logic for lowering the icmp instruction |
+// for the i64 type. For Eq and Ne, two separate 32-bit comparisons and |
+// conditional branches are needed. For the other conditions, three separate |
+// conditional branches are needed. |
+const struct _TableIcmp64 { |
+ InstX8632Br::BrCond C1, C2, C3; |
+} TableIcmp64[] = { |
+#define X(val, C_32, C1_64, C2_64, C3_64) \ |
+ { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \ |
+ , |
+ ICMPX8632_TABLE |
+#undef X |
+ }; |
+const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64); |
+ |
+InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { |
+ size_t Index = static_cast<size_t>(Cond); |
+ assert(Index < TableIcmp32Size); |
+ return TableIcmp32[Index].Mapping; |
+} |
+ |
+// In some cases, there are x-macros tables for both high-level and |
+// low-level instructions/operands that use the same enum key value. |
+// The tables are kept separate to maintain a proper separation |
+// between abstraction layers. There is a risk that the tables |
+// could get out of sync if enum values are reordered or if entries |
+// are added or deleted. This dummy function uses static_assert to |
+// ensure everything is kept in sync. |
+void xMacroIntegrityCheck() { |
+ // Validate the enum values in FCMPX8632_TABLE. |
+ { |
+ // Define a temporary set of enum values based on low-level |
+ // table entries. |
+ enum _tmp_enum { |
+#define X(val, dflt, swap, C1, C2) _tmp_##val, |
+ FCMPX8632_TABLE |
+#undef X |
+ }; |
+// Define a set of constants based on high-level table entries. |
+#define X(tag, str) static const int _table1_##tag = InstFcmp::tag; |
+ ICEINSTFCMP_TABLE; |
+#undef X |
+// Define a set of constants based on low-level table entries, |
+// and ensure the table entry keys are consistent. |
+#define X(val, dflt, swap, C1, C2) \ |
+ static const int _table2_##val = _tmp_##val; \ |
+ STATIC_ASSERT(_table1_##val == _table2_##val); |
+ FCMPX8632_TABLE; |
+#undef X |
+// Repeat the static asserts with respect to the high-level |
+// table entries in case the high-level table has extra entries. |
+#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
+ ICEINSTFCMP_TABLE; |
+#undef X |
+ } |
+ |
+ // Validate the enum values in ICMPX8632_TABLE. |
+ { |
+ // Define a temporary set of enum values based on low-level |
+ // table entries. |
+ enum _tmp_enum { |
+#define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, |
+ ICMPX8632_TABLE |
+#undef X |
+ }; |
+// Define a set of constants based on high-level table entries. |
+#define X(tag, str) static const int _table1_##tag = InstIcmp::tag; |
+ ICEINSTICMP_TABLE; |
+#undef X |
+// Define a set of constants based on low-level table entries, |
+// and ensure the table entry keys are consistent. |
+#define X(val, C_32, C1_64, C2_64, C3_64) \ |
+ static const int _table2_##val = _tmp_##val; \ |
+ STATIC_ASSERT(_table1_##val == _table2_##val); |
+ ICMPX8632_TABLE; |
+#undef X |
+// Repeat the static asserts with respect to the high-level |
+// table entries in case the high-level table has extra entries. |
+#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
+ ICEINSTICMP_TABLE; |
+#undef X |
+ } |
+ |
+ // Validate the enum values in ICETYPEX8632_TABLE. |
+ { |
+ // Define a temporary set of enum values based on low-level |
+ // table entries. |
+ enum _tmp_enum { |
+#define X(tag, cvt, sdss, width) _tmp_##tag, |
+ ICETYPEX8632_TABLE |
+#undef X |
+ }; |
+// Define a set of constants based on high-level table entries. |
+#define X(tag, size, align, str) static const int _table1_##tag = tag; |
+ ICETYPE_TABLE; |
+#undef X |
+// Define a set of constants based on low-level table entries, |
+// and ensure the table entry keys are consistent. |
+#define X(tag, cvt, sdss, width) \ |
+ static const int _table2_##tag = _tmp_##tag; \ |
+ STATIC_ASSERT(_table1_##tag == _table2_##tag); |
+ ICETYPEX8632_TABLE; |
+#undef X |
+// Repeat the static asserts with respect to the high-level |
+// table entries in case the high-level table has extra entries. |
+#define X(tag, size, align, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); |
+ ICETYPE_TABLE; |
+#undef X |
+ } |
+} |
+ |
+} // end of anonymous namespace |
+ |
+TargetX8632::TargetX8632(Cfg *Func) |
+ : TargetLowering(Func), IsEbpBasedFrame(false), FrameSizeLocals(0), |
+ LocalsSizeBytes(0), NextLabelNumber(0), ComputedLiveRanges(false), |
+ PhysicalRegisters(VarList(Reg_NUM)) { |
+ llvm::SmallBitVector IntegerRegisters(Reg_NUM); |
+ llvm::SmallBitVector IntegerRegistersI8(Reg_NUM); |
+ llvm::SmallBitVector FloatRegisters(Reg_NUM); |
+ llvm::SmallBitVector InvalidRegisters(Reg_NUM); |
+ ScratchRegs.resize(Reg_NUM); |
+#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
+ frameptr, isI8, isInt, isFP) \ |
+ IntegerRegisters[val] = isInt; \ |
+ IntegerRegistersI8[val] = isI8; \ |
+ FloatRegisters[val] = isFP; \ |
+ ScratchRegs[val] = scratch; |
+ REGX8632_TABLE; |
+#undef X |
+ TypeToRegisterSet[IceType_void] = InvalidRegisters; |
+ TypeToRegisterSet[IceType_i1] = IntegerRegistersI8; |
+ TypeToRegisterSet[IceType_i8] = IntegerRegistersI8; |
+ TypeToRegisterSet[IceType_i16] = IntegerRegisters; |
+ TypeToRegisterSet[IceType_i32] = IntegerRegisters; |
+ TypeToRegisterSet[IceType_i64] = IntegerRegisters; |
+ TypeToRegisterSet[IceType_f32] = FloatRegisters; |
+ TypeToRegisterSet[IceType_f64] = FloatRegisters; |
+} |
+ |
+void TargetX8632::translateOm1() { |
+ GlobalContext *Context = Func->getContext(); |
+ Ostream &Str = Context->getStrDump(); |
+ Timer T_placePhiLoads; |
+ Func->placePhiLoads(); |
+ if (Func->hasError()) |
+ return; |
+ T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()"); |
+ Timer T_placePhiStores; |
+ Func->placePhiStores(); |
+ if (Func->hasError()) |
+ return; |
+ T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); |
+ Timer T_deletePhis; |
+ Func->deletePhis(); |
+ if (Func->hasError()) |
+ return; |
+ T_deletePhis.printElapsedUs(Context, "deletePhis()"); |
+ if (Context->isVerbose()) |
+ Str << "================ After Phi lowering ================\n"; |
+ Func->dump(); |
+ |
+ Timer T_genCode; |
+ Func->genCode(); |
+ if (Func->hasError()) |
+ return; |
+ T_genCode.printElapsedUs(Context, "genCode()"); |
+ if (Context->isVerbose()) |
+ Str << "================ After initial x8632 codegen ================\n"; |
+ Func->dump(); |
+ |
+ Timer T_genFrame; |
+ Func->genFrame(); |
+ if (Func->hasError()) |
+ return; |
+ T_genFrame.printElapsedUs(Context, "genFrame()"); |
+ if (Context->isVerbose()) |
+ Str << "================ After stack frame mapping ================\n"; |
+ Func->dump(); |
+} |
+ |
+IceString TargetX8632::RegNames[] = { |
+#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
+ frameptr, isI8, isInt, isFP) \ |
+ name, |
+ REGX8632_TABLE |
+#undef X |
+}; |
+ |
+Variable *TargetX8632::getPhysicalRegister(SizeT RegNum) { |
+ assert(RegNum < PhysicalRegisters.size()); |
+ Variable *Reg = PhysicalRegisters[RegNum]; |
+ if (Reg == NULL) { |
+ CfgNode *Node = NULL; // NULL means multi-block lifetime |
+ Reg = Func->makeVariable(IceType_i32, Node); |
+ Reg->setRegNum(RegNum); |
+ PhysicalRegisters[RegNum] = Reg; |
+ } |
+ return Reg; |
+} |
+ |
+IceString TargetX8632::getRegName(SizeT RegNum, Type Ty) const { |
+ assert(RegNum < Reg_NUM); |
+ static IceString RegNames8[] = { |
+#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
+ frameptr, isI8, isInt, isFP) \ |
+ "" name8, |
+ REGX8632_TABLE |
+#undef X |
+ }; |
+ static IceString RegNames16[] = { |
+#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
