| Index: src/IceTargetLoweringX8632.cpp
|
| diff --git a/src/IceTargetLoweringX8632.cpp b/src/IceTargetLoweringX8632.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..cca4c1fdeb0672d89e1cd7d6160ecf980278c38f
|
| --- /dev/null
|
| +++ b/src/IceTargetLoweringX8632.cpp
|
| @@ -0,0 +1,1869 @@
|
| +//===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
|
| +//
|
| +// The Subzero Code Generator
|
| +//
|
| +// This file is distributed under the University of Illinois Open Source
|
| +// License. See LICENSE.TXT for details.
|
| +//
|
| +//===----------------------------------------------------------------------===//
|
| +//
|
| +// This file implements the TargetLoweringX8632 class, which
|
| +// consists almost entirely of the lowering sequence for each
|
| +// high-level instruction. It also implements
|
| +// TargetX8632Fast::postLower() which does the simplest possible
|
| +// register allocation for the "fast" target.
|
| +//
|
| +//===----------------------------------------------------------------------===//
|
| +
|
| +#include "IceDefs.h"
|
| +#include "IceCfg.h"
|
| +#include "IceCfgNode.h"
|
| +#include "IceInstX8632.h"
|
| +#include "IceOperand.h"
|
| +#include "IceTargetLoweringX8632.def"
|
| +#include "IceTargetLoweringX8632.h"
|
| +
|
| +namespace Ice {
|
| +
|
| +namespace {
|
| +
|
| +// The following table summarizes the logic for lowering the fcmp instruction.
|
| +// There is one table entry for each of the 16 conditions. A comment in
|
| +// lowerFcmp() describes the lowering template. In the most general case, there
|
| +// is a compare followed by two conditional branches, because some fcmp
|
| +// conditions don't map to a single x86 conditional branch. However, in many
|
| +// cases it is possible to swap the operands in the comparison and have a single
|
| +// conditional branch. Since it's quite tedious to validate the table by hand,
|
| +// good execution tests are helpful.
|
| +
|
| +const struct _TableFcmp {
|
| + uint32_t Default;
|
| + bool SwapOperands;
|
| + InstX8632Br::BrCond C1, C2;
|
| +} TableFcmp[] = {
|
| +#define X(val, dflt, swap, C1, C2) \
|
| + { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \
|
| + ,
|
| + FCMPX8632_TABLE
|
| +#undef X
|
| + };
|
| +const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp);
|
| +
|
| +// The following table summarizes the logic for lowering the icmp instruction
|
| +// for i32 and narrower types. Each icmp condition has a clear mapping to an
|
| +// x86 conditional branch instruction.
|
| +
|
| +const struct _TableIcmp32 {
|
| + InstX8632Br::BrCond Mapping;
|
| +} TableIcmp32[] = {
|
| +#define X(val, C_32, C1_64, C2_64, C3_64) \
|
| + { InstX8632Br::C_32 } \
|
| + ,
|
| + ICMPX8632_TABLE
|
| +#undef X
|
| + };
|
| +const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32);
|
| +
|
| +// The following table summarizes the logic for lowering the icmp instruction
|
| +// for the i64 type. For Eq and Ne, two separate 32-bit comparisons and
|
| +// conditional branches are needed. For the other conditions, three separate
|
| +// conditional branches are needed.
|
| +const struct _TableIcmp64 {
|
| + InstX8632Br::BrCond C1, C2, C3;
|
| +} TableIcmp64[] = {
|
| +#define X(val, C_32, C1_64, C2_64, C3_64) \
|
| + { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \
|
| + ,
|
| + ICMPX8632_TABLE
|
| +#undef X
|
| + };
|
| +const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64);
|
| +
|
| +InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) {
|
| + size_t Index = static_cast<size_t>(Cond);
|
| + assert(Index < TableIcmp32Size);
|
| + return TableIcmp32[Index].Mapping;
|
| +}
|
| +
|
| +// In some cases, there are x-macros tables for both high-level and
|
| +// low-level instructions/operands that use the same enum key value.
|
| +// The tables are kept separate to maintain a proper separation
|
| +// between abstraction layers. There is a risk that the tables
|
| +// could get out of sync if enum values are reordered or if entries
|
| +// are added or deleted. This dummy function uses static_assert to
|
| +// ensure everything is kept in sync.
|
| +void xMacroIntegrityCheck() {
|
| + // Validate the enum values in FCMPX8632_TABLE.
|
| + {
|
| + // Define a temporary set of enum values based on low-level
|
| + // table entries.
|
| + enum _tmp_enum {
|
| +#define X(val, dflt, swap, C1, C2) _tmp_##val,
|
| + FCMPX8632_TABLE
|
| +#undef X
|
| + };
|
| +// Define a set of constants based on high-level table entries.
|
| +#define X(tag, str) static const int _table1_##tag = InstFcmp::tag;
|
| + ICEINSTFCMP_TABLE;
|
| +#undef X
|
| +// Define a set of constants based on low-level table entries,
|
| +// and ensure the table entry keys are consistent.
|
| +#define X(val, dflt, swap, C1, C2) \
|
| + static const int _table2_##val = _tmp_##val; \
|
| + STATIC_ASSERT(_table1_##val == _table2_##val);
|
| + FCMPX8632_TABLE;
|
| +#undef X
|
| +// Repeat the static asserts with respect to the high-level
|
| +// table entries in case the high-level table has extra entries.
|
| +#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
|
| + ICEINSTFCMP_TABLE;
|
| +#undef X
|
| + }
|
| +
|
| + // Validate the enum values in ICMPX8632_TABLE.
|
| + {
|
| + // Define a temporary set of enum values based on low-level
|
| + // table entries.
|
| + enum _tmp_enum {
|
| +#define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val,
|
| + ICMPX8632_TABLE
|
| +#undef X
|
| + };
|
| +// Define a set of constants based on high-level table entries.
|
| +#define X(tag, str) static const int _table1_##tag = InstIcmp::tag;
|
| + ICEINSTICMP_TABLE;
|
| +#undef X
|
| +// Define a set of constants based on low-level table entries,
|
| +// and ensure the table entry keys are consistent.
|
| +#define X(val, C_32, C1_64, C2_64, C3_64) \
|
| + static const int _table2_##val = _tmp_##val; \
|
| + STATIC_ASSERT(_table1_##val == _table2_##val);
|
| + ICMPX8632_TABLE;
|
| +#undef X
|
| +// Repeat the static asserts with respect to the high-level
|
| +// table entries in case the high-level table has extra entries.
|
| +#define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
|
| + ICEINSTICMP_TABLE;
|
| +#undef X
|
| + }
|
| +
|
| + // Validate the enum values in ICETYPEX8632_TABLE.
|
| + {
|
| + // Define a temporary set of enum values based on low-level
|
| + // table entries.
|
| + enum _tmp_enum {
|
| +#define X(tag, cvt, sdss, width) _tmp_##tag,
|
| + ICETYPEX8632_TABLE
|
| +#undef X
|
| + };
|
| +// Define a set of constants based on high-level table entries.
|
| +#define X(tag, size, align, str) static const int _table1_##tag = tag;
|
| + ICETYPE_TABLE;
|
| +#undef X
|
| +// Define a set of constants based on low-level table entries,
|
| +// and ensure the table entry keys are consistent.
|
| +#define X(tag, cvt, sdss, width) \
|
| + static const int _table2_##tag = _tmp_##tag; \
|
| + STATIC_ASSERT(_table1_##tag == _table2_##tag);
|
| + ICETYPEX8632_TABLE;
|
| +#undef X
|
| +// Repeat the static asserts with respect to the high-level
|
| +// table entries in case the high-level table has extra entries.
