Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// | |
| 2 // | |
| 3 // The Subzero Code Generator | |
| 4 // | |
| 5 // This file is distributed under the University of Illinois Open Source | |
| 6 // License. See LICENSE.TXT for details. | |
| 7 // | |
| 8 //===----------------------------------------------------------------------===// | |
| 9 // | |
| 10 // This file implements the TargetLoweringX8632 class, which | |
| 11 // consists almost entirely of the lowering sequence for each | |
| 12 // high-level instruction. It also implements | |
| 13 // TargetX8632Fast::postLower() which does the simplest possible | |
| 14 // register allocation for the "fast" target. | |
| 15 // | |
| 16 //===----------------------------------------------------------------------===// | |
| 17 | |
| 18 #include "IceDefs.h" | |
| 19 #include "IceCfg.h" | |
| 20 #include "IceCfgNode.h" | |
| 21 #include "IceInstX8632.h" | |
| 22 #include "IceOperand.h" | |
| 23 #include "IceTargetLoweringX8632.def" | |
| 24 #include "IceTargetLoweringX8632.h" | |
| 25 | |
| 26 namespace Ice { | |
| 27 | |
| 28 namespace { | |
| 29 | |
| 30 // The following table summarizes the logic for lowering the fcmp instruction. | |
| 31 // There is one table entry for each of the 16 conditions. A comment in | |
| 32 // lowerFcmp() describes the lowering template. In the most general case, there | |
| 33 // is a compare followed by two conditional branches, because some fcmp | |
| 34 // conditions don't map to a single x86 conditional branch. However, in many | |
| 35 // cases it is possible to swap the operands in the comparison and have a single | |
| 36 // conditional branch. Since it's quite tedious to validate the table by hand, | |
| 37 // good execution tests are helpful. | |
| 38 | |
| 39 const struct TableFcmp_ { | |
| 40 uint32_t Default; | |
| 41 bool SwapOperands; | |
| 42 InstX8632Br::BrCond C1, C2; | |
| 43 } TableFcmp[] = { | |
| 44 #define X(val, dflt, swap, C1, C2) \ | |
| 45 { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \ | |
| 46 , | |
| 47 FCMPX8632_TABLE | |
| 48 #undef X | |
| 49 }; | |
| 50 const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp); | |
| 51 | |
| 52 // The following table summarizes the logic for lowering the icmp instruction | |
| 53 // for i32 and narrower types. Each icmp condition has a clear mapping to an | |
| 54 // x86 conditional branch instruction. | |
| 55 | |
| 56 const struct TableIcmp32_ { | |
| 57 InstX8632Br::BrCond Mapping; | |
| 58 } TableIcmp32[] = { | |
| 59 #define X(val, C_32, C1_64, C2_64, C3_64) \ | |
| 60 { InstX8632Br::C_32 } \ | |
| 61 , | |
| 62 ICMPX8632_TABLE | |
| 63 #undef X | |
| 64 }; | |
| 65 const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32); | |
| 66 | |
| 67 // The following table summarizes the logic for lowering the icmp instruction | |
| 68 // for the i64 type. For Eq and Ne, two separate 32-bit comparisons and | |
| 69 // conditional branches are needed. For the other conditions, three separate | |
| 70 // conditional branches are needed. | |
| 71 const struct TableIcmp64_ { | |
| 72 InstX8632Br::BrCond C1, C2, C3; | |
| 73 } TableIcmp64[] = { | |
| 74 #define X(val, C_32, C1_64, C2_64, C3_64) \ | |
| 75 { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \ | |
| 76 , | |
| 77 ICMPX8632_TABLE | |
| 78 #undef X | |
| 79 }; | |
| 80 const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64); | |
| 81 | |
| 82 InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { | |
| 83 size_t Index = static_cast<size_t>(Cond); | |
| 84 assert(Index < TableIcmp32Size); | |
| 85 return TableIcmp32[Index].Mapping; | |
| 86 } | |
| 87 | |
| 88 // In some cases, there are x-macros tables for both high-level and | |
| 89 // low-level instructions/operands that use the same enum key value. | |
| 90 // The tables are kept separate to maintain a proper separation | |
| 91 // between abstraction layers. There is a risk that the tables | |
| 92 // could get out of sync if enum values are reordered or if entries | |
| 93 // are added or deleted. This dummy function uses static_assert to | |
| 94 // ensure everything is kept in sync. | |
| 95 void xMacroIntegrityCheck() { | |
| 96 // Validate the enum values in FCMPX8632_TABLE. | |
| 97 { | |
| 98 // Define a temporary set of enum values based on low-level | |
| 99 // table entries. | |
| 100 enum _tmp_enum { | |
| 101 #define X(val, dflt, swap, C1, C2) _tmp_##val, | |
| 102 FCMPX8632_TABLE | |
| 103 #undef X | |
| 104 }; | |
| 105 // Define a set of constants based on high-level table entries. | |
| 106 #define X(tag, str) static const int _table1_##tag = InstFcmp::tag; | |
| 107 ICEINSTFCMP_TABLE; | |
| 108 #undef X | |
| 109 // Define a set of constants based on low-level table entries, | |
| 110 // and ensure the table entry keys are consistent. | |
| 111 #define X(val, dflt, swap, C1, C2) \ | |