+ frameptr, isI8, isInt, isFP) \ |
+ "" name16, |
+ REGX8632_TABLE |
+#undef X |
+ }; |
+ switch (Ty) { |
+ case IceType_i1: |
+ case IceType_i8: |
+ return RegNames8[RegNum]; |
+ case IceType_i16: |
+ return RegNames16[RegNum]; |
+ default: |
+ return RegNames[RegNum]; |
+ } |
+} |
+ |
+void TargetX8632::emitVariable(const Variable *Var, |
+ const Cfg *Func) const { |
+ Ostream &Str = Ctx->getStrEmit(); |
+ assert(Var->getLocalUseNode() == NULL || Var->getLocalUseNode() == Func->getCurrentNode()); |
+ if (Var->hasReg()) { |
+ Str << getRegName(Var->getRegNum(), Var->getType()); |
+ return; |
+ } |
+ Str << InstX8632::getWidthString(Var->getType()); |
+ Str << " [" << getRegName( |
+ getFrameOrStackReg(), IceType_i32); |
+ int32_t Offset = Var->getStackOffset() + getStackAdjustment(); |
+ if (Offset) { |
+ if (Offset > 0) |
+ Str << "+"; |
+ Str << Offset; |
+ } |
+ Str << "]"; |
+} |
+ |
+// Helper function for addProlog(). Sets the frame offset for Arg, |
+// updates InArgsSizeBytes according to Arg's width, and generates an |
+// instruction to copy Arg into its assigned register if applicable. |
+// For an I64 arg that has been split into Lo and Hi components, it |
+// calls itself recursively on the components, taking care to handle |
+// Lo first because of the little-endian architecture. |
+void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, |
+ int32_t BasicFrameOffset, |
+ int32_t &InArgsSizeBytes) { |
+ Variable *Lo = Arg->getLo(); |
+ Variable *Hi = Arg->getHi(); |
+ Type Ty = Arg->getType(); |
+ if (Lo && Hi && Ty == IceType_i64) { |
+ assert(Lo->getType() != IceType_i64); // don't want infinite recursion |
+ assert(Hi->getType() != IceType_i64); // don't want infinite recursion |
+ setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
+ setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
+ return; |
+ } |
+ Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes); |
+ if (Arg->hasReg()) { |
+ assert(Ty != IceType_i64); |
+ OperandX8632Mem *Mem = OperandX8632Mem::create( |
+ Func, Ty, FramePtr, |
+ Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); |
+ _mov(Arg, Mem); |
+ } |
+ InArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
+} |
+ |
+void TargetX8632::addProlog(CfgNode *Node) { |
+ // If SimpleCoalescing is false, each variable without a register |
+ // gets its own unique stack slot, which leads to large stack |
+ // frames. If SimpleCoalescing is true, then each "global" variable |
+ // without a register gets its own slot, but "local" variable slots |
+ // are reused across basic blocks. E.g., if A and B are local to |
+ // block 1 and C is local to block 2, then C may share a slot with A |
+ // or B. |
+ const bool SimpleCoalescing = true; |
+ int32_t InArgsSizeBytes = 0; |
+ int32_t RetIpSizeBytes = 4; |
+ int32_t PreservedRegsSizeBytes = 0; |
+ LocalsSizeBytes = 0; |
+ Context.init(Node); |
+ Context.setInsertPoint(Context.getCur()); |
+ |
+ // Determine stack frame offsets for each Variable without a |
+ // register assignment. This can be done as one variable per stack |
+ // slot. Or, do coalescing by running the register allocator again |
+ // with an infinite set of registers (as a side effect, this gives |
+ // variables a second chance at physical register assignment). |
+ // |
+ // A middle ground approach is to leverage sparsity and allocate one |
+ // block of space on the frame for globals (variables with |
+ // multi-block lifetime), and one block to share for locals |
+ // (single-block lifetime). |
+ |
+ llvm::SmallBitVector CalleeSaves = |
+ getRegisterSet(RegSet_CalleeSave, RegSet_None); |
+ |
+ int32_t GlobalsSize = 0; |
+ std::vector<int> LocalsSize(Func->getNumNodes()); |
+ |
+ // Prepass. Compute RegsUsed, PreservedRegsSizeBytes, and |
+ // LocalsSizeBytes. |
+ RegsUsed = llvm::SmallBitVector(CalleeSaves.size()); |
+ const VarList &Variables = Func->getVariables(); |
+ const VarList &Args = Func->getArgs(); |
+ for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); |
+ I != E; ++I) { |
+ Variable *Var = *I; |
+ if (Var->hasReg()) { |
+ RegsUsed[Var->getRegNum()] = true; |
+ continue; |
+ } |
+ // An argument passed on the stack already has a stack slot. |
+ if (Var->getIsArg()) |
+ continue; |
+ // A spill slot linked to a variable with a stack slot should reuse |
+ // that stack slot. |
+ if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { |
+ if (Variable *Linked = Var->getPreferredRegister()) { |
+ if (!Linked->hasReg()) |
+ continue; |
+ } |
+ } |
+ int32_t Increment = typeWidthInBytesOnStack(Var->getType()); |
+ if (SimpleCoalescing) { |
+ if (Var->isMultiblockLife()) { |
+ GlobalsSize += Increment; |
+ } else { |
+ SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); |
+ LocalsSize[NodeIndex] += Increment; |
+ if (LocalsSize[NodeIndex] > LocalsSizeBytes) |
+ LocalsSizeBytes = LocalsSize[NodeIndex]; |
+ } |
+ } else { |
+ LocalsSizeBytes += Increment; |
+ } |
+ } |
+ LocalsSizeBytes += GlobalsSize; |
+ |
+ // Add push instructions for preserved registers. |
+ for (SizeT i = 0; i < CalleeSaves.size(); ++i) { |
+ if (CalleeSaves[i] && RegsUsed[i]) { |
+ PreservedRegsSizeBytes += 4; |
+ const bool SuppressStackAdjustment = true; |
+ _push(getPhysicalRegister(i), SuppressStackAdjustment); |
+ } |
+ } |
+ |
+ // Generate "push ebp; mov ebp, esp" |
+ if (IsEbpBasedFrame) { |
+ assert((RegsUsed & getRegisterSet(RegSet_FramePointer, RegSet_None)) |
+ .count() == 0); |
+ PreservedRegsSizeBytes += 4; |
+ Variable *ebp = getPhysicalRegister(Reg_ebp); |
+ Variable *esp = getPhysicalRegister(Reg_esp); |
+ const bool SuppressStackAdjustment = true; |
+ _push(ebp, SuppressStackAdjustment); |
+ _mov(ebp, esp); |
+ } |
+ |
+ // Generate "sub esp, LocalsSizeBytes" |
+ if (LocalsSizeBytes) |
+ _sub(getPhysicalRegister(Reg_esp), |
+ Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); |
+ |
+ resetStackAdjustment(); |
+ |
+ // Fill in stack offsets for args, and copy args into registers for |
+ // those that were register-allocated. Args are pushed right to |
+ // left, so Arg[0] is closest to the stack/frame pointer. |
+ // |
+ // TODO: Make this right for different width args, calling |
+ // conventions, etc. For one thing, args passed in registers will |
+ // need to be copied/shuffled to their home registers (the |
+ // RegManager code may have some permutation logic to leverage), |
+ // and if they have no home register, home space will need to be |
+ // allocated on the stack to copy into. |
+ Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); |
+ int32_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes; |
+ if (!IsEbpBasedFrame) |
+ BasicFrameOffset += LocalsSizeBytes; |
+ for (SizeT i = 0; i < Args.size(); ++i) { |
+ Variable *Arg = Args[i]; |
+ setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes); |
+ } |
+ |
+ // Fill in stack offsets for locals. |
+ int32_t TotalGlobalsSize = GlobalsSize; |
+ GlobalsSize = 0; |
+ LocalsSize.assign(LocalsSize.size(), 0); |
+ int32_t NextStackOffset = 0; |
+ for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); |
+ I != E; ++I) { |
+ Variable *Var = *I; |
+ if (Var->hasReg()) { |
+ RegsUsed[Var->getRegNum()] = true; |
+ continue; |
+ } |
+ if (Var->getIsArg()) |
+ continue; |
+ if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { |
+ if (Variable *Linked = Var->getPreferredRegister()) { |
+ if (!Linked->hasReg()) { |
+ // TODO: Make sure Linked has already been assigned a stack |
+ // slot. |
+ Var->setStackOffset(Linked->getStackOffset()); |