|
| +#define X(tag, size, align, str) STATIC_ASSERT(_table1_##tag == _table2_##tag);
|
| + ICETYPE_TABLE;
|
| +#undef X
|
| + }
|
| +}
|
| +
|
| +} // end of anonymous namespace
|
| +
|
| +TargetX8632::TargetX8632(Cfg *Func)
|
| + : TargetLowering(Func), IsEbpBasedFrame(false), FrameSizeLocals(0),
|
| + LocalsSizeBytes(0), NextLabelNumber(0), ComputedLiveRanges(false),
|
| + PhysicalRegisters(VarList(Reg_NUM)) {
|
| + llvm::SmallBitVector IntegerRegisters(Reg_NUM);
|
| + llvm::SmallBitVector IntegerRegistersI8(Reg_NUM);
|
| + llvm::SmallBitVector FloatRegisters(Reg_NUM);
|
| + llvm::SmallBitVector InvalidRegisters(Reg_NUM);
|
| + ScratchRegs.resize(Reg_NUM);
|
| +#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
|
| + frameptr, isI8, isInt, isFP) \
|
| + IntegerRegisters[val] = isInt; \
|
| + IntegerRegistersI8[val] = isI8; \
|
| + FloatRegisters[val] = isFP; \
|
| + ScratchRegs[val] = scratch;
|
| + REGX8632_TABLE;
|
| +#undef X
|
| + TypeToRegisterSet[IceType_void] = InvalidRegisters;
|
| + TypeToRegisterSet[IceType_i1] = IntegerRegistersI8;
|
| + TypeToRegisterSet[IceType_i8] = IntegerRegistersI8;
|
| + TypeToRegisterSet[IceType_i16] = IntegerRegisters;
|
| + TypeToRegisterSet[IceType_i32] = IntegerRegisters;
|
| + TypeToRegisterSet[IceType_i64] = IntegerRegisters;
|
| + TypeToRegisterSet[IceType_f32] = FloatRegisters;
|
| + TypeToRegisterSet[IceType_f64] = FloatRegisters;
|
| +}
|
| +
|
| +void TargetX8632::translateOm1() {
|
| + GlobalContext *Context = Func->getContext();
|
| + Ostream &Str = Context->getStrDump();
|
| + Timer T_placePhiLoads;
|
| + Func->placePhiLoads();
|
| + if (Func->hasError())
|
| + return;
|
| + T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()");
|
| + Timer T_placePhiStores;
|
| + Func->placePhiStores();
|
| + if (Func->hasError())
|
| + return;
|
| + T_placePhiStores.printElapsedUs(Context, "placePhiStores()");
|
| + Timer T_deletePhis;
|
| + Func->deletePhis();
|
| + if (Func->hasError())
|
| + return;
|
| + T_deletePhis.printElapsedUs(Context, "deletePhis()");
|
| + if (Context->isVerbose())
|
| + Str << "================ After Phi lowering ================\n";
|
| + Func->dump();
|
| +
|
| + Timer T_genCode;
|
| + Func->genCode();
|
| + if (Func->hasError())
|
| + return;
|
| + T_genCode.printElapsedUs(Context, "genCode()");
|
| + if (Context->isVerbose())
|
| + Str << "================ After initial x8632 codegen ================\n";
|
| + Func->dump();
|
| +
|
| + Timer T_genFrame;
|
| + Func->genFrame();
|
| + if (Func->hasError())
|
| + return;
|
| + T_genFrame.printElapsedUs(Context, "genFrame()");
|
| + if (Context->isVerbose())
|
| + Str << "================ After stack frame mapping ================\n";
|
| + Func->dump();
|
| +}
|
| +
|
| +IceString TargetX8632::RegNames[] = {
|
| +#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
|
| + frameptr, isI8, isInt, isFP) \
|
| + name,
|
| + REGX8632_TABLE
|
| +#undef X
|
| +};
|
| +
|
| +Variable *TargetX8632::getPhysicalRegister(SizeT RegNum) {
|
| + assert(RegNum < PhysicalRegisters.size());
|
| + Variable *Reg = PhysicalRegisters[RegNum];
|
| + if (Reg == NULL) {
|
| + CfgNode *Node = NULL; // NULL means multi-block lifetime
|
| + Reg = Func->makeVariable(IceType_i32, Node);
|
| + Reg->setRegNum(RegNum);
|
| + PhysicalRegisters[RegNum] = Reg;
|
| + }
|
| + return Reg;
|
| +}
|
| +
|
| +IceString TargetX8632::getRegName(SizeT RegNum, Type Ty) const {
|
| + assert(RegNum < Reg_NUM);
|
| + static IceString RegNames8[] = {
|
| +#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
|
| + frameptr, isI8, isInt, isFP) \
|
| + "" name8,
|
| + REGX8632_TABLE
|
| +#undef X
|
| + };
|
| + static IceString RegNames16[] = {
|
| +#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
|
| + frameptr, isI8, isInt, isFP) \
|
| + "" name16,
|
| + REGX8632_TABLE
|
| +#undef X
|
| + };
|
| + switch (Ty) {
|
| + case IceType_i1:
|
| + case IceType_i8:
|
| + return RegNames8[RegNum];
|
| + case IceType_i16:
|
| + return RegNames16[RegNum];
|
| + default:
|
| + return RegNames[RegNum];
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::emitVariable(const Variable *Var,
|
| + const Cfg *Func) const {
|
| + Ostream &Str = Ctx->getStrEmit();
|
| + assert(Var->getLocalUseNode() == NULL || Var->getLocalUseNode() == Func->getCurrentNode());
|
| + if (Var->hasReg()) {
|
| + Str << getRegName(Var->getRegNum(), Var->getType());
|
| + return;
|
| + }
|
| + Str << InstX8632::getWidthString(Var->getType());
|
| + Str << " [" << getRegName(
|
| + getFrameOrStackReg(), IceType_i32);
|
| + int32_t Offset = Var->getStackOffset() + getStackAdjustment();
|
| + if (Offset) {
|
| + if (Offset > 0)
|
| + Str << "+";
|
| + Str << Offset;
|
| + }
|
| + Str << "]";
|
| +}
|
| +
|
| +// Helper function for addProlog(). Sets the frame offset for Arg,
|
| +// updates InArgsSizeBytes according to Arg's width, and generates an
|
| +// instruction to copy Arg into its assigned register if applicable.
|
| +// For an I64 arg that has been split into Lo and Hi components, it
|
| +// calls itself recursively on the components, taking care to handle
|
| +// Lo first because of the little-endian architecture.
|
| +void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr,
|
| + int32_t BasicFrameOffset,
|
| + int32_t &InArgsSizeBytes) {
|
| + Variable *Lo = Arg->getLo();
|
| + Variable *Hi = Arg->getHi();
|
| + Type Ty = Arg->getType();
|
| + if (Lo && Hi && Ty == IceType_i64) {
|
| + assert(Lo->getType() != IceType_i64); // don't want infinite recursion
|
| + assert(Hi->getType() != IceType_i64); // don't want infinite recursion
|
| + setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes);
|
| + setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes);
|
| + return;
|
| + }
|
| + Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes);
|
| + if (Arg->hasReg()) {
|
| + assert(Ty != IceType_i64);
|
| + OperandX8632Mem *Mem = OperandX8632Mem::create(
|
| + Func, Ty, FramePtr,
|
| + Ctx->getConstantInt(IceType_i32, Arg->getStackOffset()));
|
| + _mov(Arg, Mem);
|
| + }
|
| + InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
|
| +}
|
| +
|
| +void TargetX8632::addProlog(CfgNode *Node) {
|
| + // If SimpleCoalescing is false, each variable without a register
|
| + // gets its own unique stack slot, which leads to large stack
|
| + // frames. If SimpleCoalescing is true, then each "global" variable
|
| + // without a register gets its own slot, but "local" variable slots
|
| + // are reused across basic blocks. E.g., if A and B are local to
|
| + // block 1 and C is local to block 2, then C may share a slot with A
|
| + // or B.
|
| + const bool SimpleCoalescing = true;
|
| + int32_t InArgsSizeBytes = 0;
|
| + int32_t RetIpSizeBytes = 4;
|
| + int32_t PreservedRegsSizeBytes = 0;
|
| + LocalsSizeBytes = 0;
|
| + Context.init(Node);
|
| + Context.setInsertPoint(Context.getCur());
|
| +
|
| + // Determine stack frame offsets for each Variable without a
|
| + // register assignment. This can be done as one variable per stack
|
| + // slot. Or, do coalescing by running the register allocator again
|
| + // with an infinite set of registers (as a side effect, this gives
|
| + // variables a second chance at physical register assignment).
|
| + //
|
| + // A middle ground approach is to leverage sparsity and allocate one
|
| + // block of space on the frame for globals (variables with
|
| + // multi-block lifetime), and one block to share for locals
|
| + // (single-block lifetime).
|
| +
|
| + llvm::SmallBitVector CalleeSaves =
|
| + getRegisterSet(RegSet_CalleeSave, RegSet_None);
|
| +
|
| + int32_t GlobalsSize = 0;
|
| + std::vector<int> LocalsSize(Func->getNumNodes());
|
| +
|
| + // Prepass. Compute RegsUsed, PreservedRegsSizeBytes, and
|
| + // LocalsSizeBytes.
|
| + RegsUsed = llvm::SmallBitVector(CalleeSaves.size());
|
| + const VarList &Variables = Func->getVariables();
|
| + const VarList &Args = Func->getArgs();
|
| + for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
|
| + I != E; ++I) {
|
| + Variable *Var = *I;
|
| + if (Var->hasReg()) {
|
| + RegsUsed[Var->getRegNum()] = true;
|
| + continue;
|
| + }
|
| + // An argument passed on the stack already has a stack slot.
|
| + if (Var->getIsArg())
|
| + continue;
|
| + // A spill slot linked to a variable with a stack slot should reuse
|
| + // that stack slot.
|
| + if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
|
| + if (Variable *Linked = Var->getPreferredRegister()) {
|
| + if (!Linked->hasReg())
|
| + continue;
|
| + }
|
| + }
|
| + int32_t Increment = typeWidthInBytesOnStack(Var->getType());
|
| + if (SimpleCoalescing) {
|
| + if (Var->isMultiblockLife()) {
|
| + GlobalsSize += Increment;
|
| + } else {
|
| + SizeT NodeIndex = Var->getLocalUseNode()->getIndex();
|
| + LocalsSize[NodeIndex] += Increment;
|
| + if (LocalsSize[NodeIndex] > LocalsSizeBytes)
|
| + LocalsSizeBytes = LocalsSize[NodeIndex];
|
| + }
|
| + } else {
|
| + LocalsSizeBytes += Increment;
|
| + }
|
| + }
|
| + LocalsSizeBytes += GlobalsSize;
|
| +
|
| + // Add push instructions for preserved registers.
|
| + for (SizeT i = 0; i < CalleeSaves.size(); ++i) {
|
| + if (CalleeSaves[i] && RegsUsed[i]) {
|
| + PreservedRegsSizeBytes += 4;
|
| + const bool SuppressStackAdjustment = true;
|
| + _push(getPhysicalRegister(i), SuppressStackAdjustment);
|
| + }
|
| + }
|
| +
|
| + // Generate "push ebp; mov ebp, esp"
|
| + if (IsEbpBasedFrame) {
|
| + assert((RegsUsed & getRegisterSet(RegSet_FramePointer, RegSet_None))
|
| + .count() == 0);
|
| + PreservedRegsSizeBytes += 4;
|
| + Variable *ebp = getPhysicalRegister(Reg_ebp);
|
| + Variable *esp = getPhysicalRegister(Reg_esp);
|
| + const bool SuppressStackAdjustment = true;
|
| + _push(ebp, SuppressStackAdjustment);
|
| + _mov(ebp, esp);
|
| + }
|
| +
|
| + // Generate "sub esp, LocalsSizeBytes"
|
| + if (LocalsSizeBytes)
|
| + _sub(getPhysicalRegister(Reg_esp),
|
| + Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
|
| +
|
| + resetStackAdjustment();
|
| +
|
| + // Fill in stack offsets for args, and copy args into registers for
|
| + // those that were register-allocated. Args are pushed right to
|
| + // left, so Arg[0] is closest to the stack/frame pointer.