| 112 static const int _table2_##val = _tmp_##val; \ | |
| 113 STATIC_ASSERT(_table1_##val == _table2_##val); | |
| 114 FCMPX8632_TABLE; | |
| 115 #undef X | |
| 116 // Repeat the static asserts with respect to the high-level | |
| 117 // table entries in case the high-level table has extra entries. | |
| 118 #define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); | |
| 119 ICEINSTFCMP_TABLE; | |
| 120 #undef X | |
| 121 } | |
| 122 | |
| 123 // Validate the enum values in ICMPX8632_TABLE. | |
| 124 { | |
| 125 // Define a temporary set of enum values based on low-level | |
| 126 // table entries. | |
| 127 enum _tmp_enum { | |
| 128 #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, | |
| 129 ICMPX8632_TABLE | |
| 130 #undef X | |
| 131 }; | |
| 132 // Define a set of constants based on high-level table entries. | |
| 133 #define X(tag, str) static const int _table1_##tag = InstIcmp::tag; | |
| 134 ICEINSTICMP_TABLE; | |
| 135 #undef X | |
| 136 // Define a set of constants based on low-level table entries, | |
| 137 // and ensure the table entry keys are consistent. | |
| 138 #define X(val, C_32, C1_64, C2_64, C3_64) \ | |
| 139 static const int _table2_##val = _tmp_##val; \ | |
| 140 STATIC_ASSERT(_table1_##val == _table2_##val); | |
| 141 ICMPX8632_TABLE; | |
| 142 #undef X | |
| 143 // Repeat the static asserts with respect to the high-level | |
| 144 // table entries in case the high-level table has extra entries. | |
| 145 #define X(tag, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); | |
| 146 ICEINSTICMP_TABLE; | |
| 147 #undef X | |
| 148 } | |
| 149 | |
| 150 // Validate the enum values in ICETYPEX8632_TABLE. | |
| 151 { | |
| 152 // Define a temporary set of enum values based on low-level | |
| 153 // table entries. | |
| 154 enum _tmp_enum { | |
| 155 #define X(tag, cvt, sdss, width) _tmp_##tag, | |
| 156 ICETYPEX8632_TABLE | |
| 157 #undef X | |
| 158 }; | |
| 159 // Define a set of constants based on high-level table entries. | |
| 160 #define X(tag, size, align, str) static const int _table1_##tag = tag; | |
| 161 ICETYPE_TABLE; | |
| 162 #undef X | |
| 163 // Define a set of constants based on low-level table entries, | |
| 164 // and ensure the table entry keys are consistent. | |
| 165 #define X(tag, cvt, sdss, width) \ | |
| 166 static const int _table2_##tag = _tmp_##tag; \ | |
| 167 STATIC_ASSERT(_table1_##tag == _table2_##tag); | |
| 168 ICETYPEX8632_TABLE; | |
| 169 #undef X | |
| 170 // Repeat the static asserts with respect to the high-level | |
| 171 // table entries in case the high-level table has extra entries. | |
| 172 #define X(tag, size, align, str) STATIC_ASSERT(_table1_##tag == _table2_##tag); | |
| 173 ICETYPE_TABLE; | |
| 174 #undef X | |
| 175 } | |
| 176 } | |
| 177 | |
| 178 } // end of anonymous namespace | |
| 179 | |
| 180 TargetX8632::TargetX8632(Cfg *Func) | |
| 181 : TargetLowering(Func), IsEbpBasedFrame(false), FrameSizeLocals(0), | |
| 182 LocalsSizeBytes(0), NextLabelNumber(0), ComputedLiveRanges(false), | |
| 183 PhysicalRegisters(VarList(Reg_NUM)) { | |
| 184 // TODO: Don't initialize IntegerRegisters and friends every time. | |
| 185 // Instead, initialize in some sort of static initializer for the | |
| 186 // class. | |
| 187 llvm::SmallBitVector IntegerRegisters(Reg_NUM); | |
| 188 llvm::SmallBitVector IntegerRegistersI8(Reg_NUM); | |
| 189 llvm::SmallBitVector FloatRegisters(Reg_NUM); | |
| 190 llvm::SmallBitVector InvalidRegisters(Reg_NUM); | |
| 191 ScratchRegs.resize(Reg_NUM); | |
| 192 #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ | |
| 193 frameptr, isI8, isInt, isFP) \ | |
| 194 IntegerRegisters[val] = isInt; \ | |
| 195 IntegerRegistersI8[val] = isI8; \ | |
| 196 FloatRegisters[val] = isFP; \ | |
| 197 ScratchRegs[val] = scratch; | |
| 198 REGX8632_TABLE; | |
| 199 #undef X | |
| 200 TypeToRegisterSet[IceType_void] = InvalidRegisters; | |
| 201 TypeToRegisterSet[IceType_i1] = IntegerRegistersI8; | |
| 202 TypeToRegisterSet[IceType_i8] = IntegerRegistersI8; | |
| 203 TypeToRegisterSet[IceType_i16] = IntegerRegisters; | |
| 204 TypeToRegisterSet[IceType_i32] = IntegerRegisters; | |
| 205 TypeToRegisterSet[IceType_i64] = IntegerRegisters; | |
| 206 TypeToRegisterSet[IceType_f32] = FloatRegisters; | |
| 207 TypeToRegisterSet[IceType_f64] = FloatRegisters; | |
| 208 } | |
| 209 | |
| 210 void TargetX8632::translateOm1() { | |
| 211 GlobalContext *Context = Func->getContext(); | |
| 212 Ostream &Str = Context->getStrDump(); | |
| 213 Timer T_placePhiLoads; | |
| 214 Func->placePhiLoads(); | |
| 215 if (Func->hasError()) | |
| 216 return; | |
| 217 T_placePhiLoads.printElapsedUs(Context, "placePhiLoads()"); | |
| 218 Timer T_placePhiStores; | |
| 219 Func->placePhiStores(); | |
| 220 if (Func->hasError()) | |
| 221 return; | |
| 222 T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); | |