+ continue; |
+ } |
+ } |
+ } |
+ int32_t Increment = typeWidthInBytesOnStack(Var->getType()); |
+ if (SimpleCoalescing) { |
+ if (Var->isMultiblockLife()) { |
+ GlobalsSize += Increment; |
+ NextStackOffset = GlobalsSize; |
+ } else { |
+ SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); |
+ LocalsSize[NodeIndex] += Increment; |
+ NextStackOffset = TotalGlobalsSize + LocalsSize[NodeIndex]; |
+ } |
+ } else { |
+ NextStackOffset += Increment; |
+ } |
+ if (IsEbpBasedFrame) |
+ Var->setStackOffset(-NextStackOffset); |
+ else |
+ Var->setStackOffset(LocalsSizeBytes - NextStackOffset); |
+ } |
+ this->FrameSizeLocals = NextStackOffset; |
+ this->HasComputedFrame = true; |
+ |
+ if (Func->getContext()->isVerbose(IceV_Frame)) { |
+ Func->getContext()->getStrDump() << "LocalsSizeBytes=" << LocalsSizeBytes |
+ << "\n" |
+ << "InArgsSizeBytes=" << InArgsSizeBytes |
+ << "\n" |
+ << "PreservedRegsSizeBytes=" |
+ << PreservedRegsSizeBytes << "\n"; |
+ } |
+} |
+ |
+void TargetX8632::addEpilog(CfgNode *Node) { |
+ InstList &Insts = Node->getInsts(); |
+ InstList::reverse_iterator RI, E; |
+ for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) { |
+ if (llvm::isa<InstX8632Ret>(*RI)) |
+ break; |
+ } |
+ if (RI == E) |
+ return; |
+ |
+ // Convert the reverse_iterator position into its corresponding |
+ // (forward) iterator position. |
+ InstList::iterator InsertPoint = RI.base(); |
+ --InsertPoint; |
+ Context.init(Node); |
+ Context.setInsertPoint(InsertPoint); |
+ |
+ Variable *esp = getPhysicalRegister(Reg_esp); |
+ if (IsEbpBasedFrame) { |
+ Variable *ebp = getPhysicalRegister(Reg_ebp); |
+ _mov(esp, ebp); |
+ _pop(ebp); |
+ } else { |
+ // add esp, LocalsSizeBytes |
+ if (LocalsSizeBytes) |
+ _add(esp, Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); |
+ } |
+ |
+ // Add pop instructions for preserved registers. |
+ llvm::SmallBitVector CalleeSaves = |
+ getRegisterSet(RegSet_CalleeSave, RegSet_None); |
+ for (SizeT i = 0; i < CalleeSaves.size(); ++i) { |
+ SizeT j = CalleeSaves.size() - i - 1; |
+ if (j == Reg_ebp && IsEbpBasedFrame) |
+ continue; |
+ if (CalleeSaves[j] && RegsUsed[j]) { |
+ _pop(getPhysicalRegister(j)); |
+ } |
+ } |
+} |
+ |
+void TargetX8632::split64(Variable *Var) { |
+ switch (Var->getType()) { |
+ default: |
+ return; |
+ case IceType_i64: |
+ // TODO: Only consider F64 if we need to push each half when |
+ // passing as an argument to a function call. Note that each half |
+ // is still typed as I32. |
+ case IceType_f64: |
+ break; |
+ } |
+ Variable *Lo = Var->getLo(); |
+ Variable *Hi = Var->getHi(); |
+ if (Lo) { |
+ assert(Hi); |
+ return; |
+ } |
+ assert(Hi == NULL); |
+ Lo = Func->makeVariable(IceType_i32, Context.getNode(), |
+ Var->getName() + "__lo"); |
+ Hi = Func->makeVariable(IceType_i32, Context.getNode(), |
+ Var->getName() + "__hi"); |
+ Var->setLoHi(Lo, Hi); |
+ if (Var->getIsArg()) { |
+ Lo->setIsArg(Func); |
+ Hi->setIsArg(Func); |
+ } |
+} |
+ |
+Operand *TargetX8632::loOperand(Operand *Operand) { |
+ assert(Operand->getType() == IceType_i64); |
+ if (Operand->getType() != IceType_i64) |
+ return Operand; |
+ if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { |
+ split64(Var); |
+ return Var->getLo(); |
+ } |
+ if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { |
+ uint64_t Mask = (1ull << 32) - 1; |
+ return Ctx->getConstantInt(IceType_i32, Const->getValue() & Mask); |
+ } |
+ if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
+ return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), |
+ Mem->getOffset(), Mem->getIndex(), |
+ Mem->getShift()); |
+ } |
+ llvm_unreachable("Unsupported operand type"); |
+ return NULL; |
+} |
+ |
+Operand *TargetX8632::hiOperand(Operand *Operand) { |
+ assert(Operand->getType() == IceType_i64); |
+ if (Operand->getType() != IceType_i64) |
+ return Operand; |
+ if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { |
+ split64(Var); |
+ return Var->getHi(); |
+ } |
+ if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { |
+ return Ctx->getConstantInt(IceType_i32, Const->getValue() >> 32); |
+ } |
+ if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { |
+ Constant *Offset = Mem->getOffset(); |
+ if (Offset == NULL) |
+ Offset = Ctx->getConstantInt(IceType_i32, 4); |
+ else if (ConstantInteger *IntOffset = |
+ llvm::dyn_cast<ConstantInteger>(Offset)) { |
+ Offset = Ctx->getConstantInt(IceType_i32, 4 + IntOffset->getValue()); |
+ } else if (ConstantRelocatable *SymOffset = |
+ llvm::dyn_cast<ConstantRelocatable>(Offset)) { |
+ Offset = Ctx->getConstantSym(IceType_i32, 4 + SymOffset->getOffset(), |
+ SymOffset->getName()); |
+ } |
+ return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset, |
+ Mem->getIndex(), Mem->getShift()); |
+ } |
+ llvm_unreachable("Unsupported operand type"); |
+ return NULL; |
+} |
+ |
+llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include, |
+ RegSetMask Exclude) const { |
+ llvm::SmallBitVector Registers(Reg_NUM); |
+ |
+#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ |
+ frameptr, isI8, isInt, isFP) \ |
+ if (scratch && (Include & RegSet_CallerSave)) \ |
+ Registers[val] = true; \ |
+ if (preserved && (Include & RegSet_CalleeSave)) \ |
+ Registers[val] = true; \ |
+ if (stackptr && (Include & RegSet_StackPointer)) \ |
+ Registers[val] = true; \ |
+ if (frameptr && (Include & RegSet_FramePointer)) \ |
+ Registers[val] = true; \ |
+ if (scratch && (Exclude & RegSet_CallerSave)) \ |
+ Registers[val] = false; \ |
+ if (preserved && (Exclude & RegSet_CalleeSave)) \ |
+ Registers[val] = false; \ |
+ if (stackptr && (Exclude & RegSet_StackPointer)) \ |
+ Registers[val] = false; \ |
+ if (frameptr && (Exclude & RegSet_FramePointer)) \ |
+ Registers[val] = false; |
+ |
+ REGX8632_TABLE |
+ |
+#undef X |
+ |
+ return Registers; |
+} |
+ |
+void TargetX8632::lowerAlloca(const InstAlloca *Inst) { |
+ IsEbpBasedFrame = true; |
+ // TODO(sehr,stichnot): align allocated memory, keep stack aligned, minimize |
+ // the number of adjustments of esp, etc. |
+ Variable *esp = getPhysicalRegister(Reg_esp); |
+ Operand *TotalSize = legalize(Inst->getSizeInBytes()); |
+ Variable *Dest = Inst->getDest(); |
+ _sub(esp, TotalSize); |
+ _mov(Dest, esp); |
+} |
+ |
+void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { |
+ Variable *Dest = Inst->getDest(); |
+ Operand *Src0 = legalize(Inst->getSrc(0)); |
+ Operand *Src1 = legalize(Inst->getSrc(1)); |
+ if (Dest->getType() == IceType_i64) { |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Operand *Src0Lo = loOperand(Src0); |
+ Operand *Src0Hi = hiOperand(Src0); |
+ Operand *Src1Lo = loOperand(Src1); |
+ Operand *Src1Hi = hiOperand(Src1); |
+ Variable *T_Lo = NULL, *T_Hi = NULL; |
+ switch (Inst->getOp()) { |
+ case InstArithmetic::Add: |
+ _mov(T_Lo, Src0Lo); |
+ _add(T_Lo, Src1Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _adc(T_Hi, Src1Hi); |
+ _mov(DestHi, T_Hi); |
+ break; |
+ case InstArithmetic::And: |
+ _mov(T_Lo, Src0Lo); |
+ _and(T_Lo, Src1Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _and(T_Hi, Src1Hi); |
+ _mov(DestHi, T_Hi); |
+ break; |
+ case InstArithmetic::Or: |
+ _mov(T_Lo, Src0Lo); |
+ _or(T_Lo, Src1Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _or(T_Hi, Src1Hi); |
+ _mov(DestHi, T_Hi); |
+ break; |
+ case InstArithmetic::Xor: |
+ _mov(T_Lo, Src0Lo); |
+ _xor(T_Lo, Src1Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _xor(T_Hi, Src1Hi); |
+ _mov(DestHi, T_Hi); |
+ break; |
+ case InstArithmetic::Sub: |
+ _mov(T_Lo, Src0Lo); |