|
| + //
|
| + // TODO: Make this right for different width args, calling
|
| + // conventions, etc. For one thing, args passed in registers will
|
| + // need to be copied/shuffled to their home registers (the
|
| + // RegManager code may have some permutation logic to leverage),
|
| + // and if they have no home register, home space will need to be
|
| + // allocated on the stack to copy into.
|
| + Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
|
| + int32_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes;
|
| + if (!IsEbpBasedFrame)
|
| + BasicFrameOffset += LocalsSizeBytes;
|
| + for (SizeT i = 0; i < Args.size(); ++i) {
|
| + Variable *Arg = Args[i];
|
| + setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes);
|
| + }
|
| +
|
| + // Fill in stack offsets for locals.
|
| + int32_t TotalGlobalsSize = GlobalsSize;
|
| + GlobalsSize = 0;
|
| + LocalsSize.assign(LocalsSize.size(), 0);
|
| + int32_t NextStackOffset = 0;
|
| + for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
|
| + I != E; ++I) {
|
| + Variable *Var = *I;
|
| + if (Var->hasReg()) {
|
| + RegsUsed[Var->getRegNum()] = true;
|
| + continue;
|
| + }
|
| + if (Var->getIsArg())
|
| + continue;
|
| + if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
|
| + if (Variable *Linked = Var->getPreferredRegister()) {
|
| + if (!Linked->hasReg()) {
|
| + // TODO: Make sure Linked has already been assigned a stack
|
| + // slot.
|
| + Var->setStackOffset(Linked->getStackOffset());
|
| + continue;
|
| + }
|
| + }
|
| + }
|
| + int32_t Increment = typeWidthInBytesOnStack(Var->getType());
|
| + if (SimpleCoalescing) {
|
| + if (Var->isMultiblockLife()) {
|
| + GlobalsSize += Increment;
|
| + NextStackOffset = GlobalsSize;
|
| + } else {
|
| + SizeT NodeIndex = Var->getLocalUseNode()->getIndex();
|
| + LocalsSize[NodeIndex] += Increment;
|
| + NextStackOffset = TotalGlobalsSize + LocalsSize[NodeIndex];
|
| + }
|
| + } else {
|
| + NextStackOffset += Increment;
|
| + }
|
| + if (IsEbpBasedFrame)
|
| + Var->setStackOffset(-NextStackOffset);
|
| + else
|
| + Var->setStackOffset(LocalsSizeBytes - NextStackOffset);
|
| + }
|
| + this->FrameSizeLocals = NextStackOffset;
|
| + this->HasComputedFrame = true;
|
| +
|
| + if (Func->getContext()->isVerbose(IceV_Frame)) {
|
| + Func->getContext()->getStrDump() << "LocalsSizeBytes=" << LocalsSizeBytes
|
| + << "\n"
|
| + << "InArgsSizeBytes=" << InArgsSizeBytes
|
| + << "\n"
|
| + << "PreservedRegsSizeBytes="
|
| + << PreservedRegsSizeBytes << "\n";
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::addEpilog(CfgNode *Node) {
|
| + InstList &Insts = Node->getInsts();
|
| + InstList::reverse_iterator RI, E;
|
| + for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) {
|
| + if (llvm::isa<InstX8632Ret>(*RI))
|
| + break;
|
| + }
|
| + if (RI == E)
|
| + return;
|
| +
|
| + // Convert the reverse_iterator position into its corresponding
|
| + // (forward) iterator position.
|
| + InstList::iterator InsertPoint = RI.base();
|
| + --InsertPoint;
|
| + Context.init(Node);
|
| + Context.setInsertPoint(InsertPoint);
|
| +
|
| + Variable *esp = getPhysicalRegister(Reg_esp);
|
| + if (IsEbpBasedFrame) {
|
| + Variable *ebp = getPhysicalRegister(Reg_ebp);
|
| + _mov(esp, ebp);
|
| + _pop(ebp);
|
| + } else {
|
| + // add esp, LocalsSizeBytes
|
| + if (LocalsSizeBytes)
|
| + _add(esp, Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
|
| + }
|
| +
|
| + // Add pop instructions for preserved registers.
|
| + llvm::SmallBitVector CalleeSaves =
|
| + getRegisterSet(RegSet_CalleeSave, RegSet_None);
|
| + for (SizeT i = 0; i < CalleeSaves.size(); ++i) {
|
| + SizeT j = CalleeSaves.size() - i - 1;
|
| + if (j == Reg_ebp && IsEbpBasedFrame)
|
| + continue;
|
| + if (CalleeSaves[j] && RegsUsed[j]) {
|
| + _pop(getPhysicalRegister(j));
|
| + }
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::split64(Variable *Var) {
|
| + switch (Var->getType()) {
|
| + default:
|
| + return;
|
| + case IceType_i64:
|
| + // TODO: Only consider F64 if we need to push each half when
|
| + // passing as an argument to a function call. Note that each half
|
| + // is still typed as I32.
|
| + case IceType_f64:
|
| + break;
|
| + }
|
| + Variable *Lo = Var->getLo();
|
| + Variable *Hi = Var->getHi();
|
| + if (Lo) {
|
| + assert(Hi);
|
| + return;
|
| + }
|
| + assert(Hi == NULL);
|
| + Lo = Func->makeVariable(IceType_i32, Context.getNode(),
|
| + Var->getName() + "__lo");
|
| + Hi = Func->makeVariable(IceType_i32, Context.getNode(),
|
| + Var->getName() + "__hi");
|
| + Var->setLoHi(Lo, Hi);
|
| + if (Var->getIsArg()) {
|
| + Lo->setIsArg(Func);
|
| + Hi->setIsArg(Func);
|
| + }
|
| +}
|
| +
|
| +Operand *TargetX8632::loOperand(Operand *Operand) {
|
| + assert(Operand->getType() == IceType_i64);
|
| + if (Operand->getType() != IceType_i64)
|
| + return Operand;
|
| + if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
|
| + split64(Var);
|
| + return Var->getLo();
|
| + }
|
| + if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) {
|
| + uint64_t Mask = (1ull << 32) - 1;
|
| + return Ctx->getConstantInt(IceType_i32, Const->getValue() & Mask);
|
| + }
|
| + if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) {
|
| + return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(),
|
| + Mem->getOffset(), Mem->getIndex(),
|
| + Mem->getShift());
|
| + }
|
| + llvm_unreachable("Unsupported operand type");
|
| + return NULL;
|
| +}
|
| +
|
| +Operand *TargetX8632::hiOperand(Operand *Operand) {
|
| + assert(Operand->getType() == IceType_i64);
|
| + if (Operand->getType() != IceType_i64)
|
| + return Operand;
|
| + if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) {
|
| + split64(Var);
|
| + return Var->getHi();
|
| + }
|
| + if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) {
|
| + return Ctx->getConstantInt(IceType_i32, Const->getValue() >> 32);
|
| + }
|
| + if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) {
|
| + Constant *Offset = Mem->getOffset();
|
| + if (Offset == NULL)
|
| + Offset = Ctx->getConstantInt(IceType_i32, 4);
|
| + else if (ConstantInteger *IntOffset =
|
| + llvm::dyn_cast<ConstantInteger>(Offset)) {
|
| + Offset = Ctx->getConstantInt(IceType_i32, 4 + IntOffset->getValue());
|
| + } else if (ConstantRelocatable *SymOffset =
|
| + llvm::dyn_cast<ConstantRelocatable>(Offset)) {
|
| + Offset = Ctx->getConstantSym(IceType_i32, 4 + SymOffset->getOffset(),
|
| + SymOffset->getName());
|
| + }
|
| + return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset,
|
| + Mem->getIndex(), Mem->getShift());
|
| + }
|
| + llvm_unreachable("Unsupported operand type");
|
| + return NULL;
|
| +}
|
| +
|
| +llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include,
|
| + RegSetMask Exclude) const {
|
| + llvm::SmallBitVector Registers(Reg_NUM);
|
| +
|
| +#define X(val, init, name, name16, name8, scratch, preserved, stackptr, \
|
| + frameptr, isI8, isInt, isFP) \
|
| + if (scratch && (Include & RegSet_CallerSave)) \
|
| + Registers[val] = true; \
|
| + if (preserved && (Include & RegSet_CalleeSave)) \
|
| + Registers[val] = true; \
|
| + if (stackptr && (Include & RegSet_StackPointer)) \
|
| + Registers[val] = true; \
|
| + if (frameptr && (Include & RegSet_FramePointer)) \
|
| + Registers[val] = true; \
|
| + if (scratch && (Exclude & RegSet_CallerSave)) \
|
| + Registers[val] = false; \
|
| + if (preserved && (Exclude & RegSet_CalleeSave)) \
|
| + Registers[val] = false; \
|
| + if (stackptr && (Exclude & RegSet_StackPointer)) \
|
| + Registers[val] = false; \
|
| + if (frameptr && (Exclude & RegSet_FramePointer)) \
|
| + Registers[val] = false;
|
| +
|
| + REGX8632_TABLE
|
| +
|
| +#undef X
|
| +
|
| + return Registers;
|
| +}
|
| +
|
| +void TargetX8632::lowerAlloca(const InstAlloca *Inst) {
|
| + IsEbpBasedFrame = true;
|
| + // TODO(sehr,stichnot): align allocated memory, keep stack aligned, minimize
|
| + // the number of adjustments of esp, etc.