| 223 Timer T_deletePhis; | |
| 224 Func->deletePhis(); | |
| 225 if (Func->hasError()) | |
| 226 return; | |
| 227 T_deletePhis.printElapsedUs(Context, "deletePhis()"); | |
| 228 if (Context->isVerbose()) { | |
| 229 Str << "================ After Phi lowering ================\n"; | |
| 230 Func->dump(); | |
| 231 } | |
| 232 | |
| 233 Timer T_genCode; | |
| 234 Func->genCode(); | |
| 235 if (Func->hasError()) | |
| 236 return; | |
| 237 T_genCode.printElapsedUs(Context, "genCode()"); | |
| 238 if (Context->isVerbose()) { | |
| 239 Str << "================ After initial x8632 codegen ================\n"; | |
| 240 Func->dump(); | |
| 241 } | |
| 242 | |
| 243 Timer T_genFrame; | |
| 244 Func->genFrame(); | |
| 245 if (Func->hasError()) | |
| 246 return; | |
| 247 T_genFrame.printElapsedUs(Context, "genFrame()"); | |
| 248 if (Context->isVerbose()) { | |
| 249 Str << "================ After stack frame mapping ================\n"; | |
| 250 Func->dump(); | |
| 251 } | |
| 252 } | |
| 253 | |
| 254 IceString TargetX8632::RegNames[] = { | |
| 255 #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ | |
| 256 frameptr, isI8, isInt, isFP) \ | |
| 257 name, | |
| 258 REGX8632_TABLE | |
| 259 #undef X | |
| 260 }; | |
| 261 | |
| 262 Variable *TargetX8632::getPhysicalRegister(SizeT RegNum) { | |
| 263 assert(RegNum < PhysicalRegisters.size()); | |
| 264 Variable *Reg = PhysicalRegisters[RegNum]; | |
| 265 if (Reg == NULL) { | |
| 266 CfgNode *Node = NULL; // NULL means multi-block lifetime | |
| 267 Reg = Func->makeVariable(IceType_i32, Node); | |
| 268 Reg->setRegNum(RegNum); | |
| 269 PhysicalRegisters[RegNum] = Reg; | |
| 270 } | |
| 271 return Reg; | |
| 272 } | |
| 273 | |
| 274 IceString TargetX8632::getRegName(SizeT RegNum, Type Ty) const { | |
| 275 assert(RegNum < Reg_NUM); | |
| 276 static IceString RegNames8[] = { | |
| 277 #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ | |
| 278 frameptr, isI8, isInt, isFP) \ | |
| 279 "" name8, | |
| 280 REGX8632_TABLE | |
| 281 #undef X | |
| 282 }; | |
| 283 static IceString RegNames16[] = { | |
| 284 #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ | |
| 285 frameptr, isI8, isInt, isFP) \ | |
| 286 "" name16, | |
| 287 REGX8632_TABLE | |
| 288 #undef X | |
| 289 }; | |
| 290 switch (Ty) { | |
| 291 case IceType_i1: | |
| 292 case IceType_i8: | |
| 293 return RegNames8[RegNum]; | |
| 294 case IceType_i16: | |
| 295 return RegNames16[RegNum]; | |
| 296 default: | |
| 297 return RegNames[RegNum]; | |
| 298 } | |
| 299 } | |
| 300 | |
| 301 void TargetX8632::emitVariable(const Variable *Var, const Cfg *Func) const { | |
| 302 Ostream &Str = Ctx->getStrEmit(); | |
| 303 assert(Var->getLocalUseNode() == NULL || | |
| 304 Var->getLocalUseNode() == Func->getCurrentNode()); | |
| 305 if (Var->hasReg()) { | |
| 306 Str << getRegName(Var->getRegNum(), Var->getType()); | |
| 307 return; | |
| 308 } | |
| 309 Str << InstX8632::getWidthString(Var->getType()); | |
| 310 Str << " [" << getRegName(getFrameOrStackReg(), IceType_i32); | |
| 311 int32_t Offset = Var->getStackOffset() + getStackAdjustment(); | |
| 312 if (Offset) { | |
| 313 if (Offset > 0) | |
| 314 Str << "+"; | |
| 315 Str << Offset; | |
| 316 } | |
| 317 Str << "]"; | |
| 318 } | |
| 319 | |
| 320 // Helper function for addProlog(). Sets the frame offset for Arg, | |
| 321 // updates InArgsSizeBytes according to Arg's width, and generates an | |
| 322 // instruction to copy Arg into its assigned register if applicable. | |
| 323 // For an I64 arg that has been split into Lo and Hi components, it | |
| 324 // calls itself recursively on the components, taking care to handle | |
| 325 // Lo first because of the little-endian architecture. | |
| 326 void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, | |
| 327 int32_t BasicFrameOffset, | |
| 328 int32_t &InArgsSizeBytes) { | |
| 329 Variable *Lo = Arg->getLo(); | |
| 330 Variable *Hi = Arg->getHi(); | |
| 331 Type Ty = Arg->getType(); | |
| 332 if (Lo && Hi && Ty == IceType_i64) { | |
| 333 assert(Lo->getType() != IceType_i64); // don't want infinite recursion | |
| 334 assert(Hi->getType() != IceType_i64); // don't want infinite recursion | |
| 335 setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes); | |
| 336 setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes); | |
| 337 return; | |
| 338 } | |
| 339 Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes); | |
| 340 if (Arg->hasReg()) { | |
| 341 assert(Ty != IceType_i64); | |
| 342 OperandX8632Mem *Mem = OperandX8632Mem::create( | |
| 343 Func, Ty, FramePtr, | |
| 344 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); | |
| 345 _mov(Arg, Mem); | |
| 346 } | |
| 347 InArgsSizeBytes += typeWidthInBytesOnStack(Ty); | |
| 348 } | |
| 349 | |
| 350 void TargetX8632::addProlog(CfgNode *Node) { | |