+ _sub(T_Lo, Src1Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _sbb(T_Hi, Src1Hi); |
+ _mov(DestHi, T_Hi); |
+ break; |
+ case InstArithmetic::Mul: { |
+ Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
+ Variable *T_4Lo = makeReg(IceType_i32, Reg_eax); |
+ Variable *T_4Hi = makeReg(IceType_i32, Reg_edx); |
+ // gcc does the following: |
+ // a=b*c ==> |
+ // t1 = b.hi; t1 *=(imul) c.lo |
+ // t2 = c.hi; t2 *=(imul) b.lo |
+ // t3:eax = b.lo |
+ // t4.hi:edx,t4.lo:eax = t3:eax *(mul) c.lo |
+ // a.lo = t4.lo |
+ // t4.hi += t1 |
+ // t4.hi += t2 |
+ // a.hi = t4.hi |
+ _mov(T_1, Src0Hi); |
+ _imul(T_1, Src1Lo); |
+ _mov(T_2, Src1Hi); |
+ _imul(T_2, Src0Lo); |
+ _mov(T_3, Src0Lo, Reg_eax); |
+ _mul(T_4Lo, T_3, Src1Lo); |
+ // The mul instruction produces two dest variables, edx:eax. We |
+ // create a fake definition of edx to account for this. |
+ Context.insert(InstFakeDef::create(Func, T_4Hi, T_4Lo)); |
+ _mov(DestLo, T_4Lo); |
+ _add(T_4Hi, T_1); |
+ _add(T_4Hi, T_2); |
+ _mov(DestHi, T_4Hi); |
+ } break; |
+ case InstArithmetic::Shl: { |
+ // TODO: Refactor the similarities between Shl, Lshr, and Ashr. |
+ // gcc does the following: |
+ // a=b<<c ==> |
+ // t1:ecx = c.lo & 0xff |
+ // t2 = b.lo |
+ // t3 = b.hi |
+ // t3 = shld t3, t2, t1 |
+ // t2 = shl t2, t1 |
+ // test t1, 0x20 |
+ // je L1 |
+ // use(t3) |
+ // t3 = t2 |
+ // t2 = 0 |
+ // L1: |
+ // a.lo = t2 |
+ // a.hi = t3 |
+ Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
+ Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _mov(T_1, Src1Lo, Reg_ecx); |
+ _mov(T_2, Src0Lo); |
+ _mov(T_3, Src0Hi); |
+ _shld(T_3, T_2, T_1); |
+ _shl(T_2, T_1); |
+ _test(T_1, BitTest); |
+ _br(InstX8632Br::Br_e, Label); |
+ // Because of the intra-block control flow, we need to fake a use |
+ // of T_3 to prevent its earlier definition from being dead-code |
+ // eliminated in the presence of its later definition. |
+ Context.insert(InstFakeUse::create(Func, T_3)); |
+ _mov(T_3, T_2); |
+ _mov(T_2, Zero); |
+ Context.insert(Label); |
+ _mov(DestLo, T_2); |
+ _mov(DestHi, T_3); |
+ } break; |
+ case InstArithmetic::Lshr: { |
+ // a=b>>c (unsigned) ==> |
+ // t1:ecx = c.lo & 0xff |
+ // t2 = b.lo |
+ // t3 = b.hi |
+ // t2 = shrd t2, t3, t1 |
+ // t3 = shr t3, t1 |
+ // test t1, 0x20 |
+ // je L1 |
+ // use(t2) |
+ // t2 = t3 |
+ // t3 = 0 |
+ // L1: |
+ // a.lo = t2 |
+ // a.hi = t3 |
+ Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
+ Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _mov(T_1, Src1Lo, Reg_ecx); |
+ _mov(T_2, Src0Lo); |
+ _mov(T_3, Src0Hi); |
+ _shrd(T_2, T_3, T_1); |
+ _shr(T_3, T_1); |
+ _test(T_1, BitTest); |
+ _br(InstX8632Br::Br_e, Label); |
+ // Because of the intra-block control flow, we need to fake a use |
+ // of T_3 to prevent its earlier definition from being dead-code |
+ // eliminated in the presence of its later definition. |
+ Context.insert(InstFakeUse::create(Func, T_2)); |
+ _mov(T_2, T_3); |
+ _mov(T_3, Zero); |
+ Context.insert(Label); |
+ _mov(DestLo, T_2); |
+ _mov(DestHi, T_3); |
+ } break; |
+ case InstArithmetic::Ashr: { |
+ // a=b>>c (signed) ==> |
+ // t1:ecx = c.lo & 0xff |
+ // t2 = b.lo |
+ // t3 = b.hi |
+ // t2 = shrd t2, t3, t1 |
+ // t3 = sar t3, t1 |
+ // test t1, 0x20 |
+ // je L1 |
+ // use(t2) |
+ // t2 = t3 |
+ // t3 = sar t3, 0x1f |
+ // L1: |
+ // a.lo = t2 |
+ // a.hi = t3 |
+ Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; |
+ Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); |
+ Constant *SignExtend = Ctx->getConstantInt(IceType_i32, 0x1f); |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _mov(T_1, Src1Lo, Reg_ecx); |
+ _mov(T_2, Src0Lo); |
+ _mov(T_3, Src0Hi); |
+ _shrd(T_2, T_3, T_1); |
+ _sar(T_3, T_1); |
+ _test(T_1, BitTest); |
+ _br(InstX8632Br::Br_e, Label); |
+ // Because of the intra-block control flow, we need to fake a use |
+ // of T_3 to prevent its earlier definition from being dead-code |
+ // eliminated in the presence of its later definition. |
+ Context.insert(InstFakeUse::create(Func, T_2)); |
+ _mov(T_2, T_3); |
+ _sar(T_3, SignExtend); |
+ Context.insert(Label); |
+ _mov(DestLo, T_2); |
+ _mov(DestHi, T_3); |
+ } break; |
+ case InstArithmetic::Udiv: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall("__udivdi3", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ } break; |
+ case InstArithmetic::Sdiv: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall("__divdi3", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ } break; |
+ case InstArithmetic::Urem: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall("__umoddi3", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ } break; |
+ case InstArithmetic::Srem: { |
+ const SizeT MaxSrcs = 2; |
+ InstCall *Call = makeHelperCall("__moddi3", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ Call->addArg(Inst->getSrc(1)); |
+ lowerCall(Call); |
+ } break; |
+ case InstArithmetic::Fadd: |
+ case InstArithmetic::Fsub: |
+ case InstArithmetic::Fmul: |
+ case InstArithmetic::Fdiv: |
+ case InstArithmetic::Frem: |
+ llvm_unreachable("FP instruction with i64 type"); |
+ break; |
+ } |
+ } else { // Dest->getType() != IceType_i64 |
+ Variable *T_edx = NULL; |
+ Variable *T = NULL; |
+ switch (Inst->getOp()) { |
+ case InstArithmetic::Add: |
+ _mov(T, Src0); |
+ _add(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::And: |
+ _mov(T, Src0); |
+ _and(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Or: |
+ _mov(T, Src0); |
+ _or(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Xor: |
+ _mov(T, Src0); |
+ _xor(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Sub: |
+ _mov(T, Src0); |
+ _sub(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Mul: |
+ // TODO: Optimize for llvm::isa<Constant>(Src1) |
+ // TODO: Strength-reduce multiplications by a constant, |
+ // particularly -1 and powers of 2. Advanced: use lea to |
+ // multiply by 3, 5, 9. |
+ // |
+ // The 8-bit version of imul only allows the form "imul r/m8" |
+ // where T must be in eax. |
+ if (Dest->getType() == IceType_i8) |
+ _mov(T, Src0, Reg_eax); |
+ else |
+ _mov(T, Src0); |
+ _imul(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Shl: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, false, Reg_ecx); |
+ _shl(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Lshr: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, false, Reg_ecx); |
+ _shr(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Ashr: |
+ _mov(T, Src0); |
+ if (!llvm::isa<Constant>(Src1)) |
+ Src1 = legalizeToVar(Src1, false, Reg_ecx); |
+ _sar(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Udiv: |
+ if (Dest->getType() == IceType_i8) { |
+ Variable *T_ah = NULL; |
+ Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); |
+ _mov(T, Src0, Reg_eax); |
+ _mov(T_ah, Zero, Reg_ah); |
+ _div(T_ah, Src1, T); |
+ Context.insert(InstFakeUse::create(Func, T_ah)); |
+ _mov(Dest, T); |
+ } else { |
+ // TODO: fix for 8-bit, see Urem |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ _mov(T, Src0, Reg_eax); |
+ _mov(T_edx, Zero, Reg_edx); |
+ _div(T, Src1, T_edx); |
+ _mov(Dest, T); |
+ } |
+ break; |
+ case InstArithmetic::Sdiv: |
+ T_edx = makeReg(IceType_i32, Reg_edx); |
+ _mov(T, Src0, Reg_eax); |
+ _cdq(T_edx, T); |
+ _idiv(T, Src1, T_edx); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Urem: |
+ if (Dest->getType() == IceType_i8) { |
+ Variable *T_ah = NULL; |
+ Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); |
+ _mov(T, Src0, Reg_eax); |
+ _mov(T_ah, Zero, Reg_ah); |