|
| + Variable *esp = getPhysicalRegister(Reg_esp);
|
| + Operand *TotalSize = legalize(Inst->getSizeInBytes());
|
| + Variable *Dest = Inst->getDest();
|
| + _sub(esp, TotalSize);
|
| + _mov(Dest, esp);
|
| +}
|
| +
|
| +void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) {
|
| + Variable *Dest = Inst->getDest();
|
| + Operand *Src0 = legalize(Inst->getSrc(0));
|
| + Operand *Src1 = legalize(Inst->getSrc(1));
|
| + if (Dest->getType() == IceType_i64) {
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Operand *Src0Lo = loOperand(Src0);
|
| + Operand *Src0Hi = hiOperand(Src0);
|
| + Operand *Src1Lo = loOperand(Src1);
|
| + Operand *Src1Hi = hiOperand(Src1);
|
| + Variable *T_Lo = NULL, *T_Hi = NULL;
|
| + switch (Inst->getOp()) {
|
| + case InstArithmetic::Add:
|
| + _mov(T_Lo, Src0Lo);
|
| + _add(T_Lo, Src1Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _adc(T_Hi, Src1Hi);
|
| + _mov(DestHi, T_Hi);
|
| + break;
|
| + case InstArithmetic::And:
|
| + _mov(T_Lo, Src0Lo);
|
| + _and(T_Lo, Src1Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _and(T_Hi, Src1Hi);
|
| + _mov(DestHi, T_Hi);
|
| + break;
|
| + case InstArithmetic::Or:
|
| + _mov(T_Lo, Src0Lo);
|
| + _or(T_Lo, Src1Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _or(T_Hi, Src1Hi);
|
| + _mov(DestHi, T_Hi);
|
| + break;
|
| + case InstArithmetic::Xor:
|
| + _mov(T_Lo, Src0Lo);
|
| + _xor(T_Lo, Src1Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _xor(T_Hi, Src1Hi);
|
| + _mov(DestHi, T_Hi);
|
| + break;
|
| + case InstArithmetic::Sub:
|
| + _mov(T_Lo, Src0Lo);
|
| + _sub(T_Lo, Src1Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _sbb(T_Hi, Src1Hi);
|
| + _mov(DestHi, T_Hi);
|
| + break;
|
| + case InstArithmetic::Mul: {
|
| + Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
|
| + Variable *T_4Lo = makeReg(IceType_i32, Reg_eax);
|
| + Variable *T_4Hi = makeReg(IceType_i32, Reg_edx);
|
| + // gcc does the following:
|
| + // a=b*c ==>
|
| + // t1 = b.hi; t1 *=(imul) c.lo
|
| + // t2 = c.hi; t2 *=(imul) b.lo
|
| + // t3:eax = b.lo
|
| + // t4.hi:edx,t4.lo:eax = t3:eax *(mul) c.lo
|
| + // a.lo = t4.lo
|
| + // t4.hi += t1
|
| + // t4.hi += t2
|
| + // a.hi = t4.hi
|
| + _mov(T_1, Src0Hi);
|
| + _imul(T_1, Src1Lo);
|
| + _mov(T_2, Src1Hi);
|
| + _imul(T_2, Src0Lo);
|
| + _mov(T_3, Src0Lo, Reg_eax);
|
| + _mul(T_4Lo, T_3, Src1Lo);
|
| + // The mul instruction produces two dest variables, edx:eax. We
|
| + // create a fake definition of edx to account for this.
|
| + Context.insert(InstFakeDef::create(Func, T_4Hi, T_4Lo));
|
| + _mov(DestLo, T_4Lo);
|
| + _add(T_4Hi, T_1);
|
| + _add(T_4Hi, T_2);
|
| + _mov(DestHi, T_4Hi);
|
| + } break;
|
| + case InstArithmetic::Shl: {
|
| + // TODO: Refactor the similarities between Shl, Lshr, and Ashr.
|
| + // gcc does the following:
|
| + // a=b<<c ==>
|
| + // t1:ecx = c.lo & 0xff
|
| + // t2 = b.lo
|
| + // t3 = b.hi
|
| + // t3 = shld t3, t2, t1
|
| + // t2 = shl t2, t1
|
| + // test t1, 0x20
|
| + // je L1
|
| + // use(t3)
|
| + // t3 = t2
|
| + // t2 = 0
|
| + // L1:
|
| + // a.lo = t2
|
| + // a.hi = t3
|
| + Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
|
| + Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _mov(T_1, Src1Lo, Reg_ecx);
|
| + _mov(T_2, Src0Lo);
|
| + _mov(T_3, Src0Hi);
|
| + _shld(T_3, T_2, T_1);
|
| + _shl(T_2, T_1);
|
| + _test(T_1, BitTest);
|
| + _br(InstX8632Br::Br_e, Label);
|
| + // Because of the intra-block control flow, we need to fake a use
|
| + // of T_3 to prevent its earlier definition from being dead-code
|
| + // eliminated in the presence of its later definition.
|
| + Context.insert(InstFakeUse::create(Func, T_3));
|
| + _mov(T_3, T_2);
|
| + _mov(T_2, Zero);
|
| + Context.insert(Label);
|
| + _mov(DestLo, T_2);
|
| + _mov(DestHi, T_3);
|
| + } break;
|
| + case InstArithmetic::Lshr: {
|
| + // a=b>>c (unsigned) ==>
|
| + // t1:ecx = c.lo & 0xff
|
| + // t2 = b.lo
|
| + // t3 = b.hi
|
| + // t2 = shrd t2, t3, t1
|
| + // t3 = shr t3, t1
|
| + // test t1, 0x20
|
| + // je L1
|
| + // use(t2)
|
| + // t2 = t3
|
| + // t3 = 0
|
| + // L1:
|
| + // a.lo = t2
|
| + // a.hi = t3
|
| + Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
|
| + Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _mov(T_1, Src1Lo, Reg_ecx);
|
| + _mov(T_2, Src0Lo);
|
| + _mov(T_3, Src0Hi);
|
| + _shrd(T_2, T_3, T_1);
|
| + _shr(T_3, T_1);
|
| + _test(T_1, BitTest);
|
| + _br(InstX8632Br::Br_e, Label);
|
| + // Because of the intra-block control flow, we need to fake a use
|
| + // of T_3 to prevent its earlier definition from being dead-code
|
| + // eliminated in the presence of its later definition.
|
| + Context.insert(InstFakeUse::create(Func, T_2));
|
| + _mov(T_2, T_3);
|
| + _mov(T_3, Zero);
|
| + Context.insert(Label);
|
| + _mov(DestLo, T_2);
|
| + _mov(DestHi, T_3);
|
| + } break;
|
| + case InstArithmetic::Ashr: {
|
| + // a=b>>c (signed) ==>
|
| + // t1:ecx = c.lo & 0xff
|
| + // t2 = b.lo
|
| + // t3 = b.hi
|
| + // t2 = shrd t2, t3, t1
|
| + // t3 = sar t3, t1
|
| + // test t1, 0x20
|
| + // je L1
|
| + // use(t2)
|
| + // t2 = t3
|
| + // t3 = sar t3, 0x1f
|
| + // L1:
|
| + // a.lo = t2
|
| + // a.hi = t3
|
| + Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL;
|
| + Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20);
|
| + Constant *SignExtend = Ctx->getConstantInt(IceType_i32, 0x1f);
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _mov(T_1, Src1Lo, Reg_ecx);
|
| + _mov(T_2, Src0Lo);
|
| + _mov(T_3, Src0Hi);
|
| + _shrd(T_2, T_3, T_1);
|
| + _sar(T_3, T_1);
|
| + _test(T_1, BitTest);
|
| + _br(InstX8632Br::Br_e, Label);
|
| + // Because of the intra-block control flow, we need to fake a use
|
| + // of T_3 to prevent its earlier definition from being dead-code
|
| + // eliminated in the presence of its later definition.
|
| + Context.insert(InstFakeUse::create(Func, T_2));
|
| + _mov(T_2, T_3);
|
| + _sar(T_3, SignExtend);
|
| + Context.insert(Label);
|
| + _mov(DestLo, T_2);
|
| + _mov(DestHi, T_3);
|
| + } break;
|
| + case InstArithmetic::Udiv: {
|
| + const SizeT MaxSrcs = 2;
|
| + InstCall *Call = makeHelperCall("__udivdi3", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + Call->addArg(Inst->getSrc(1));
|
| + lowerCall(Call);
|
| + } break;
|
| + case InstArithmetic::Sdiv: {
|
| + const SizeT MaxSrcs = 2;
|
| + InstCall *Call = makeHelperCall("__divdi3", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + Call->addArg(Inst->getSrc(1));
|
| + lowerCall(Call);
|
| + } break;
|
| + case InstArithmetic::Urem: {
|
| + const SizeT MaxSrcs = 2;
|
| + InstCall *Call = makeHelperCall("__umoddi3", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + Call->addArg(Inst->getSrc(1));
|
| + lowerCall(Call);
|
| + } break;
|
| + case InstArithmetic::Srem: {
|
| + const SizeT MaxSrcs = 2;
|
| + InstCall *Call = makeHelperCall("__moddi3", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + Call->addArg(Inst->getSrc(1));
|
| + lowerCall(Call);
|
| + } break;
|
| + case InstArithmetic::Fadd:
|
| + case InstArithmetic::Fsub:
|
| + case InstArithmetic::Fmul:
|
| + case InstArithmetic::Fdiv:
|
| + case InstArithmetic::Frem:
|
| + llvm_unreachable("FP instruction with i64 type");
|
| + break;
|
| + }
|
| + } else { // Dest->getType() != IceType_i64
|
| + Variable *T_edx = NULL;
|
| + Variable *T = NULL;
|
| + switch (Inst->getOp()) {
|
| + case InstArithmetic::Add:
|
| + _mov(T, Src0);
|
| + _add(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::And:
|
| + _mov(T, Src0);
|
| + _and(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Or:
|
| + _mov(T, Src0);
|
| + _or(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Xor:
|
| + _mov(T, Src0);
|
| + _xor(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Sub:
|
| + _mov(T, Src0);
|
| + _sub(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Mul:
|
| + // TODO: Optimize for llvm::isa<Constant>(Src1)
|
| + // TODO: Strength-reduce multiplications by a constant,
|
| + // particularly -1 and powers of 2. Advanced: use lea to
|
| + // multiply by 3, 5, 9.
|
| + //
|
| + // The 8-bit version of imul only allows the form "imul r/m8"
|
| + // where T must be in eax.