| 351 // If SimpleCoalescing is false, each variable without a register | |
| 352 // gets its own unique stack slot, which leads to large stack | |
| 353 // frames. If SimpleCoalescing is true, then each "global" variable | |
| 354 // without a register gets its own slot, but "local" variable slots | |
| 355 // are reused across basic blocks. E.g., if A and B are local to | |
| 356 // block 1 and C is local to block 2, then C may share a slot with A | |
| 357 // or B. | |
| 358 const bool SimpleCoalescing = true; | |
| 359 int32_t InArgsSizeBytes = 0; | |
| 360 int32_t RetIpSizeBytes = 4; | |
| 361 int32_t PreservedRegsSizeBytes = 0; | |
| 362 LocalsSizeBytes = 0; | |
| 363 Context.init(Node); | |
| 364 Context.setInsertPoint(Context.getCur()); | |
| 365 | |
| 366 // Determine stack frame offsets for each Variable without a | |
| 367 // register assignment. This can be done as one variable per stack | |
| 368 // slot. Or, do coalescing by running the register allocator again | |
| 369 // with an infinite set of registers (as a side effect, this gives | |
| 370 // variables a second chance at physical register assignment). | |
| 371 // | |
| 372 // A middle ground approach is to leverage sparsity and allocate one | |
| 373 // block of space on the frame for globals (variables with | |
| 374 // multi-block lifetime), and one block to share for locals | |
| 375 // (single-block lifetime). | |
| 376 | |
| 377 llvm::SmallBitVector CalleeSaves = | |
| 378 getRegisterSet(RegSet_CalleeSave, RegSet_None); | |
| 379 | |
| 380 int32_t GlobalsSize = 0; | |
| 381 std::vector<int> LocalsSize(Func->getNumNodes()); | |
| 382 | |
| 383 // Prepass. Compute RegsUsed, PreservedRegsSizeBytes, and | |
| 384 // LocalsSizeBytes. | |
| 385 RegsUsed = llvm::SmallBitVector(CalleeSaves.size()); | |
| 386 const VarList &Variables = Func->getVariables(); | |
| 387 const VarList &Args = Func->getArgs(); | |
| 388 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); | |
| 389 I != E; ++I) { | |
| 390 Variable *Var = *I; | |
| 391 if (Var->hasReg()) { | |
| 392 RegsUsed[Var->getRegNum()] = true; | |
| 393 continue; | |
| 394 } | |
| 395 // An argument passed on the stack already has a stack slot. | |
| 396 if (Var->getIsArg()) | |
| 397 continue; | |
| 398 // A spill slot linked to a variable with a stack slot should reuse | |
| 399 // that stack slot. | |
| 400 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { | |
| 401 if (Variable *Linked = Var->getPreferredRegister()) { | |
| 402 if (!Linked->hasReg()) | |
| 403 continue; | |
| 404 } | |
| 405 } | |
| 406 int32_t Increment = typeWidthInBytesOnStack(Var->getType()); | |
| 407 if (SimpleCoalescing) { | |
| 408 if (Var->isMultiblockLife()) { | |
| 409 GlobalsSize += Increment; | |
| 410 } else { | |
| 411 SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); | |
| 412 LocalsSize[NodeIndex] += Increment; | |
| 413 if (LocalsSize[NodeIndex] > LocalsSizeBytes) | |
| 414 LocalsSizeBytes = LocalsSize[NodeIndex]; | |
| 415 } | |
| 416 } else { | |
| 417 LocalsSizeBytes += Increment; | |
| 418 } | |
| 419 } | |
| 420 LocalsSizeBytes += GlobalsSize; | |
| 421 | |
| 422 // Add push instructions for preserved registers. | |
| 423 for (SizeT i = 0; i < CalleeSaves.size(); ++i) { | |
| 424 if (CalleeSaves[i] && RegsUsed[i]) { | |
| 425 PreservedRegsSizeBytes += 4; | |
| 426 const bool SuppressStackAdjustment = true; | |
| 427 _push(getPhysicalRegister(i), SuppressStackAdjustment); | |
| 428 } | |
| 429 } | |
| 430 | |
| 431 // Generate "push ebp; mov ebp, esp" | |
| 432 if (IsEbpBasedFrame) { | |
| 433 assert((RegsUsed & getRegisterSet(RegSet_FramePointer, RegSet_None)) | |
| 434 .count() == 0); | |
| 435 PreservedRegsSizeBytes += 4; | |
| 436 Variable *ebp = getPhysicalRegister(Reg_ebp); | |
| 437 Variable *esp = getPhysicalRegister(Reg_esp); | |
| 438 const bool SuppressStackAdjustment = true; | |
| 439 _push(ebp, SuppressStackAdjustment); | |
| 440 _mov(ebp, esp); | |
| 441 } | |
| 442 | |
| 443 // Generate "sub esp, LocalsSizeBytes" | |
| 444 if (LocalsSizeBytes) | |
| 445 _sub(getPhysicalRegister(Reg_esp), | |
| 446 Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); | |
| 447 | |
| 448 resetStackAdjustment(); | |
| 449 | |
| 450 // Fill in stack offsets for args, and copy args into registers for | |
| 451 // those that were register-allocated. Args are pushed right to | |
| 452 // left, so Arg[0] is closest to the stack/frame pointer. | |
| 453 // | |
| 454 // TODO: Make this right for different width args, calling | |
| 455 // conventions, etc. For one thing, args passed in registers will | |
| 456 // need to be copied/shuffled to their home registers (the | |
| 457 // RegManager code may have some permutation logic to leverage), | |
| 458 // and if they have no home register, home space will need to be | |
| 459 // allocated on the stack to copy into. | |