+ _div(T_ah, Src1, T); |
+ _mov(Dest, T_ah); |
+ } else { |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ _mov(T_edx, Zero, Reg_edx); |
+ _mov(T, Src0, Reg_eax); |
+ _div(T_edx, Src1, T); |
+ _mov(Dest, T_edx); |
+ } |
+ break; |
+ case InstArithmetic::Srem: |
+ T_edx = makeReg(IceType_i32, Reg_edx); |
+ _mov(T, Src0, Reg_eax); |
+ _cdq(T_edx, T); |
+ _idiv(T_edx, Src1, T); |
+ _mov(Dest, T_edx); |
+ break; |
+ case InstArithmetic::Fadd: |
+ _mov(T, Src0); |
+ _addss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fsub: |
+ _mov(T, Src0); |
+ _subss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fmul: |
+ _mov(T, Src0); |
+ _mulss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Fdiv: |
+ _mov(T, Src0); |
+ _divss(T, Src1); |
+ _mov(Dest, T); |
+ break; |
+ case InstArithmetic::Frem: { |
+ const SizeT MaxSrcs = 2; |
+ Type Ty = Dest->getType(); |
+ InstCall *Call = |
+ makeHelperCall(Ty == IceType_f32 ? "fmodf" : "fmod", Dest, MaxSrcs); |
+ Call->addArg(Src0); |
+ Call->addArg(Src1); |
+ return lowerCall(Call); |
+ } break; |
+ } |
+ } |
+} |
+ |
+void TargetX8632::lowerAssign(const InstAssign *Inst) { |
+ Variable *Dest = Inst->getDest(); |
+ Operand *Src0 = legalize(Inst->getSrc(0)); |
+ assert(Dest->getType() == Src0->getType()); |
+ if (Dest->getType() == IceType_i64) { |
+ Operand *Src0Lo = loOperand(Src0); |
+ Operand *Src0Hi = hiOperand(Src0); |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Variable *T_Lo = NULL, *T_Hi = NULL; |
+ _mov(T_Lo, Src0Lo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, Src0Hi); |
+ _mov(DestHi, T_Hi); |
+ } else { |
+ const bool AllowOverlap = true; |
+ // RI is either a physical register or an immediate. |
+ Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap); |
+ _mov(Dest, RI); |
+ } |
+} |
+ |
+void TargetX8632::lowerBr(const InstBr *Inst) { |
+ if (Inst->isUnconditional()) { |
+ _br(Inst->getTargetUnconditional()); |
+ } else { |
+ Operand *Src0 = legalize(Inst->getCondition()); |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ _cmp(Src0, Zero); |
+ _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse()); |
+ } |
+} |
+ |
+void TargetX8632::lowerCall(const InstCall *Instr) { |
+ // Generate a sequence of push instructions, pushing right to left, |
+ // keeping track of stack offsets in case a push involves a stack |
+ // operand and we are using an esp-based frame. |
+ uint32_t StackOffset = 0; |
+ // TODO: If for some reason the call instruction gets dead-code |
+ // eliminated after lowering, we would need to ensure that the |
+ // pre-call push instructions and the post-call esp adjustment get |
+ // eliminated as well. |
+ for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) { |
+ Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1)); |
+ if (Arg->getType() == IceType_i64) { |
+ _push(hiOperand(Arg)); |
+ _push(loOperand(Arg)); |
+ } else if (Arg->getType() == IceType_f64) { |
+ // If the Arg turns out to be a memory operand, we need to push |
+ // 8 bytes, which requires two push instructions. This ends up |
+ // being somewhat clumsy in the current IR, so we use a |
+ // workaround. Force the operand into a (xmm) register, and |
+ // then push the register. An xmm register push is actually not |
+ // possible in x86, but the Push instruction emitter handles |
+ // this by decrementing the stack pointer and directly writing |
+ // the xmm register value. |
+ Variable *T = NULL; |
+ _mov(T, Arg); |
+ _push(T); |
+ } else { |
+ _push(Arg); |
+ } |
+ StackOffset += typeWidthInBytesOnStack(Arg->getType()); |
+ } |
+ // Generate the call instruction. Assign its result to a temporary |
+ // with high register allocation weight. |
+ Variable *Dest = Instr->getDest(); |
+ Variable *eax = NULL; // doubles as RegLo as necessary |
+ Variable *edx = NULL; |
+ if (Dest) { |
+ switch (Dest->getType()) { |
+ case IceType_NUM: |
+ llvm_unreachable("Invalid Call dest type"); |
+ break; |
+ case IceType_void: |
+ break; |
+ case IceType_i1: |
+ case IceType_i8: |
+ case IceType_i16: |
+ case IceType_i32: |
+ eax = makeReg(Dest->getType(), Reg_eax); |
+ break; |
+ case IceType_i64: |
+ eax = makeReg(IceType_i32, Reg_eax); |
+ edx = makeReg(IceType_i32, Reg_edx); |
+ break; |
+ case IceType_f32: |
+ case IceType_f64: |
+ // Leave eax==edx==NULL, and capture the result with the fstp |
+ // instruction. |
+ break; |
+ } |
+ } |
+ Operand *CallTarget = legalize(Instr->getCallTarget()); |
+ Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget); |
+ Context.insert(NewCall); |
+ if (edx) |
+ Context.insert(InstFakeDef::create(Func, edx)); |
+ |
+ // Add the appropriate offset to esp. |
+ if (StackOffset) { |
+ Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); |
+ _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset)); |
+ } |
+ |
+ // Insert a register-kill pseudo instruction. |
+ VarList KilledRegs; |
+ for (SizeT i = 0; i < ScratchRegs.size(); ++i) { |
+ if (ScratchRegs[i]) |
+ KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i)); |
+ } |
+ if (!KilledRegs.empty()) { |
+ Inst *Kill = InstFakeKill::create(Func, KilledRegs, NewCall); |
+ Context.insert(Kill); |
+ } |
+ |
+ // Generate a FakeUse to keep the call live if necessary. |
+ if (Instr->hasSideEffects() && eax) { |
+ Inst *FakeUse = InstFakeUse::create(Func, eax); |
+ Context.insert(FakeUse); |
+ } |
+ |
+ // Generate Dest=eax assignment. |
+ if (Dest && eax) { |
+ if (edx) { |
+ split64(Dest); |
+ Variable *DestLo = Dest->getLo(); |
+ Variable *DestHi = Dest->getHi(); |
+ DestLo->setPreferredRegister(eax, false); |
+ DestHi->setPreferredRegister(edx, false); |
+ _mov(DestLo, eax); |
+ _mov(DestHi, edx); |
+ } else { |
+ Dest->setPreferredRegister(eax, false); |
+ _mov(Dest, eax); |
+ } |
+ } |
+ |
+ // Special treatment for an FP function which returns its result in |
+ // st(0). |
+ if (Dest && |
+ (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) { |
+ _fstp(Dest); |
+ // If Dest ends up being a physical xmm register, the fstp emit |
+ // code will route st(0) through a temporary stack slot. |
+ } |
+} |
+ |
+void TargetX8632::lowerCast(const InstCast *Inst) { |
+ // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap) |
+ InstCast::OpKind CastKind = Inst->getCastKind(); |
+ Variable *Dest = Inst->getDest(); |
+ // Src0RM is the source operand legalized to physical register or memory, but |
+ // not immediate, since the relevant x86 native instructions don't allow an |
+ // immediate operand. If the operand is an immediate, we could consider |
+ // computing the strength-reduced result at translation time, but we're |
+ // unlikely to see something like that in the bitcode that the optimizer |
+ // wouldn't have already taken care of. |
+ Operand *Src0RM = legalize(Inst->getSrc(0), Legal_Reg | Legal_Mem, true); |
+ switch (CastKind) { |
+ default: |
+ Func->setError("Cast type not supported"); |
+ return; |
+ case InstCast::Sext: |
+ if (Dest->getType() == IceType_i64) { |
+ // t1=movsx src; t2=t1; t2=sar t2, 31; dst.lo=t1; dst.hi=t2 |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Variable *T_Lo = makeReg(DestLo->getType()); |
+ if (Src0RM->getType() == IceType_i32) |
+ _mov(T_Lo, Src0RM); |
+ else |
+ _movsx(T_Lo, Src0RM); |
+ _mov(DestLo, T_Lo); |
+ Variable *T_Hi = NULL; |
+ Constant *Shift = Ctx->getConstantInt(IceType_i32, 31); |
+ _mov(T_Hi, T_Lo); |
+ _sar(T_Hi, Shift); |
+ _mov(DestHi, T_Hi); |
+ } else { |
+ // TODO: Sign-extend an i1 via "shl reg, 31; sar reg, 31", and |
+ // also copy to the high operand of a 64-bit variable. |