|
| + if (Dest->getType() == IceType_i8)
|
| + _mov(T, Src0, Reg_eax);
|
| + else
|
| + _mov(T, Src0);
|
| + _imul(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Shl:
|
| + _mov(T, Src0);
|
| + if (!llvm::isa<Constant>(Src1))
|
| + Src1 = legalizeToVar(Src1, false, Reg_ecx);
|
| + _shl(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Lshr:
|
| + _mov(T, Src0);
|
| + if (!llvm::isa<Constant>(Src1))
|
| + Src1 = legalizeToVar(Src1, false, Reg_ecx);
|
| + _shr(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Ashr:
|
| + _mov(T, Src0);
|
| + if (!llvm::isa<Constant>(Src1))
|
| + Src1 = legalizeToVar(Src1, false, Reg_ecx);
|
| + _sar(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Udiv:
|
| + if (Dest->getType() == IceType_i8) {
|
| + Variable *T_ah = NULL;
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i8, 0);
|
| + _mov(T, Src0, Reg_eax);
|
| + _mov(T_ah, Zero, Reg_ah);
|
| + _div(T_ah, Src1, T);
|
| + Context.insert(InstFakeUse::create(Func, T_ah));
|
| + _mov(Dest, T);
|
| + } else {
|
| + // TODO: fix for 8-bit, see Urem
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + _mov(T, Src0, Reg_eax);
|
| + _mov(T_edx, Zero, Reg_edx);
|
| + _div(T, Src1, T_edx);
|
| + _mov(Dest, T);
|
| + }
|
| + break;
|
| + case InstArithmetic::Sdiv:
|
| + T_edx = makeReg(IceType_i32, Reg_edx);
|
| + _mov(T, Src0, Reg_eax);
|
| + _cdq(T_edx, T);
|
| + _idiv(T, Src1, T_edx);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Urem:
|
| + if (Dest->getType() == IceType_i8) {
|
| + Variable *T_ah = NULL;
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i8, 0);
|
| + _mov(T, Src0, Reg_eax);
|
| + _mov(T_ah, Zero, Reg_ah);
|
| + _div(T_ah, Src1, T);
|
| + _mov(Dest, T_ah);
|
| + } else {
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + _mov(T_edx, Zero, Reg_edx);
|
| + _mov(T, Src0, Reg_eax);
|
| + _div(T_edx, Src1, T);
|
| + _mov(Dest, T_edx);
|
| + }
|
| + break;
|
| + case InstArithmetic::Srem:
|
| + T_edx = makeReg(IceType_i32, Reg_edx);
|
| + _mov(T, Src0, Reg_eax);
|
| + _cdq(T_edx, T);
|
| + _idiv(T_edx, Src1, T);
|
| + _mov(Dest, T_edx);
|
| + break;
|
| + case InstArithmetic::Fadd:
|
| + _mov(T, Src0);
|
| + _addss(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Fsub:
|
| + _mov(T, Src0);
|
| + _subss(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Fmul:
|
| + _mov(T, Src0);
|
| + _mulss(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Fdiv:
|
| + _mov(T, Src0);
|
| + _divss(T, Src1);
|
| + _mov(Dest, T);
|
| + break;
|
| + case InstArithmetic::Frem: {
|
| + const SizeT MaxSrcs = 2;
|
| + Type Ty = Dest->getType();
|
| + InstCall *Call =
|
| + makeHelperCall(Ty == IceType_f32 ? "fmodf" : "fmod", Dest, MaxSrcs);
|
| + Call->addArg(Src0);
|
| + Call->addArg(Src1);
|
| + return lowerCall(Call);
|
| + } break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerAssign(const InstAssign *Inst) {
|
| + Variable *Dest = Inst->getDest();
|
| + Operand *Src0 = legalize(Inst->getSrc(0));
|
| + assert(Dest->getType() == Src0->getType());
|
| + if (Dest->getType() == IceType_i64) {
|
| + Operand *Src0Lo = loOperand(Src0);
|
| + Operand *Src0Hi = hiOperand(Src0);
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Variable *T_Lo = NULL, *T_Hi = NULL;
|
| + _mov(T_Lo, Src0Lo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, Src0Hi);
|
| + _mov(DestHi, T_Hi);
|
| + } else {
|
| + const bool AllowOverlap = true;
|
| + // RI is either a physical register or an immediate.
|
| + Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap);
|
| + _mov(Dest, RI);
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerBr(const InstBr *Inst) {
|
| + if (Inst->isUnconditional()) {
|
| + _br(Inst->getTargetUnconditional());
|
| + } else {
|
| + Operand *Src0 = legalize(Inst->getCondition());
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + _cmp(Src0, Zero);
|
| + _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse());
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerCall(const InstCall *Instr) {
|
| + // Generate a sequence of push instructions, pushing right to left,
|
| + // keeping track of stack offsets in case a push involves a stack
|
| + // operand and we are using an esp-based frame.
|
| + uint32_t StackOffset = 0;
|
| + // TODO: If for some reason the call instruction gets dead-code
|
| + // eliminated after lowering, we would need to ensure that the
|
| + // pre-call push instructions and the post-call esp adjustment get
|
| + // eliminated as well.
|
| + for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) {
|
| + Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1));
|
| + if (Arg->getType() == IceType_i64) {
|
| + _push(hiOperand(Arg));
|
| + _push(loOperand(Arg));
|
| + } else if (Arg->getType() == IceType_f64) {
|
| + // If the Arg turns out to be a memory operand, we need to push
|
| + // 8 bytes, which requires two push instructions. This ends up
|
| + // being somewhat clumsy in the current IR, so we use a
|
| + // workaround. Force the operand into a (xmm) register, and
|
| + // then push the register. An xmm register push is actually not
|
| + // possible in x86, but the Push instruction emitter handles
|
| + // this by decrementing the stack pointer and directly writing
|
| + // the xmm register value.
|
| + Variable *T = NULL;
|
| + _mov(T, Arg);
|
| + _push(T);
|
| + } else {
|
| + _push(Arg);
|
| + }
|
| + StackOffset += typeWidthInBytesOnStack(Arg->getType());
|
| + }
|
| + // Generate the call instruction. Assign its result to a temporary
|
| + // with high register allocation weight.
|
| + Variable *Dest = Instr->getDest();
|
| + Variable *eax = NULL; // doubles as RegLo as necessary
|
| + Variable *edx = NULL;
|
| + if (Dest) {
|
| + switch (Dest->getType()) {
|
| + case IceType_NUM:
|
| + llvm_unreachable("Invalid Call dest type");
|
| + break;
|
| + case IceType_void:
|
| + break;
|
| + case IceType_i1:
|
| + case IceType_i8:
|
| + case IceType_i16:
|
| + case IceType_i32:
|
| + eax = makeReg(Dest->getType(), Reg_eax);
|
| + break;
|
| + case IceType_i64:
|
| + eax = makeReg(IceType_i32, Reg_eax);
|
| + edx = makeReg(IceType_i32, Reg_edx);
|
| + break;
|
| + case IceType_f32:
|
| + case IceType_f64:
|
| + // Leave eax==edx==NULL, and capture the result with the fstp
|
| + // instruction.
|
| + break;
|
| + }
|
| + }
|
| + Operand *CallTarget = legalize(Instr->getCallTarget());
|
| + Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget);
|
| + Context.insert(NewCall);
|
| + if (edx)
|
| + Context.insert(InstFakeDef::create(Func, edx));
|
| +
|
| + // Add the appropriate offset to esp.
|
| + if (StackOffset) {
|
| + Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
|
| + _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset));
|
| + }
|
| +
|
| + // Insert a register-kill pseudo instruction.
|
| + VarList KilledRegs;
|
| + for (SizeT i = 0; i < ScratchRegs.size(); ++i) {
|
| + if (ScratchRegs[i])
|
| + KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i));
|
| + }
|
| + if (!KilledRegs.empty()) {
|
| + Inst *Kill = InstFakeKill::create(Func, KilledRegs, NewCall);
|
| + Context.insert(Kill);
|
| + }
|
| +
|
| + // Generate a FakeUse to keep the call live if necessary.
|
| + if (Instr->hasSideEffects() && eax) {
|
| + Inst *FakeUse = InstFakeUse::create(Func, eax);
|
| + Context.insert(FakeUse);
|
| + }
|
| +
|
| + // Generate Dest=eax assignment.
|
| + if (Dest && eax) {
|
| + if (edx) {
|
| + split64(Dest);
|
| + Variable *DestLo = Dest->getLo();
|
| + Variable *DestHi = Dest->getHi();
|
| + DestLo->setPreferredRegister(eax, false);
|
| + DestHi->setPreferredRegister(edx, false);
|
| + _mov(DestLo, eax);
|
| + _mov(DestHi, edx);
|
| + } else {
|
| + Dest->setPreferredRegister(eax, false);
|
| + _mov(Dest, eax);
|
| + }
|
| + }
|
| +
|
| + // Special treatment for an FP function which returns its result in
|
| + // st(0).
|
| + if (Dest &&
|
| + (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) {
|
| + _fstp(Dest);
|
| + // If Dest ends up being a physical xmm register, the fstp emit
|
| + // code will route st(0) through a temporary stack slot.