| 460 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); | |
| 461 int32_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes; | |
| 462 if (!IsEbpBasedFrame) | |
| 463 BasicFrameOffset += LocalsSizeBytes; | |
| 464 for (SizeT i = 0; i < Args.size(); ++i) { | |
| 465 Variable *Arg = Args[i]; | |
| 466 setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes); | |
| 467 } | |
| 468 | |
| 469 // Fill in stack offsets for locals. | |
| 470 int32_t TotalGlobalsSize = GlobalsSize; | |
| 471 GlobalsSize = 0; | |
| 472 LocalsSize.assign(LocalsSize.size(), 0); | |
| 473 int32_t NextStackOffset = 0; | |
| 474 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); | |
| 475 I != E; ++I) { | |
| 476 Variable *Var = *I; | |
| 477 if (Var->hasReg()) { | |
| 478 RegsUsed[Var->getRegNum()] = true; | |
| 479 continue; | |
| 480 } | |
| 481 if (Var->getIsArg()) | |
| 482 continue; | |
| 483 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { | |
| 484 if (Variable *Linked = Var->getPreferredRegister()) { | |
| 485 if (!Linked->hasReg()) { | |
| 486 // TODO: Make sure Linked has already been assigned a stack | |
| 487 // slot. | |
| 488 Var->setStackOffset(Linked->getStackOffset()); | |
| 489 continue; | |
| 490 } | |
| 491 } | |
| 492 } | |
| 493 int32_t Increment = typeWidthInBytesOnStack(Var->getType()); | |
| 494 if (SimpleCoalescing) { | |
| 495 if (Var->isMultiblockLife()) { | |
| 496 GlobalsSize += Increment; | |
| 497 NextStackOffset = GlobalsSize; | |
| 498 } else { | |
| 499 SizeT NodeIndex = Var->getLocalUseNode()->getIndex(); | |
| 500 LocalsSize[NodeIndex] += Increment; | |
| 501 NextStackOffset = TotalGlobalsSize + LocalsSize[NodeIndex]; | |
| 502 } | |
| 503 } else { | |
| 504 NextStackOffset += Increment; | |
| 505 } | |
| 506 if (IsEbpBasedFrame) | |
| 507 Var->setStackOffset(-NextStackOffset); | |
| 508 else | |
| 509 Var->setStackOffset(LocalsSizeBytes - NextStackOffset); | |
| 510 } | |
| 511 this->FrameSizeLocals = NextStackOffset; | |
| 512 this->HasComputedFrame = true; | |
| 513 | |
| 514 if (Func->getContext()->isVerbose(IceV_Frame)) { | |
| 515 Func->getContext()->getStrDump() << "LocalsSizeBytes=" << LocalsSizeBytes | |
| 516 << "\n" | |
| 517 << "InArgsSizeBytes=" << InArgsSizeBytes | |
| 518 << "\n" | |
| 519 << "PreservedRegsSizeBytes=" | |
| 520 << PreservedRegsSizeBytes << "\n"; | |
| 521 } | |
| 522 } | |
| 523 | |
| 524 void TargetX8632::addEpilog(CfgNode *Node) { | |
| 525 InstList &Insts = Node->getInsts(); | |
| 526 InstList::reverse_iterator RI, E; | |
| 527 for (RI = Insts.rbegin(), E = Insts.rend(); RI != E; ++RI) { | |
| 528 if (llvm::isa<InstX8632Ret>(*RI)) | |
| 529 break; | |
| 530 } | |
| 531 if (RI == E) | |
| 532 return; | |
| 533 | |
| 534 // Convert the reverse_iterator position into its corresponding | |
| 535 // (forward) iterator position. | |
| 536 InstList::iterator InsertPoint = RI.base(); | |
| 537 --InsertPoint; | |
| 538 Context.init(Node); | |
| 539 Context.setInsertPoint(InsertPoint); | |
| 540 | |
| 541 Variable *esp = getPhysicalRegister(Reg_esp); | |
| 542 if (IsEbpBasedFrame) { | |
| 543 Variable *ebp = getPhysicalRegister(Reg_ebp); | |
| 544 _mov(esp, ebp); | |
| 545 _pop(ebp); | |
| 546 } else { | |
| 547 // add esp, LocalsSizeBytes | |
| 548 if (LocalsSizeBytes) | |
| 549 _add(esp, Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); | |
| 550 } | |
| 551 | |
| 552 // Add pop instructions for preserved registers. | |
| 553 llvm::SmallBitVector CalleeSaves = | |
| 554 getRegisterSet(RegSet_CalleeSave, RegSet_None); | |
| 555 for (SizeT i = 0; i < CalleeSaves.size(); ++i) { | |
| 556 SizeT j = CalleeSaves.size() - i - 1; | |
| 557 if (j == Reg_ebp && IsEbpBasedFrame) | |
| 558 continue; | |
| 559 if (CalleeSaves[j] && RegsUsed[j]) { | |
| 560 _pop(getPhysicalRegister(j)); | |
| 561 } | |
| 562 } | |
| 563 } | |
| 564 | |
| 565 void TargetX8632::split64(Variable *Var) { | |
| 566 switch (Var->getType()) { | |
| 567 default: | |
| 568 return; | |
| 569 case IceType_i64: | |
| 570 // TODO: Only consider F64 if we need to push each half when | |
| 571 // passing as an argument to a function call. Note that each half | |
| 572 // is still typed as I32. | |
| 573 case IceType_f64: | |
| 574 break; | |
| 575 } | |
| 576 Variable *Lo = Var->getLo(); | |
| 577 Variable *Hi = Var->getHi(); | |
| 578 if (Lo) { | |
| 579 assert(Hi); | |
| 580 return; | |
| 581 } | |
| 582 assert(Hi == NULL); | |
| 583 Lo = Func->makeVariable(IceType_i32, Context.getNode(), | |
| 584 Var->getName() + "__lo"); | |
| 585 Hi = Func->makeVariable(IceType_i32, Context.getNode(), | |
| 586 Var->getName() + "__hi"); | |
| 587 Var->setLoHi(Lo, Hi); | |
| 588 if (Var->getIsArg()) { | |
| 589 Lo->setIsArg(Func); | |
| 590 Hi->setIsArg(Func); | |
| 591 } | |
| 592 } | |
| 593 | |
| 594 Operand *TargetX8632::loOperand(Operand *Operand) { | |
| 595 assert(Operand->getType() == IceType_i64); | |