+ // t1 = movsx src; dst = t1 |
+ Variable *T = makeReg(Dest->getType()); |
+ _movsx(T, Src0RM); |
+ _mov(Dest, T); |
+ } |
+ break; |
+ case InstCast::Zext: |
+ if (Dest->getType() == IceType_i64) { |
+ // t1=movzx src; dst.lo=t1; dst.hi=0 |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Variable *Tmp = makeReg(DestLo->getType()); |
+ if (Src0RM->getType() == IceType_i32) |
+ _mov(Tmp, Src0RM); |
+ else |
+ _movzx(Tmp, Src0RM); |
+ _mov(DestLo, Tmp); |
+ _mov(DestHi, Zero); |
+ } else if (Src0RM->getType() == IceType_i1) { |
+ // t = Src0RM; t &= 1; Dest = t |
+ Operand *One = Ctx->getConstantInt(IceType_i32, 1); |
+ Variable *T = makeReg(IceType_i32); |
+ _movzx(T, Src0RM); |
+ _and(T, One); |
+ _mov(Dest, T); |
+ } else { |
+ // t1 = movzx src; dst = t1 |
+ Variable *T = makeReg(Dest->getType()); |
+ _movzx(T, Src0RM); |
+ _mov(Dest, T); |
+ } |
+ break; |
+ case InstCast::Trunc: { |
+ if (Src0RM->getType() == IceType_i64) |
+ Src0RM = loOperand(Src0RM); |
+ // t1 = trunc Src0RM; Dest = t1 |
+ Variable *T = NULL; |
+ _mov(T, Src0RM); |
+ _mov(Dest, T); |
+ break; |
+ } |
+ case InstCast::Fptrunc: |
+ case InstCast::Fpext: { |
+ // t1 = cvt Src0RM; Dest = t1 |
+ Variable *T = makeReg(Dest->getType()); |
+ _cvt(T, Src0RM); |
+ _mov(Dest, T); |
+ break; |
+ } |
+ case InstCast::Fptosi: |
+ if (Dest->getType() == IceType_i64) { |
+ // Use a helper for converting floating-point values to 64-bit |
+ // integers. SSE2 appears to have no way to convert from xmm |
+ // registers to something like the edx:eax register pair, and |
+ // gcc and clang both want to use x87 instructions complete with |
+ // temporary manipulation of the status word. This helper is |
+ // not needed for x86-64. |
+ split64(Dest); |
+ const SizeT MaxSrcs = 1; |
+ Type SrcType = Inst->getSrc(0)->getType(); |
+ InstCall *Call = makeHelperCall( |
+ SrcType == IceType_f32 ? "cvtftosi64" : "cvtdtosi64", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ lowerCall(Call); |
+ } else { |
+ // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type |
+ Variable *T_1 = makeReg(IceType_i32); |
+ Variable *T_2 = makeReg(Dest->getType()); |
+ _cvt(T_1, Src0RM); |
+ _mov(T_2, T_1); // T_1 and T_2 may have different integer types |
+ _mov(Dest, T_2); |
+ T_2->setPreferredRegister(T_1, true); |
+ } |
+ break; |
+ case InstCast::Fptoui: |
+ if (Dest->getType() == IceType_i64 || Dest->getType() == IceType_i32) { |
+ // Use a helper for both x86-32 and x86-64. |
+ split64(Dest); |
+ const SizeT MaxSrcs = 1; |
+ Type DestType = Dest->getType(); |
+ Type SrcType = Src0RM->getType(); |
+ IceString DstSubstring = (DestType == IceType_i64 ? "64" : "32"); |
+ IceString SrcSubstring = (SrcType == IceType_f32 ? "f" : "d"); |
+ // Possibilities are cvtftoui32, cvtdtoui32, cvtftoui64, cvtdtoui64 |
+ IceString TargetString = "cvt" + SrcSubstring + "toui" + DstSubstring; |
+ InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ lowerCall(Call); |
+ return; |
+ } else { |
+ // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type |
+ Variable *T_1 = makeReg(IceType_i32); |
+ Variable *T_2 = makeReg(Dest->getType()); |
+ _cvt(T_1, Src0RM); |
+ _mov(T_2, T_1); // T_1 and T_2 may have different integer types |
+ _mov(Dest, T_2); |
+ T_2->setPreferredRegister(T_1, true); |
+ } |
+ break; |
+ case InstCast::Sitofp: |
+ if (Src0RM->getType() == IceType_i64) { |
+ // Use a helper for x86-32. |
+ const SizeT MaxSrcs = 1; |
+ Type DestType = Dest->getType(); |
+ InstCall *Call = makeHelperCall( |
+ DestType == IceType_f32 ? "cvtsi64tof" : "cvtsi64tod", Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ lowerCall(Call); |
+ return; |
+ } else { |
+ // Sign-extend the operand. |
+ // t1.i32 = movsx Src0RM; t2 = Cvt t1.i32; Dest = t2 |
+ Variable *T_1 = makeReg(IceType_i32); |
+ Variable *T_2 = makeReg(Dest->getType()); |
+ if (Src0RM->getType() == IceType_i32) |
+ _mov(T_1, Src0RM); |
+ else |
+ _movsx(T_1, Src0RM); |
+ _cvt(T_2, T_1); |
+ _mov(Dest, T_2); |
+ } |
+ break; |
+ case InstCast::Uitofp: |
+ if (Src0RM->getType() == IceType_i64 || Src0RM->getType() == IceType_i32) { |
+ // Use a helper for x86-32 and x86-64. Also use a helper for |
+ // i32 on x86-32. |
+ const SizeT MaxSrcs = 1; |
+ Type DestType = Dest->getType(); |
+ IceString SrcSubstring = (Src0RM->getType() == IceType_i64 ? "64" : "32"); |
+ IceString DstSubstring = (DestType == IceType_f32 ? "f" : "d"); |
+ // Possibilities are cvtui32tof, cvtui32tod, cvtui64tof, cvtui64tod |
+ IceString TargetString = "cvtui" + SrcSubstring + "to" + DstSubstring; |
+ InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); |
+ Call->addArg(Inst->getSrc(0)); |
+ lowerCall(Call); |
+ return; |
+ } else { |
+ // Zero-extend the operand. |
+ // t1.i32 = movzx Src0RM; t2 = Cvt t1.i32; Dest = t2 |
+ Variable *T_1 = makeReg(IceType_i32); |
+ Variable *T_2 = makeReg(Dest->getType()); |
+ if (Src0RM->getType() == IceType_i32) |
+ _mov(T_1, Src0RM); |
+ else |
+ _movzx(T_1, Src0RM); |
+ _cvt(T_2, T_1); |
+ _mov(Dest, T_2); |
+ } |
+ break; |
+ case InstCast::Bitcast: |
+ if (Dest->getType() == Src0RM->getType()) { |
+ InstAssign *Assign = InstAssign::create(Func, Dest, Src0RM); |
+ lowerAssign(Assign); |
+ llvm_unreachable("Pointer bitcasts aren't lowered correctly."); |
+ return; |
+ } |
+ switch (Dest->getType()) { |
+ default: |
+ llvm_unreachable("Unexpected Bitcast dest type"); |
+ case IceType_i32: |
+ case IceType_f32: { |
+ Type DestType = Dest->getType(); |
+ Type SrcType = Src0RM->getType(); |
+ assert((DestType == IceType_i32 && SrcType == IceType_f32) || |
+ (DestType == IceType_f32 && SrcType == IceType_i32)); |
+ // a.i32 = bitcast b.f32 ==> |
+ // t.f32 = b.f32 |
+ // s.f32 = spill t.f32 |
+ // a.i32 = s.f32 |
+ Variable *T = NULL; |
+ // TODO: Should be able to force a spill setup by calling legalize() with |
+ // Legal_Mem and not Legal_Reg or Legal_Imm. |
+ Variable *Spill = Func->makeVariable(SrcType, Context.getNode()); |
+ Spill->setWeight(RegWeight::Zero); |
+ Spill->setPreferredRegister(Dest, true); |
+ _mov(T, Src0RM); |
+ _mov(Spill, T); |
+ _mov(Dest, Spill); |
+ } break; |
+ case IceType_i64: { |
+ assert(Src0RM->getType() == IceType_f64); |
+ // a.i64 = bitcast b.f64 ==> |
+ // s.f64 = spill b.f64 |
+ // t_lo.i32 = lo(s.f64) |
+ // a_lo.i32 = t_lo.i32 |
+ // t_hi.i32 = hi(s.f64) |
+ // a_hi.i32 = t_hi.i32 |
+ Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
+ Spill->setWeight(RegWeight::Zero); |
+ Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); |
+ _mov(Spill, Src0RM); |
+ |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Variable *T_Lo = makeReg(IceType_i32); |
+ Variable *T_Hi = makeReg(IceType_i32); |
+ VariableSplit *SpillLo = |
+ VariableSplit::create(Func, Spill, VariableSplit::Low); |
+ VariableSplit *SpillHi = |
+ VariableSplit::create(Func, Spill, VariableSplit::High); |
+ |
+ _mov(T_Lo, SpillLo); |
+ _mov(DestLo, T_Lo); |
+ _mov(T_Hi, SpillHi); |
+ _mov(DestHi, T_Hi); |
+ } break; |
+ case IceType_f64: { |
+ assert(Src0RM->getType() == IceType_i64); |
+ // a.f64 = bitcast b.i64 ==> |
+ // t_lo.i32 = b_lo.i32 |
+ // lo(s.f64) = t_lo.i32 |
+ // FakeUse(s.f64) |
+ // t_hi.i32 = b_hi.i32 |
+ // hi(s.f64) = t_hi.i32 |
+ // a.f64 = s.f64 |
+ Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
+ Spill->setWeight(RegWeight::Zero); |
+ Spill->setPreferredRegister(Dest, true); |
+ |
+ Context.insert(InstFakeDef::create(Func, Spill)); |
+ |
+ Variable *T_Lo = NULL, *T_Hi = NULL; |
+ VariableSplit *SpillLo = |