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerCast(const InstCast *Inst) {
|
| + // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap)
|
| + InstCast::OpKind CastKind = Inst->getCastKind();
|
| + Variable *Dest = Inst->getDest();
|
| + // Src0RM is the source operand legalized to physical register or memory, but
|
| + // not immediate, since the relevant x86 native instructions don't allow an
|
| + // immediate operand. If the operand is an immediate, we could consider
|
| + // computing the strength-reduced result at translation time, but we're
|
| + // unlikely to see something like that in the bitcode that the optimizer
|
| + // wouldn't have already taken care of.
|
| + Operand *Src0RM = legalize(Inst->getSrc(0), Legal_Reg | Legal_Mem, true);
|
| + switch (CastKind) {
|
| + default:
|
| + Func->setError("Cast type not supported");
|
| + return;
|
| + case InstCast::Sext:
|
| + if (Dest->getType() == IceType_i64) {
|
| + // t1=movsx src; t2=t1; t2=sar t2, 31; dst.lo=t1; dst.hi=t2
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Variable *T_Lo = makeReg(DestLo->getType());
|
| + if (Src0RM->getType() == IceType_i32)
|
| + _mov(T_Lo, Src0RM);
|
| + else
|
| + _movsx(T_Lo, Src0RM);
|
| + _mov(DestLo, T_Lo);
|
| + Variable *T_Hi = NULL;
|
| + Constant *Shift = Ctx->getConstantInt(IceType_i32, 31);
|
| + _mov(T_Hi, T_Lo);
|
| + _sar(T_Hi, Shift);
|
| + _mov(DestHi, T_Hi);
|
| + } else {
|
| + // TODO: Sign-extend an i1 via "shl reg, 31; sar reg, 31", and
|
| + // also copy to the high operand of a 64-bit variable.
|
| + // t1 = movsx src; dst = t1
|
| + Variable *T = makeReg(Dest->getType());
|
| + _movsx(T, Src0RM);
|
| + _mov(Dest, T);
|
| + }
|
| + break;
|
| + case InstCast::Zext:
|
| + if (Dest->getType() == IceType_i64) {
|
| + // t1=movzx src; dst.lo=t1; dst.hi=0
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Variable *Tmp = makeReg(DestLo->getType());
|
| + if (Src0RM->getType() == IceType_i32)
|
| + _mov(Tmp, Src0RM);
|
| + else
|
| + _movzx(Tmp, Src0RM);
|
| + _mov(DestLo, Tmp);
|
| + _mov(DestHi, Zero);
|
| + } else if (Src0RM->getType() == IceType_i1) {
|
| + // t = Src0RM; t &= 1; Dest = t
|
| + Operand *One = Ctx->getConstantInt(IceType_i32, 1);
|
| + Variable *T = makeReg(IceType_i32);
|
| + _movzx(T, Src0RM);
|
| + _and(T, One);
|
| + _mov(Dest, T);
|
| + } else {
|
| + // t1 = movzx src; dst = t1
|
| + Variable *T = makeReg(Dest->getType());
|
| + _movzx(T, Src0RM);
|
| + _mov(Dest, T);
|
| + }
|
| + break;
|
| + case InstCast::Trunc: {
|
| + if (Src0RM->getType() == IceType_i64)
|
| + Src0RM = loOperand(Src0RM);
|
| + // t1 = trunc Src0RM; Dest = t1
|
| + Variable *T = NULL;
|
| + _mov(T, Src0RM);
|
| + _mov(Dest, T);
|
| + break;
|
| + }
|
| + case InstCast::Fptrunc:
|
| + case InstCast::Fpext: {
|
| + // t1 = cvt Src0RM; Dest = t1
|
| + Variable *T = makeReg(Dest->getType());
|
| + _cvt(T, Src0RM);
|
| + _mov(Dest, T);
|
| + break;
|
| + }
|
| + case InstCast::Fptosi:
|
| + if (Dest->getType() == IceType_i64) {
|
| + // Use a helper for converting floating-point values to 64-bit
|
| + // integers. SSE2 appears to have no way to convert from xmm
|
| + // registers to something like the edx:eax register pair, and
|
| + // gcc and clang both want to use x87 instructions complete with
|
| + // temporary manipulation of the status word. This helper is
|
| + // not needed for x86-64.
|
| + split64(Dest);
|
| + const SizeT MaxSrcs = 1;
|
| + Type SrcType = Inst->getSrc(0)->getType();
|
| + InstCall *Call = makeHelperCall(
|
| + SrcType == IceType_f32 ? "cvtftosi64" : "cvtdtosi64", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + lowerCall(Call);
|
| + } else {
|
| + // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type
|
| + Variable *T_1 = makeReg(IceType_i32);
|
| + Variable *T_2 = makeReg(Dest->getType());
|
| + _cvt(T_1, Src0RM);
|
| + _mov(T_2, T_1); // T_1 and T_2 may have different integer types
|
| + _mov(Dest, T_2);
|
| + T_2->setPreferredRegister(T_1, true);
|
| + }
|
| + break;
|
| + case InstCast::Fptoui:
|
| + if (Dest->getType() == IceType_i64 || Dest->getType() == IceType_i32) {
|
| + // Use a helper for both x86-32 and x86-64.
|
| + split64(Dest);
|
| + const SizeT MaxSrcs = 1;
|
| + Type DestType = Dest->getType();
|
| + Type SrcType = Src0RM->getType();
|
| + IceString DstSubstring = (DestType == IceType_i64 ? "64" : "32");
|
| + IceString SrcSubstring = (SrcType == IceType_f32 ? "f" : "d");
|
| + // Possibilities are cvtftoui32, cvtdtoui32, cvtftoui64, cvtdtoui64
|
| + IceString TargetString = "cvt" + SrcSubstring + "toui" + DstSubstring;
|
| + InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + lowerCall(Call);
|
| + return;
|
| + } else {
|
| + // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type
|
| + Variable *T_1 = makeReg(IceType_i32);
|
| + Variable *T_2 = makeReg(Dest->getType());
|
| + _cvt(T_1, Src0RM);
|
| + _mov(T_2, T_1); // T_1 and T_2 may have different integer types
|
| + _mov(Dest, T_2);
|
| + T_2->setPreferredRegister(T_1, true);
|
| + }
|
| + break;
|
| + case InstCast::Sitofp:
|
| + if (Src0RM->getType() == IceType_i64) {
|
| + // Use a helper for x86-32.
|
| + const SizeT MaxSrcs = 1;
|
| + Type DestType = Dest->getType();
|
| + InstCall *Call = makeHelperCall(
|
| + DestType == IceType_f32 ? "cvtsi64tof" : "cvtsi64tod", Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + lowerCall(Call);
|
| + return;
|
| + } else {
|
| + // Sign-extend the operand.
|
| + // t1.i32 = movsx Src0RM; t2 = Cvt t1.i32; Dest = t2
|
| + Variable *T_1 = makeReg(IceType_i32);
|
| + Variable *T_2 = makeReg(Dest->getType());
|
| + if (Src0RM->getType() == IceType_i32)
|
| + _mov(T_1, Src0RM);
|
| + else
|
| + _movsx(T_1, Src0RM);
|
| + _cvt(T_2, T_1);
|
| + _mov(Dest, T_2);
|
| + }
|
| + break;
|
| + case InstCast::Uitofp:
|
| + if (Src0RM->getType() == IceType_i64 || Src0RM->getType() == IceType_i32) {
|
| + // Use a helper for x86-32 and x86-64. Also use a helper for
|
| + // i32 on x86-32.
|
| + const SizeT MaxSrcs = 1;
|
| + Type DestType = Dest->getType();
|
| + IceString SrcSubstring = (Src0RM->getType() == IceType_i64 ? "64" : "32");
|
| + IceString DstSubstring = (DestType == IceType_f32 ? "f" : "d");
|
| + // Possibilities are cvtui32tof, cvtui32tod, cvtui64tof, cvtui64tod
|
| + IceString TargetString = "cvtui" + SrcSubstring + "to" + DstSubstring;
|
| + InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs);
|
| + Call->addArg(Inst->getSrc(0));
|
| + lowerCall(Call);
|
| + return;
|
| + } else {
|
| + // Zero-extend the operand.
|
| + // t1.i32 = movzx Src0RM; t2 = Cvt t1.i32; Dest = t2
|
| + Variable *T_1 = makeReg(IceType_i32);
|
| + Variable *T_2 = makeReg(Dest->getType());
|
| + if (Src0RM->getType() == IceType_i32)
|
| + _mov(T_1, Src0RM);
|
| + else
|
| + _movzx(T_1, Src0RM);
|
| + _cvt(T_2, T_1);
|
| + _mov(Dest, T_2);
|
| + }
|
| + break;
|
| + case InstCast::Bitcast:
|
| + if (Dest->getType() == Src0RM->getType()) {
|
| + InstAssign *Assign = InstAssign::create(Func, Dest, Src0RM);
|
| + lowerAssign(Assign);
|
| + llvm_unreachable("Pointer bitcasts aren't lowered correctly.");
|
| + return;
|
| + }
|
| + switch (Dest->getType()) {
|
| + default:
|
| + llvm_unreachable("Unexpected Bitcast dest type");
|
| + case IceType_i32:
|
| + case IceType_f32: {
|
| + Type DestType = Dest->getType();
|
| + Type SrcType = Src0RM->getType();
|
| + assert((DestType == IceType_i32 && SrcType == IceType_f32) ||
|
| + (DestType == IceType_f32 && SrcType == IceType_i32));
|
| + // a.i32 = bitcast b.f32 ==>
|
| + // t.f32 = b.f32
|
| + // s.f32 = spill t.f32
|
| + // a.i32 = s.f32
|
| + Variable *T = NULL;
|
| + // TODO: Should be able to force a spill setup by calling legalize() with
|
| + // Legal_Mem and not Legal_Reg or Legal_Imm.