| 596 if (Operand->getType() != IceType_i64) | |
| 597 return Operand; | |
| 598 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { | |
| 599 split64(Var); | |
| 600 return Var->getLo(); | |
| 601 } | |
| 602 if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { | |
| 603 uint64_t Mask = (1ull << 32) - 1; | |
| 604 return Ctx->getConstantInt(IceType_i32, Const->getValue() & Mask); | |
| 605 } | |
| 606 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { | |
| 607 return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), | |
| 608 Mem->getOffset(), Mem->getIndex(), | |
| 609 Mem->getShift()); | |
| 610 } | |
| 611 llvm_unreachable("Unsupported operand type"); | |
| 612 return NULL; | |
| 613 } | |
| 614 | |
| 615 Operand *TargetX8632::hiOperand(Operand *Operand) { | |
| 616 assert(Operand->getType() == IceType_i64); | |
| 617 if (Operand->getType() != IceType_i64) | |
| 618 return Operand; | |
| 619 if (Variable *Var = llvm::dyn_cast<Variable>(Operand)) { | |
| 620 split64(Var); | |
| 621 return Var->getHi(); | |
| 622 } | |
| 623 if (ConstantInteger *Const = llvm::dyn_cast<ConstantInteger>(Operand)) { | |
| 624 return Ctx->getConstantInt(IceType_i32, Const->getValue() >> 32); | |
| 625 } | |
| 626 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand)) { | |
| 627 Constant *Offset = Mem->getOffset(); | |
| 628 if (Offset == NULL) | |
| 629 Offset = Ctx->getConstantInt(IceType_i32, 4); | |
| 630 else if (ConstantInteger *IntOffset = | |
| 631 llvm::dyn_cast<ConstantInteger>(Offset)) { | |
| 632 Offset = Ctx->getConstantInt(IceType_i32, 4 + IntOffset->getValue()); | |
| 633 } else if (ConstantRelocatable *SymOffset = | |
| 634 llvm::dyn_cast<ConstantRelocatable>(Offset)) { | |
| 635 Offset = Ctx->getConstantSym(IceType_i32, 4 + SymOffset->getOffset(), | |
| 636 SymOffset->getName()); | |
| 637 } | |
| 638 return OperandX8632Mem::create(Func, IceType_i32, Mem->getBase(), Offset, | |
| 639 Mem->getIndex(), Mem->getShift()); | |
| 640 } | |
| 641 llvm_unreachable("Unsupported operand type"); | |
| 642 return NULL; | |
| 643 } | |
| 644 | |
| 645 llvm::SmallBitVector TargetX8632::getRegisterSet(RegSetMask Include, | |
| 646 RegSetMask Exclude) const { | |
| 647 llvm::SmallBitVector Registers(Reg_NUM); | |
| 648 | |
| 649 #define X(val, init, name, name16, name8, scratch, preserved, stackptr, \ | |
| 650 frameptr, isI8, isInt, isFP) \ | |
| 651 if (scratch && (Include & RegSet_CallerSave)) \ | |
| 652 Registers[val] = true; \ | |
| 653 if (preserved && (Include & RegSet_CalleeSave)) \ | |
| 654 Registers[val] = true; \ | |
| 655 if (stackptr && (Include & RegSet_StackPointer)) \ | |
| 656 Registers[val] = true; \ | |
| 657 if (frameptr && (Include & RegSet_FramePointer)) \ | |
| 658 Registers[val] = true; \ | |
| 659 if (scratch && (Exclude & RegSet_CallerSave)) \ | |
| 660 Registers[val] = false; \ | |
| 661 if (preserved && (Exclude & RegSet_CalleeSave)) \ | |
| 662 Registers[val] = false; \ | |
| 663 if (stackptr && (Exclude & RegSet_StackPointer)) \ | |
| 664 Registers[val] = false; \ | |
| 665 if (frameptr && (Exclude & RegSet_FramePointer)) \ | |
| 666 Registers[val] = false; | |
| 667 | |
| 668 REGX8632_TABLE | |
| 669 | |
| 670 #undef X | |
| 671 | |
| 672 return Registers; | |
| 673 } | |
| 674 | |
| 675 void TargetX8632::lowerAlloca(const InstAlloca *Inst) { | |
| 676 IsEbpBasedFrame = true; | |
| 677 // TODO(sehr,stichnot): align allocated memory, keep stack aligned, minimize | |
| 678 // the number of adjustments of esp, etc. | |
| 679 Variable *esp = getPhysicalRegister(Reg_esp); | |
| 680 Operand *TotalSize = legalize(Inst->getSizeInBytes()); | |
| 681 Variable *Dest = Inst->getDest(); | |
| 682 _sub(esp, TotalSize); | |
| 683 _mov(Dest, esp); | |
| 684 } | |
| 685 | |
| 686 void TargetX8632::lowerArithmetic(const InstArithmetic *Inst) { | |
| 687 Variable *Dest = Inst->getDest(); | |
| 688 Operand *Src0 = legalize(Inst->getSrc(0)); | |
| 689 Operand *Src1 = legalize(Inst->getSrc(1)); | |
| 690 if (Dest->getType() == IceType_i64) { | |
| 691 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 692 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 693 Operand *Src0Lo = loOperand(Src0); | |
| 694 Operand *Src0Hi = hiOperand(Src0); | |
| 695 Operand *Src1Lo = loOperand(Src1); | |
| 696 Operand *Src1Hi = hiOperand(Src1); | |
| 697 Variable *T_Lo = NULL, *T_Hi = NULL; | |
| 698 switch (Inst->getOp()) { | |
| 699 case InstArithmetic::Add: | |
| 700 _mov(T_Lo, Src0Lo); | |
| 701 _add(T_Lo, Src1Lo); | |
| 702 _mov(DestLo, T_Lo); | |
| 703 _mov(T_Hi, Src0Hi); | |
| 704 _adc(T_Hi, Src1Hi); | |
| 705 _mov(DestHi, T_Hi); | |
| 706 break; | |
| 707 case InstArithmetic::And: | |
| 708 _mov(T_Lo, Src0Lo); | |
| 709 _and(T_Lo, Src1Lo); | |
| 710 _mov(DestLo, T_Lo); | |
| 711 _mov(T_Hi, Src0Hi); | |
| 712 _and(T_Hi, Src1Hi); | |
| 713 _mov(DestHi, T_Hi); | |