+ VariableSplit::create(Func, Spill, VariableSplit::Low); |
+ VariableSplit *SpillHi = |
+ VariableSplit::create(Func, Spill, VariableSplit::High); |
+ _mov(T_Lo, loOperand(Src0RM)); |
+ _store(T_Lo, SpillLo); |
+ _mov(T_Hi, hiOperand(Src0RM)); |
+ _store(T_Hi, SpillHi); |
+ _mov(Dest, Spill); |
+ } break; |
+ } |
+ break; |
+ } |
+} |
+ |
+void TargetX8632::lowerFcmp(const InstFcmp *Inst) { |
+ Operand *Src0 = Inst->getSrc(0); |
+ Operand *Src1 = Inst->getSrc(1); |
+ Variable *Dest = Inst->getDest(); |
+ // Lowering a = fcmp cond, b, c |
+ // ucomiss b, c /* only if C1 != Br_None */ |
+ // /* but swap b,c order if SwapOperands==true */ |
+ // mov a, <default> |
+ // j<C1> label /* only if C1 != Br_None */ |
+ // j<C2> label /* only if C2 != Br_None */ |
+ // FakeUse(a) /* only if C1 != Br_None */ |
+ // mov a, !<default> /* only if C1 != Br_None */ |
+ // label: /* only if C1 != Br_None */ |
+ InstFcmp::FCond Condition = Inst->getCondition(); |
+ size_t Index = static_cast<size_t>(Condition); |
+ assert(Index < TableFcmpSize); |
+ // The table is indexed by InstFcmp::Condition. Make sure it didn't fall |
+ // out of order. |
+ if (TableFcmp[Index].SwapOperands) { |
+ Operand *Tmp = Src0; |
+ Src0 = Src1; |
+ Src1 = Tmp; |
+ } |
+ bool HasC1 = (TableFcmp[Index].C1 != InstX8632Br::Br_None); |
+ bool HasC2 = (TableFcmp[Index].C2 != InstX8632Br::Br_None); |
+ if (HasC1) { |
+ Src0 = legalize(Src0); |
+ Operand *Src1RM = legalize(Src1, Legal_Reg | Legal_Mem); |
+ Variable *T = NULL; |
+ _mov(T, Src0); |
+ _ucomiss(T, Src1RM); |
+ } |
+ Constant *Default = |
+ Ctx->getConstantInt(IceType_i32, TableFcmp[Index].Default); |
+ _mov(Dest, Default); |
+ if (HasC1) { |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _br(TableFcmp[Index].C1, Label); |
+ if (HasC2) { |
+ _br(TableFcmp[Index].C2, Label); |
+ } |
+ Context.insert(InstFakeUse::create(Func, Dest)); |
+ Constant *NonDefault = |
+ Ctx->getConstantInt(IceType_i32, !TableFcmp[Index].Default); |
+ _mov(Dest, NonDefault); |
+ Context.insert(Label); |
+ } |
+} |
+ |
+void TargetX8632::lowerIcmp(const InstIcmp *Inst) { |
+ Operand *Src0 = legalize(Inst->getSrc(0)); |
+ Operand *Src1 = legalize(Inst->getSrc(1)); |
+ Variable *Dest = Inst->getDest(); |
+ |
+ // If Src1 is an immediate, or known to be a physical register, we can |
+ // allow Src0 to be a memory operand. Otherwise, Src0 must be copied into |
+ // a physical register. (Actually, either Src0 or Src1 can be chosen for |
+ // the physical register, but unfortunately we have to commit to one or |
+ // the other before register allocation.) |
+ bool IsSrc1ImmOrReg = false; |
+ if (llvm::isa<Constant>(Src1)) |
+ IsSrc1ImmOrReg = true; |
+ else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) { |
+ if (Var->hasReg()) |
+ IsSrc1ImmOrReg = true; |
+ } |
+ |
+ // a=icmp cond, b, c ==> cmp b,c; a=1; br cond,L1; FakeUse(a); a=0; L1: |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ Constant *One = Ctx->getConstantInt(IceType_i32, 1); |
+ if (Src0->getType() == IceType_i64) { |
+ InstIcmp::ICond Condition = Inst->getCondition(); |
+ size_t Index = static_cast<size_t>(Condition); |
+ assert(Index < TableIcmp64Size); |
+ // The table is indexed by InstIcmp::Condition. Make sure it didn't fall |
+ // out of order. |
+ Operand *Src1LoRI = legalize(loOperand(Src1), Legal_Reg | Legal_Imm); |
+ Operand *Src1HiRI = legalize(hiOperand(Src1), Legal_Reg | Legal_Imm); |
+ if (Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) { |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _mov(Dest, (Condition == InstIcmp::Eq ? Zero : One)); |
+ _cmp(loOperand(Src0), Src1LoRI); |
+ _br(InstX8632Br::Br_ne, Label); |
+ _cmp(hiOperand(Src0), Src1HiRI); |
+ _br(InstX8632Br::Br_ne, Label); |
+ Context.insert(InstFakeUse::create(Func, Dest)); |
+ _mov(Dest, (Condition == InstIcmp::Eq ? One : Zero)); |
+ Context.insert(Label); |
+ } else { |
+ InstX8632Label *LabelFalse = InstX8632Label::create(Func, this); |
+ InstX8632Label *LabelTrue = InstX8632Label::create(Func, this); |
+ _mov(Dest, One); |
+ _cmp(hiOperand(Src0), Src1HiRI); |
+ _br(TableIcmp64[Index].C1, LabelTrue); |
+ _br(TableIcmp64[Index].C2, LabelFalse); |
+ _cmp(loOperand(Src0), Src1LoRI); |
+ _br(TableIcmp64[Index].C3, LabelTrue); |
+ Context.insert(LabelFalse); |
+ Context.insert(InstFakeUse::create(Func, Dest)); |
+ _mov(Dest, Zero); |
+ Context.insert(LabelTrue); |
+ } |
+ return; |
+ } |
+ // cmp b, c |
+ Operand *Src0New = |
+ legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true); |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ _cmp(Src0New, Src1); |
+ _mov(Dest, One); |
+ _br(getIcmp32Mapping(Inst->getCondition()), Label); |
+ Context.insert(InstFakeUse::create(Func, Dest)); |
+ _mov(Dest, Zero); |
+ Context.insert(Label); |
+} |
+ |
+void TargetX8632::lowerLoad(const InstLoad *Inst) { |
+ // A Load instruction can be treated the same as an Assign |
+ // instruction, after the source operand is transformed into an |
+ // OperandX8632Mem operand. Note that the address mode |
+ // optimization already creates an OperandX8632Mem operand, so it |
+ // doesn't need another level of transformation. |
+ Type Ty = Inst->getDest()->getType(); |
+ Operand *Src0 = Inst->getSourceAddress(); |
+ // Address mode optimization already creates an OperandX8632Mem |
+ // operand, so it doesn't need another level of transformation. |
+ if (!llvm::isa<OperandX8632Mem>(Src0)) { |
+ Variable *Base = llvm::dyn_cast<Variable>(Src0); |
+ Constant *Offset = llvm::dyn_cast<Constant>(Src0); |
+ assert(Base || Offset); |
+ Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset); |
+ } |
+ |
+ InstAssign *Assign = InstAssign::create(Func, Inst->getDest(), Src0); |
+ lowerAssign(Assign); |
+} |
+ |
+void TargetX8632::lowerPhi(const InstPhi * /*Inst*/) { |
+ Func->setError("Phi lowering not implemented"); |
+} |
+ |
+void TargetX8632::lowerRet(const InstRet *Inst) { |
+ Variable *Reg = NULL; |
+ if (Inst->hasRetValue()) { |
+ Operand *Src0 = legalize(Inst->getRetValue()); |
+ if (Src0->getType() == IceType_i64) { |
+ Variable *eax = legalizeToVar(loOperand(Src0), false, Reg_eax); |
+ Variable *edx = legalizeToVar(hiOperand(Src0), false, Reg_edx); |
+ Reg = eax; |
+ Context.insert(InstFakeUse::create(Func, edx)); |
+ } else if (Src0->getType() == IceType_f32 || |
+ Src0->getType() == IceType_f64) { |
+ _fld(Src0); |
+ } else { |
+ _mov(Reg, Src0, Reg_eax); |
+ } |
+ } |
+ _ret(Reg); |
+ // Add a fake use of esp to make sure esp stays alive for the entire |
+ // function. Otherwise post-call esp adjustments get dead-code |
+ // eliminated. TODO: Are there more places where the fake use |
+ // should be inserted? E.g. "void f(int n){while(1) g(n);}" may not |
+ // have a ret instruction. |
+ Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); |
+ Context.insert(InstFakeUse::create(Func, esp)); |
+} |
+ |
+void TargetX8632::lowerSelect(const InstSelect *Inst) { |
+ // a=d?b:c ==> cmp d,0; a=b; jne L1; FakeUse(a); a=c; L1: |
+ Variable *Dest = Inst->getDest(); |
+ Operand *SrcT = Inst->getTrueOperand(); |
+ Operand *SrcF = Inst->getFalseOperand(); |
+ Operand *Condition = legalize(Inst->getCondition()); |
+ Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
+ InstX8632Label *Label = InstX8632Label::create(Func, this); |
+ |
+ if (Dest->getType() == IceType_i64) { |
+ Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
+ Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
+ Operand *SrcLoRI = legalize(loOperand(SrcT), Legal_Reg | Legal_Imm, true); |