|
| + Variable *Spill = Func->makeVariable(SrcType, Context.getNode());
|
| + Spill->setWeight(RegWeight::Zero);
|
| + Spill->setPreferredRegister(Dest, true);
|
| + _mov(T, Src0RM);
|
| + _mov(Spill, T);
|
| + _mov(Dest, Spill);
|
| + } break;
|
| + case IceType_i64: {
|
| + assert(Src0RM->getType() == IceType_f64);
|
| + // a.i64 = bitcast b.f64 ==>
|
| + // s.f64 = spill b.f64
|
| + // t_lo.i32 = lo(s.f64)
|
| + // a_lo.i32 = t_lo.i32
|
| + // t_hi.i32 = hi(s.f64)
|
| + // a_hi.i32 = t_hi.i32
|
| + Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode());
|
| + Spill->setWeight(RegWeight::Zero);
|
| + Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true);
|
| + _mov(Spill, Src0RM);
|
| +
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Variable *T_Lo = makeReg(IceType_i32);
|
| + Variable *T_Hi = makeReg(IceType_i32);
|
| + VariableSplit *SpillLo =
|
| + VariableSplit::create(Func, Spill, VariableSplit::Low);
|
| + VariableSplit *SpillHi =
|
| + VariableSplit::create(Func, Spill, VariableSplit::High);
|
| +
|
| + _mov(T_Lo, SpillLo);
|
| + _mov(DestLo, T_Lo);
|
| + _mov(T_Hi, SpillHi);
|
| + _mov(DestHi, T_Hi);
|
| + } break;
|
| + case IceType_f64: {
|
| + assert(Src0RM->getType() == IceType_i64);
|
| + // a.f64 = bitcast b.i64 ==>
|
| + // t_lo.i32 = b_lo.i32
|
| + // lo(s.f64) = t_lo.i32
|
| + // FakeUse(s.f64)
|
| + // t_hi.i32 = b_hi.i32
|
| + // hi(s.f64) = t_hi.i32
|
| + // a.f64 = s.f64
|
| + Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode());
|
| + Spill->setWeight(RegWeight::Zero);
|
| + Spill->setPreferredRegister(Dest, true);
|
| +
|
| + Context.insert(InstFakeDef::create(Func, Spill));
|
| +
|
| + Variable *T_Lo = NULL, *T_Hi = NULL;
|
| + VariableSplit *SpillLo =
|
| + VariableSplit::create(Func, Spill, VariableSplit::Low);
|
| + VariableSplit *SpillHi =
|
| + VariableSplit::create(Func, Spill, VariableSplit::High);
|
| + _mov(T_Lo, loOperand(Src0RM));
|
| + _store(T_Lo, SpillLo);
|
| + _mov(T_Hi, hiOperand(Src0RM));
|
| + _store(T_Hi, SpillHi);
|
| + _mov(Dest, Spill);
|
| + } break;
|
| + }
|
| + break;
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerFcmp(const InstFcmp *Inst) {
|
| + Operand *Src0 = Inst->getSrc(0);
|
| + Operand *Src1 = Inst->getSrc(1);
|
| + Variable *Dest = Inst->getDest();
|
| + // Lowering a = fcmp cond, b, c
|
| + // ucomiss b, c /* only if C1 != Br_None */
|
| + // /* but swap b,c order if SwapOperands==true */
|
| + // mov a, <default>
|
| + // j<C1> label /* only if C1 != Br_None */
|
| + // j<C2> label /* only if C2 != Br_None */
|
| + // FakeUse(a) /* only if C1 != Br_None */
|
| + // mov a, !<default> /* only if C1 != Br_None */
|
| + // label: /* only if C1 != Br_None */
|
| + InstFcmp::FCond Condition = Inst->getCondition();
|
| + size_t Index = static_cast<size_t>(Condition);
|
| + assert(Index < TableFcmpSize);
|
| + // The table is indexed by InstFcmp::Condition. Make sure it didn't fall
|
| + // out of order.
|
| + if (TableFcmp[Index].SwapOperands) {
|
| + Operand *Tmp = Src0;
|
| + Src0 = Src1;
|
| + Src1 = Tmp;
|
| + }
|
| + bool HasC1 = (TableFcmp[Index].C1 != InstX8632Br::Br_None);
|
| + bool HasC2 = (TableFcmp[Index].C2 != InstX8632Br::Br_None);
|
| + if (HasC1) {
|
| + Src0 = legalize(Src0);
|
| + Operand *Src1RM = legalize(Src1, Legal_Reg | Legal_Mem);
|
| + Variable *T = NULL;
|
| + _mov(T, Src0);
|
| + _ucomiss(T, Src1RM);
|
| + }
|
| + Constant *Default =
|
| + Ctx->getConstantInt(IceType_i32, TableFcmp[Index].Default);
|
| + _mov(Dest, Default);
|
| + if (HasC1) {
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _br(TableFcmp[Index].C1, Label);
|
| + if (HasC2) {
|
| + _br(TableFcmp[Index].C2, Label);
|
| + }
|
| + Context.insert(InstFakeUse::create(Func, Dest));
|
| + Constant *NonDefault =
|
| + Ctx->getConstantInt(IceType_i32, !TableFcmp[Index].Default);
|
| + _mov(Dest, NonDefault);
|
| + Context.insert(Label);
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerIcmp(const InstIcmp *Inst) {
|
| + Operand *Src0 = legalize(Inst->getSrc(0));
|
| + Operand *Src1 = legalize(Inst->getSrc(1));
|
| + Variable *Dest = Inst->getDest();
|
| +
|
| + // If Src1 is an immediate, or known to be a physical register, we can
|
| + // allow Src0 to be a memory operand. Otherwise, Src0 must be copied into
|
| + // a physical register. (Actually, either Src0 or Src1 can be chosen for
|
| + // the physical register, but unfortunately we have to commit to one or
|
| + // the other before register allocation.)
|
| + bool IsSrc1ImmOrReg = false;
|
| + if (llvm::isa<Constant>(Src1))
|
| + IsSrc1ImmOrReg = true;
|
| + else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) {
|
| + if (Var->hasReg())
|
| + IsSrc1ImmOrReg = true;
|
| + }
|
| +
|
| + // a=icmp cond, b, c ==> cmp b,c; a=1; br cond,L1; FakeUse(a); a=0; L1:
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + Constant *One = Ctx->getConstantInt(IceType_i32, 1);
|
| + if (Src0->getType() == IceType_i64) {
|
| + InstIcmp::ICond Condition = Inst->getCondition();
|
| + size_t Index = static_cast<size_t>(Condition);
|
| + assert(Index < TableIcmp64Size);
|
| + // The table is indexed by InstIcmp::Condition. Make sure it didn't fall
|
| + // out of order.
|
| + Operand *Src1LoRI = legalize(loOperand(Src1), Legal_Reg | Legal_Imm);
|
| + Operand *Src1HiRI = legalize(hiOperand(Src1), Legal_Reg | Legal_Imm);
|
| + if (Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) {
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _mov(Dest, (Condition == InstIcmp::Eq ? Zero : One));
|
| + _cmp(loOperand(Src0), Src1LoRI);
|
| + _br(InstX8632Br::Br_ne, Label);
|
| + _cmp(hiOperand(Src0), Src1HiRI);
|
| + _br(InstX8632Br::Br_ne, Label);
|
| + Context.insert(InstFakeUse::create(Func, Dest));
|
| + _mov(Dest, (Condition == InstIcmp::Eq ? One : Zero));
|
| + Context.insert(Label);
|
| + } else {
|
| + InstX8632Label *LabelFalse = InstX8632Label::create(Func, this);
|
| + InstX8632Label *LabelTrue = InstX8632Label::create(Func, this);
|
| + _mov(Dest, One);
|
| + _cmp(hiOperand(Src0), Src1HiRI);
|
| + _br(TableIcmp64[Index].C1, LabelTrue);
|
| + _br(TableIcmp64[Index].C2, LabelFalse);
|
| + _cmp(loOperand(Src0), Src1LoRI);
|
| + _br(TableIcmp64[Index].C3, LabelTrue);
|
| + Context.insert(LabelFalse);
|
| + Context.insert(InstFakeUse::create(Func, Dest));
|
| + _mov(Dest, Zero);
|
| + Context.insert(LabelTrue);
|
| + }
|
| + return;
|
| + }
|
| + // cmp b, c
|
| + Operand *Src0New =
|
| + legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true);
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| + _cmp(Src0New, Src1);
|
| + _mov(Dest, One);
|
| + _br(getIcmp32Mapping(Inst->getCondition()), Label);
|
| + Context.insert(InstFakeUse::create(Func, Dest));
|
| + _mov(Dest, Zero);
|
| + Context.insert(Label);
|
| +}
|
| +
|
| +void TargetX8632::lowerLoad(const InstLoad *Inst) {
|
| + // A Load instruction can be treated the same as an Assign
|
| + // instruction, after the source operand is transformed into an
|
| + // OperandX8632Mem operand. Note that the address mode
|
| + // optimization already creates an OperandX8632Mem operand, so it
|
| + // doesn't need another level of transformation.
|
| + Type Ty = Inst->getDest()->getType();
|
| + Operand *Src0 = Inst->getSourceAddress();
|
| + // Address mode optimization already creates an OperandX8632Mem
|
| + // operand, so it doesn't need another level of transformation.
|
| + if (!llvm::isa<OperandX8632Mem>(Src0)) {
|
| + Variable *Base = llvm::dyn_cast<Variable>(Src0);
|
| + Constant *Offset = llvm::dyn_cast<Constant>(Src0);
|
| + assert(Base || Offset);
|
| + Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset);
|
| + }
|
| +
|
| + InstAssign *Assign = InstAssign::create(Func, Inst->getDest(), Src0);
|
| + lowerAssign(Assign);
|
| +}
|
| +
|
| +void TargetX8632::lowerPhi(const InstPhi * /*Inst*/) {
|
| + Func->setError("Phi lowering not implemented");
|
| +}
|
| +
|
| +void TargetX8632::lowerRet(const InstRet *Inst) {
|
| + Variable *Reg = NULL;
|
| + if (Inst->hasRetValue()) {
|
| + Operand *Src0 = legalize(Inst->getRetValue());
|
| + if (Src0->getType() == IceType_i64) {
|
| + Variable *eax = legalizeToVar(loOperand(Src0), false, Reg_eax);
|
| + Variable *edx = legalizeToVar(hiOperand(Src0), false, Reg_edx);
|
| + Reg = eax;
|
| + Context.insert(InstFakeUse::create(Func, edx));
|
| + } else if (Src0->getType() == IceType_f32 ||
|
| + Src0->getType() == IceType_f64) {
|
| + _fld(Src0);
|
| + } else {
|
| + _mov(Reg, Src0, Reg_eax);
|
| + }
|
| + }
|
| + _ret(Reg);
|
| + // Add a fake use of esp to make sure esp stays alive for the entire
|
| + // function. Otherwise post-call esp adjustments get dead-code
|
| + // eliminated. TODO: Are there more places where the fake use
|
| + // should be inserted? E.g. "void f(int n){while(1) g(n);}" may not
|
| + // have a ret instruction.