| 714 break; | |
| 715 case InstArithmetic::Or: | |
| 716 _mov(T_Lo, Src0Lo); | |
| 717 _or(T_Lo, Src1Lo); | |
| 718 _mov(DestLo, T_Lo); | |
| 719 _mov(T_Hi, Src0Hi); | |
| 720 _or(T_Hi, Src1Hi); | |
| 721 _mov(DestHi, T_Hi); | |
| 722 break; | |
| 723 case InstArithmetic::Xor: | |
| 724 _mov(T_Lo, Src0Lo); | |
| 725 _xor(T_Lo, Src1Lo); | |
| 726 _mov(DestLo, T_Lo); | |
| 727 _mov(T_Hi, Src0Hi); | |
| 728 _xor(T_Hi, Src1Hi); | |
| 729 _mov(DestHi, T_Hi); | |
| 730 break; | |
| 731 case InstArithmetic::Sub: | |
| 732 _mov(T_Lo, Src0Lo); | |
| 733 _sub(T_Lo, Src1Lo); | |
| 734 _mov(DestLo, T_Lo); | |
| 735 _mov(T_Hi, Src0Hi); | |
| 736 _sbb(T_Hi, Src1Hi); | |
| 737 _mov(DestHi, T_Hi); | |
| 738 break; | |
| 739 case InstArithmetic::Mul: { | |
| 740 Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; | |
| 741 Variable *T_4Lo = makeReg(IceType_i32, Reg_eax); | |
| 742 Variable *T_4Hi = makeReg(IceType_i32, Reg_edx); | |
| 743 // gcc does the following: | |
| 744 // a=b*c ==> | |
| 745 // t1 = b.hi; t1 *=(imul) c.lo | |
| 746 // t2 = c.hi; t2 *=(imul) b.lo | |
| 747 // t3:eax = b.lo | |
| 748 // t4.hi:edx,t4.lo:eax = t3:eax *(mul) c.lo | |
| 749 // a.lo = t4.lo | |
| 750 // t4.hi += t1 | |
| 751 // t4.hi += t2 | |
| 752 // a.hi = t4.hi | |
| 753 _mov(T_1, Src0Hi); | |
| 754 _imul(T_1, Src1Lo); | |
| 755 _mov(T_2, Src1Hi); | |
| 756 _imul(T_2, Src0Lo); | |
| 757 _mov(T_3, Src0Lo, Reg_eax); | |
| 758 _mul(T_4Lo, T_3, Src1Lo); | |
| 759 // The mul instruction produces two dest variables, edx:eax. We | |
| 760 // create a fake definition of edx to account for this. | |
| 761 Context.insert(InstFakeDef::create(Func, T_4Hi, T_4Lo)); | |
| 762 _mov(DestLo, T_4Lo); | |
| 763 _add(T_4Hi, T_1); | |
| 764 _add(T_4Hi, T_2); | |
| 765 _mov(DestHi, T_4Hi); | |
| 766 } break; | |
| 767 case InstArithmetic::Shl: { | |
| 768 // TODO: Refactor the similarities between Shl, Lshr, and Ashr. | |
| 769 // gcc does the following: | |
| 770 // a=b<<c ==> | |
| 771 // t1:ecx = c.lo & 0xff | |
| 772 // t2 = b.lo | |
| 773 // t3 = b.hi | |
| 774 // t3 = shld t3, t2, t1 | |
| 775 // t2 = shl t2, t1 | |
| 776 // test t1, 0x20 | |
| 777 // je L1 | |
| 778 // use(t3) | |
| 779 // t3 = t2 | |
| 780 // t2 = 0 | |
| 781 // L1: | |
| 782 // a.lo = t2 | |
| 783 // a.hi = t3 | |
| 784 Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; | |
| 785 Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); | |
| 786 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 787 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 788 _mov(T_1, Src1Lo, Reg_ecx); | |
| 789 _mov(T_2, Src0Lo); | |
| 790 _mov(T_3, Src0Hi); | |
| 791 _shld(T_3, T_2, T_1); | |
| 792 _shl(T_2, T_1); | |
| 793 _test(T_1, BitTest); | |
| 794 _br(InstX8632Br::Br_e, Label); | |
| 795 // Because of the intra-block control flow, we need to fake a use | |
| 796 // of T_3 to prevent its earlier definition from being dead-code | |
| 797 // eliminated in the presence of its later definition. | |
| 798 Context.insert(InstFakeUse::create(Func, T_3)); | |
| 799 _mov(T_3, T_2); | |
| 800 _mov(T_2, Zero); | |
| 801 Context.insert(Label); | |
| 802 _mov(DestLo, T_2); | |
| 803 _mov(DestHi, T_3); | |
| 804 } break; | |
| 805 case InstArithmetic::Lshr: { | |
| 806 // a=b>>c (unsigned) ==> | |
| 807 // t1:ecx = c.lo & 0xff | |
| 808 // t2 = b.lo | |
| 809 // t3 = b.hi | |
| 810 // t2 = shrd t2, t3, t1 | |
| 811 // t3 = shr t3, t1 | |
| 812 // test t1, 0x20 | |
| 813 // je L1 | |
| 814 // use(t2) | |
| 815 // t2 = t3 | |
| 816 // t3 = 0 | |
| 817 // L1: | |
| 818 // a.lo = t2 | |
| 819 // a.hi = t3 | |
| 820 Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; | |
| 821 Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); | |
| 822 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 823 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 824 _mov(T_1, Src1Lo, Reg_ecx); | |
| 825 _mov(T_2, Src0Lo); | |
| 826 _mov(T_3, Src0Hi); | |
| 827 _shrd(T_2, T_3, T_1); | |
| 828 _shr(T_3, T_1); | |
| 829 _test(T_1, BitTest); | |
| 830 _br(InstX8632Br::Br_e, Label); | |
| 831 // Because of the intra-block control flow, we need to fake a use | |
| 832 // of T_3 to prevent its earlier definition from being dead-code | |
| 833 // eliminated in the presence of its later definition. | |
| 834 Context.insert(InstFakeUse::create(Func, T_2)); | |
| 835 _mov(T_2, T_3); | |
| 836 _mov(T_3, Zero); | |
| 837 Context.insert(Label); | |
| 838 _mov(DestLo, T_2); | |
| 839 _mov(DestHi, T_3); | |
| 840 } break; | |
| 841 case InstArithmetic::Ashr: { | |
| 842 // a=b>>c (signed) ==> | |
| 843 // t1:ecx = c.lo & 0xff | |
| 844 // t2 = b.lo | |
| 845 // t3 = b.hi | |
| 846 // t2 = shrd t2, t3, t1 | |
| 847 // t3 = sar t3, t1 | |
| 848 // test t1, 0x20 | |
| 849 // je L1 | |
| 850 // use(t2) | |
| 851 // t2 = t3 | |
| 852 // t3 = sar t3, 0x1f | |
| 853 // L1: | |
| 854 // a.lo = t2 | |