+ Operand *SrcHiRI = legalize(hiOperand(SrcT), Legal_Reg | Legal_Imm, true); |
+ _cmp(Condition, Zero); |
+ _mov(DestLo, SrcLoRI); |
+ _mov(DestHi, SrcHiRI); |
+ _br(InstX8632Br::Br_ne, Label); |
+ Context.insert(InstFakeUse::create(Func, DestLo)); |
+ Context.insert(InstFakeUse::create(Func, DestHi)); |
+ Operand *SrcFLo = loOperand(SrcF); |
+ Operand *SrcFHi = hiOperand(SrcF); |
+ SrcLoRI = legalize(SrcFLo, Legal_Reg | Legal_Imm, true); |
+ SrcHiRI = legalize(SrcFHi, Legal_Reg | Legal_Imm, true); |
+ _mov(DestLo, SrcLoRI); |
+ _mov(DestHi, SrcHiRI); |
+ } else { |
+ _cmp(Condition, Zero); |
+ SrcT = legalize(SrcT, Legal_Reg | Legal_Imm, true); |
+ _mov(Dest, SrcT); |
+ _br(InstX8632Br::Br_ne, Label); |
+ Context.insert(InstFakeUse::create(Func, Dest)); |
+ SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true); |
+ _mov(Dest, SrcF); |
+ } |
+ |
+ Context.insert(Label); |
+} |
+ |
+void TargetX8632::lowerStore(const InstStore *Inst) { |
+ Operand *Value = Inst->getData(); |
+ Operand *Addr = Inst->getAddr(); |
+ OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr); |
+ // Address mode optimization already creates an OperandX8632Mem |
+ // operand, so it doesn't need another level of transformation. |
+ if (!NewAddr) { |
+ // The address will be either a constant (which represents a global |
+ // variable) or a variable, so either the Base or Offset component |
+ // of the OperandX8632Mem will be set. |
+ Variable *Base = llvm::dyn_cast<Variable>(Addr); |
+ Constant *Offset = llvm::dyn_cast<Constant>(Addr); |
+ assert(Base || Offset); |
+ NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset); |
+ } |
+ NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr)); |
+ |
+ if (NewAddr->getType() == IceType_i64) { |
+ Value = legalize(Value); |
+ Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true); |
+ Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true); |
+ _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr))); |
+ _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr))); |
+ } else { |
+ Value = legalize(Value, Legal_Reg | Legal_Imm, true); |
+ _store(Value, NewAddr); |
+ } |
+} |
+ |
+void TargetX8632::lowerSwitch(const InstSwitch *Inst) { |
+ // This implements the most naive possible lowering. |
+ // cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default |
+ Operand *Src0 = Inst->getComparison(); |
+ SizeT NumCases = Inst->getNumCases(); |
+ // OK, we'll be slightly less naive by forcing Src into a physical |
+ // register if there are 2 or more uses. |
+ if (NumCases >= 2) |
+ Src0 = legalizeToVar(Src0, true); |
+ else |
+ Src0 = legalize(Src0, Legal_All, true); |
+ for (SizeT I = 0; I < NumCases; ++I) { |
+ Operand *Value = Ctx->getConstantInt(IceType_i32, Inst->getValue(I)); |
+ _cmp(Src0, Value); |
+ _br(InstX8632Br::Br_e, Inst->getLabel(I)); |
+ } |
+ |
+ _br(Inst->getLabelDefault()); |
+} |
+ |
+void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { |
+ const SizeT MaxSrcs = 0; |
+ Variable *Dest = NULL; |
+ InstCall *Call = makeHelperCall("ice_unreachable", Dest, MaxSrcs); |
+ lowerCall(Call); |
+} |
+ |
+Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
+ bool AllowOverlap, int32_t RegNum) { |
+ assert(Allowed & Legal_Reg); |
+ assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg); |
+ if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(From)) { |
+ Variable *Base = Mem->getBase(); |
+ Variable *Index = Mem->getIndex(); |
+ Variable *RegBase = Base; |
+ Variable *RegIndex = Index; |
+ if (Base) { |
+ RegBase = legalizeToVar(Base, true); |
+ } |
+ if (Index) { |
+ RegIndex = legalizeToVar(Index, true); |
+ } |
+ if (Base != RegBase || Index != RegIndex) { |
+ From = |
+ OperandX8632Mem::create(Func, Mem->getType(), RegBase, |
+ Mem->getOffset(), RegIndex, Mem->getShift()); |
+ } |
+ |
+ if (!(Allowed & Legal_Mem)) { |
+ Variable *Reg = makeReg(From->getType(), RegNum); |
+ _mov(Reg, From, RegNum); |
+ From = Reg; |
+ } |
+ return From; |
+ } |
+ if (llvm::isa<Constant>(From)) { |
+ if (!(Allowed & Legal_Imm)) { |
+ Variable *Reg = makeReg(From->getType(), RegNum); |
+ _mov(Reg, From); |
+ From = Reg; |
+ } |
+ return From; |
+ } |
+ if (Variable *Var = llvm::dyn_cast<Variable>(From)) { |
+ // We need a new physical register for the operand if: |
+ // Mem is not allowed and Var->getRegNum() is unknown, or |
+ // RegNum is required and Var->getRegNum() doesn't match. |
+ if ((!(Allowed & Legal_Mem) && !Var->hasReg()) || |
+ (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) { |
+ Variable *Reg = makeReg(From->getType(), RegNum); |
+ if (RegNum == Variable::NoRegister) { |
+ Reg->setPreferredRegister(Var, AllowOverlap); |
+ } |
+ _mov(Reg, From); |
+ From = Reg; |
+ } |
+ return From; |
+ } |
+ llvm_unreachable("Unhandled operand kind in legalize()"); |
+ return From; |
+} |
+ |
+Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, |
+ int32_t RegNum) { |
+ return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); |
+} |
+ |
+Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { |
+ Variable *Reg = Func->makeVariable(Type, Context.getNode()); |
+ if (RegNum == Variable::NoRegister) |
+ Reg->setWeightInfinite(); |
+ else |
+ Reg->setRegNum(RegNum); |
+ return Reg; |
+} |
+ |
+void TargetX8632::postLower() { |
+ if (Ctx->getOptLevel() != Opt_m1) |
+ return; |
+ // TODO: Avoid recomputing WhiteList every instruction. |
+ llvm::SmallBitVector WhiteList = getRegisterSet(RegSet_All, RegSet_None); |
+ // Make one pass to black-list pre-colored registers. TODO: If |
+ // there was some prior register allocation pass that made register |
+ // assignments, those registers need to be black-listed here as |
+ // well. |
+ for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; |
+ ++I) { |
+ const Inst *Inst = *I; |
+ if (Inst->isDeleted()) |
+ continue; |
+ if (llvm::isa<InstFakeKill>(Inst)) |
+ continue; |
+ SizeT VarIndex = 0; |
+ for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { |
+ Operand *Src = Inst->getSrc(SrcNum); |
+ SizeT NumVars = Src->getNumVars(); |
+ for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) { |
+ const Variable *Var = Src->getVar(J); |
+ if (!Var->hasReg()) |
+ continue; |
+ WhiteList[Var->getRegNum()] = false; |
+ } |
+ } |
+ } |
+ // The second pass colors infinite-weight variables. |
+ llvm::SmallBitVector AvailableRegisters = WhiteList; |
+ for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; |
+ ++I) { |
+ const Inst *Inst = *I; |
+ if (Inst->isDeleted()) |
+ continue; |
+ SizeT VarIndex = 0; |
+ for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { |
+ Operand *Src = Inst->getSrc(SrcNum); |
+ SizeT NumVars = Src->getNumVars(); |
+ for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) { |
+ Variable *Var = Src->getVar(J); |
+ if (Var->hasReg()) |
+ continue; |
+ if (!Var->getWeight().isInf()) |
+ continue; |
+ llvm::SmallBitVector AvailableTypedRegisters = |
+ AvailableRegisters & getRegisterSetForType(Var->getType()); |
+ if (!AvailableTypedRegisters.any()) { |
+ // This is a hack in case we run out of physical registers |
+ // due to an excessive number of "push" instructions from |
+ // lowering a call. |
+ AvailableRegisters = WhiteList; |
+ AvailableTypedRegisters = |
+ AvailableRegisters & getRegisterSetForType(Var->getType()); |
+ } |
+ assert(AvailableTypedRegisters.any()); |
+ int32_t RegNum = AvailableTypedRegisters.find_first(); |
+ Var->setRegNum(RegNum); |
+ AvailableRegisters[RegNum] = false; |
+ } |
+ } |
+ } |
+} |
+ |
+} // end of namespace Ice |