|
| + Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
|
| + Context.insert(InstFakeUse::create(Func, esp));
|
| +}
|
| +
|
| +void TargetX8632::lowerSelect(const InstSelect *Inst) {
|
| + // a=d?b:c ==> cmp d,0; a=b; jne L1; FakeUse(a); a=c; L1:
|
| + Variable *Dest = Inst->getDest();
|
| + Operand *SrcT = Inst->getTrueOperand();
|
| + Operand *SrcF = Inst->getFalseOperand();
|
| + Operand *Condition = legalize(Inst->getCondition());
|
| + Constant *Zero = Ctx->getConstantInt(IceType_i32, 0);
|
| + InstX8632Label *Label = InstX8632Label::create(Func, this);
|
| +
|
| + if (Dest->getType() == IceType_i64) {
|
| + Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
|
| + Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
|
| + Operand *SrcLoRI = legalize(loOperand(SrcT), Legal_Reg | Legal_Imm, true);
|
| + Operand *SrcHiRI = legalize(hiOperand(SrcT), Legal_Reg | Legal_Imm, true);
|
| + _cmp(Condition, Zero);
|
| + _mov(DestLo, SrcLoRI);
|
| + _mov(DestHi, SrcHiRI);
|
| + _br(InstX8632Br::Br_ne, Label);
|
| + Context.insert(InstFakeUse::create(Func, DestLo));
|
| + Context.insert(InstFakeUse::create(Func, DestHi));
|
| + Operand *SrcFLo = loOperand(SrcF);
|
| + Operand *SrcFHi = hiOperand(SrcF);
|
| + SrcLoRI = legalize(SrcFLo, Legal_Reg | Legal_Imm, true);
|
| + SrcHiRI = legalize(SrcFHi, Legal_Reg | Legal_Imm, true);
|
| + _mov(DestLo, SrcLoRI);
|
| + _mov(DestHi, SrcHiRI);
|
| + } else {
|
| + _cmp(Condition, Zero);
|
| + SrcT = legalize(SrcT, Legal_Reg | Legal_Imm, true);
|
| + _mov(Dest, SrcT);
|
| + _br(InstX8632Br::Br_ne, Label);
|
| + Context.insert(InstFakeUse::create(Func, Dest));
|
| + SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true);
|
| + _mov(Dest, SrcF);
|
| + }
|
| +
|
| + Context.insert(Label);
|
| +}
|
| +
|
| +void TargetX8632::lowerStore(const InstStore *Inst) {
|
| + Operand *Value = Inst->getData();
|
| + Operand *Addr = Inst->getAddr();
|
| + OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr);
|
| + // Address mode optimization already creates an OperandX8632Mem
|
| + // operand, so it doesn't need another level of transformation.
|
| + if (!NewAddr) {
|
| + // The address will be either a constant (which represents a global
|
| + // variable) or a variable, so either the Base or Offset component
|
| + // of the OperandX8632Mem will be set.
|
| + Variable *Base = llvm::dyn_cast<Variable>(Addr);
|
| + Constant *Offset = llvm::dyn_cast<Constant>(Addr);
|
| + assert(Base || Offset);
|
| + NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset);
|
| + }
|
| + NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr));
|
| +
|
| + if (NewAddr->getType() == IceType_i64) {
|
| + Value = legalize(Value);
|
| + Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true);
|
| + Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true);
|
| + _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr)));
|
| + _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr)));
|
| + } else {
|
| + Value = legalize(Value, Legal_Reg | Legal_Imm, true);
|
| + _store(Value, NewAddr);
|
| + }
|
| +}
|
| +
|
| +void TargetX8632::lowerSwitch(const InstSwitch *Inst) {
|
| + // This implements the most naive possible lowering.
|
| + // cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default
|
| + Operand *Src0 = Inst->getComparison();
|
| + SizeT NumCases = Inst->getNumCases();
|
| + // OK, we'll be slightly less naive by forcing Src into a physical
|
| + // register if there are 2 or more uses.
|
| + if (NumCases >= 2)
|
| + Src0 = legalizeToVar(Src0, true);
|
| + else
|
| + Src0 = legalize(Src0, Legal_All, true);
|
| + for (SizeT I = 0; I < NumCases; ++I) {
|
| + Operand *Value = Ctx->getConstantInt(IceType_i32, Inst->getValue(I));
|
| + _cmp(Src0, Value);
|
| + _br(InstX8632Br::Br_e, Inst->getLabel(I));
|
| + }
|
| +
|
| + _br(Inst->getLabelDefault());
|
| +}
|
| +
|
| +void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) {
|
| + const SizeT MaxSrcs = 0;
|
| + Variable *Dest = NULL;
|
| + InstCall *Call = makeHelperCall("ice_unreachable", Dest, MaxSrcs);
|
| + lowerCall(Call);
|
| +}
|
| +
|
| +Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed,
|
| + bool AllowOverlap, int32_t RegNum) {
|
| + assert(Allowed & Legal_Reg);
|
| + assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg);
|
| + if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(From)) {
|
| + Variable *Base = Mem->getBase();
|
| + Variable *Index = Mem->getIndex();
|
| + Variable *RegBase = Base;
|
| + Variable *RegIndex = Index;
|
| + if (Base) {
|
| + RegBase = legalizeToVar(Base, true);
|
| + }
|
| + if (Index) {
|
| + RegIndex = legalizeToVar(Index, true);
|
| + }
|
| + if (Base != RegBase || Index != RegIndex) {
|
| + From =
|
| + OperandX8632Mem::create(Func, Mem->getType(), RegBase,
|
| + Mem->getOffset(), RegIndex, Mem->getShift());
|
| + }
|
| +
|
| + if (!(Allowed & Legal_Mem)) {
|
| + Variable *Reg = makeReg(From->getType(), RegNum);
|
| + _mov(Reg, From, RegNum);
|
| + From = Reg;
|
| + }
|
| + return From;
|
| + }
|
| + if (llvm::isa<Constant>(From)) {
|
| + if (!(Allowed & Legal_Imm)) {
|
| + Variable *Reg = makeReg(From->getType(), RegNum);
|
| + _mov(Reg, From);
|
| + From = Reg;
|
| + }
|
| + return From;
|
| + }
|
| + if (Variable *Var = llvm::dyn_cast<Variable>(From)) {
|
| + // We need a new physical register for the operand if:
|
| + // Mem is not allowed and Var->getRegNum() is unknown, or
|
| + // RegNum is required and Var->getRegNum() doesn't match.
|
| + if ((!(Allowed & Legal_Mem) && !Var->hasReg()) ||
|
| + (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) {
|
| + Variable *Reg = makeReg(From->getType(), RegNum);
|
| + if (RegNum == Variable::NoRegister) {
|
| + Reg->setPreferredRegister(Var, AllowOverlap);
|
| + }
|
| + _mov(Reg, From);
|
| + From = Reg;
|
| + }
|
| + return From;
|
| + }
|
| + llvm_unreachable("Unhandled operand kind in legalize()");
|
| + return From;
|
| +}
|
| +
|
| +Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap,
|
| + int32_t RegNum) {
|
| + return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum));
|
| +}
|
| +
|
| +Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) {
|
| + Variable *Reg = Func->makeVariable(Type, Context.getNode());
|
| + if (RegNum == Variable::NoRegister)
|
| + Reg->setWeightInfinite();
|
| + else
|
| + Reg->setRegNum(RegNum);
|
| + return Reg;
|
| +}
|
| +
|
| +void TargetX8632::postLower() {
|
| + if (Ctx->getOptLevel() != Opt_m1)
|
| + return;
|
| + // TODO: Avoid recomputing WhiteList every instruction.
|
| + llvm::SmallBitVector WhiteList = getRegisterSet(RegSet_All, RegSet_None);
|
| + // Make one pass to black-list pre-colored registers. TODO: If
|
| + // there was some prior register allocation pass that made register
|
| + // assignments, those registers need to be black-listed here as
|
| + // well.
|
| + for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E;
|
| + ++I) {
|
| + const Inst *Inst = *I;
|
| + if (Inst->isDeleted())
|
| + continue;
|
| + if (llvm::isa<InstFakeKill>(Inst))
|
| + continue;
|
| + SizeT VarIndex = 0;
|
| + for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) {
|
| + Operand *Src = Inst->getSrc(SrcNum);
|
| + SizeT NumVars = Src->getNumVars();
|
| + for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) {
|
| + const Variable *Var = Src->getVar(J);
|
| + if (!Var->hasReg())
|
| + continue;
|
| + WhiteList[Var->getRegNum()] = false;
|
| + }
|
| + }
|
| + }
|
| + // The second pass colors infinite-weight variables.
|
| + llvm::SmallBitVector AvailableRegisters = WhiteList;
|
| + for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E;
|
| + ++I) {
|
| + const Inst *Inst = *I;
|
| + if (Inst->isDeleted())
|
| + continue;
|
| + SizeT VarIndex = 0;
|
| + for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) {
|
| + Operand *Src = Inst->getSrc(SrcNum);
|
| + SizeT NumVars = Src->getNumVars();
|
| + for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) {
|
| + Variable *Var = Src->getVar(J);
|
| + if (Var->hasReg())
|
| + continue;
|
| + if (!Var->getWeight().isInf())
|
| + continue;
|
| + llvm::SmallBitVector AvailableTypedRegisters =
|
| + AvailableRegisters & getRegisterSetForType(Var->getType());
|
| + if (!AvailableTypedRegisters.any()) {
|
| + // This is a hack in case we run out of physical registers
|
| + // due to an excessive number of "push" instructions from
|
| + // lowering a call.
|
| + AvailableRegisters = WhiteList;
|
| + AvailableTypedRegisters =
|
| + AvailableRegisters & getRegisterSetForType(Var->getType());
|
| + }
|
| + assert(AvailableTypedRegisters.any());
|
| + int32_t RegNum = AvailableTypedRegisters.find_first();
|
| + Var->setRegNum(RegNum);
|
| + AvailableRegisters[RegNum] = false;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // end of namespace Ice
|
|
|