| 855 // a.hi = t3 | |
| 856 Variable *T_1 = NULL, *T_2 = NULL, *T_3 = NULL; | |
| 857 Constant *BitTest = Ctx->getConstantInt(IceType_i32, 0x20); | |
| 858 Constant *SignExtend = Ctx->getConstantInt(IceType_i32, 0x1f); | |
| 859 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 860 _mov(T_1, Src1Lo, Reg_ecx); | |
| 861 _mov(T_2, Src0Lo); | |
| 862 _mov(T_3, Src0Hi); | |
| 863 _shrd(T_2, T_3, T_1); | |
| 864 _sar(T_3, T_1); | |
| 865 _test(T_1, BitTest); | |
| 866 _br(InstX8632Br::Br_e, Label); | |
| 867 // Because of the intra-block control flow, we need to fake a use | |
| 868 // of T_3 to prevent its earlier definition from being dead-code | |
| 869 // eliminated in the presence of its later definition. | |
| 870 Context.insert(InstFakeUse::create(Func, T_2)); | |
| 871 _mov(T_2, T_3); | |
| 872 _sar(T_3, SignExtend); | |
| 873 Context.insert(Label); | |
| 874 _mov(DestLo, T_2); | |
| 875 _mov(DestHi, T_3); | |
| 876 } break; | |
| 877 case InstArithmetic::Udiv: { | |
| 878 const SizeT MaxSrcs = 2; | |
| 879 InstCall *Call = makeHelperCall("__udivdi3", Dest, MaxSrcs); | |
| 880 Call->addArg(Inst->getSrc(0)); | |
| 881 Call->addArg(Inst->getSrc(1)); | |
| 882 lowerCall(Call); | |
| 883 } break; | |
| 884 case InstArithmetic::Sdiv: { | |
| 885 const SizeT MaxSrcs = 2; | |
| 886 InstCall *Call = makeHelperCall("__divdi3", Dest, MaxSrcs); | |
| 887 Call->addArg(Inst->getSrc(0)); | |
| 888 Call->addArg(Inst->getSrc(1)); | |
| 889 lowerCall(Call); | |
| 890 } break; | |
| 891 case InstArithmetic::Urem: { | |
| 892 const SizeT MaxSrcs = 2; | |
| 893 InstCall *Call = makeHelperCall("__umoddi3", Dest, MaxSrcs); | |
| 894 Call->addArg(Inst->getSrc(0)); | |
| 895 Call->addArg(Inst->getSrc(1)); | |
| 896 lowerCall(Call); | |
| 897 } break; | |
| 898 case InstArithmetic::Srem: { | |
| 899 const SizeT MaxSrcs = 2; | |
| 900 InstCall *Call = makeHelperCall("__moddi3", Dest, MaxSrcs); | |
| 901 Call->addArg(Inst->getSrc(0)); | |
| 902 Call->addArg(Inst->getSrc(1)); | |
| 903 lowerCall(Call); | |
| 904 } break; | |
| 905 case InstArithmetic::Fadd: | |
| 906 case InstArithmetic::Fsub: | |
| 907 case InstArithmetic::Fmul: | |
| 908 case InstArithmetic::Fdiv: | |
| 909 case InstArithmetic::Frem: | |
| 910 llvm_unreachable("FP instruction with i64 type"); | |
| 911 break; | |
| 912 } | |
| 913 } else { // Dest->getType() != IceType_i64 | |
| 914 Variable *T_edx = NULL; | |
| 915 Variable *T = NULL; | |
| 916 switch (Inst->getOp()) { | |
| 917 case InstArithmetic::Add: | |
| 918 _mov(T, Src0); | |
| 919 _add(T, Src1); | |
| 920 _mov(Dest, T); | |
| 921 break; | |
| 922 case InstArithmetic::And: | |
| 923 _mov(T, Src0); | |
| 924 _and(T, Src1); | |
| 925 _mov(Dest, T); | |
| 926 break; | |
| 927 case InstArithmetic::Or: | |
| 928 _mov(T, Src0); | |
| 929 _or(T, Src1); | |
| 930 _mov(Dest, T); | |
| 931 break; | |
| 932 case InstArithmetic::Xor: | |
| 933 _mov(T, Src0); | |
| 934 _xor(T, Src1); | |
| 935 _mov(Dest, T); | |
| 936 break; | |
| 937 case InstArithmetic::Sub: | |
| 938 _mov(T, Src0); | |
| 939 _sub(T, Src1); | |
| 940 _mov(Dest, T); | |
| 941 break; | |
| 942 case InstArithmetic::Mul: | |
| 943 // TODO: Optimize for llvm::isa<Constant>(Src1) | |
| 944 // TODO: Strength-reduce multiplications by a constant, | |
| 945 // particularly -1 and powers of 2. Advanced: use lea to | |
| 946 // multiply by 3, 5, 9. | |
| 947 // | |
| 948 // The 8-bit version of imul only allows the form "imul r/m8" | |
| 949 // where T must be in eax. | |
| 950 if (Dest->getType() == IceType_i8) | |
| 951 _mov(T, Src0, Reg_eax); | |
| 952 else | |
| 953 _mov(T, Src0); | |
| 954 _imul(T, Src1); | |
| 955 _mov(Dest, T); | |
| 956 break; | |
| 957 case InstArithmetic::Shl: | |
| 958 _mov(T, Src0); | |
| 959 if (!llvm::isa<Constant>(Src1)) | |
| 960 Src1 = legalizeToVar(Src1, false, Reg_ecx); | |
| 961 _shl(T, Src1); | |
| 962 _mov(Dest, T); | |
| 963 break; | |
| 964 case InstArithmetic::Lshr: | |
| 965 _mov(T, Src0); | |
| 966 if (!llvm::isa<Constant>(Src1)) | |
| 967 Src1 = legalizeToVar(Src1, false, Reg_ecx); | |
| 968 _shr(T, Src1); | |
| 969 _mov(Dest, T); | |
| 970 break; | |
| 971 case InstArithmetic::Ashr: | |
| 972 _mov(T, Src0); | |
| 973 if (!llvm::isa<Constant>(Src1)) | |
| 974 Src1 = legalizeToVar(Src1, false, Reg_ecx); | |
| 975 _sar(T, Src1); | |
| 976 _mov(Dest, T); | |
| 977 break; | |
| 978 case InstArithmetic::Udiv: | |
| 979 if (Dest->getType() == IceType_i8) { | |
| 980 Variable *T_ah = NULL; | |
| 981 Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); | |
| 982 _mov(T, Src0, Reg_eax); | |
| 983 _mov(T_ah, Zero, Reg_ah); | |
| 984 _div(T, Src1, T_ah); | |
| 985 _mov(Dest, T); | |
| 986 } else { | |
| 987 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 988 _mov(T, Src0, Reg_eax); | |
| 989 _mov(T_edx, Zero, Reg_edx); | |
| 990 _div(T, Src1, T_edx); | |
| 991 _mov(Dest, T); | |
| 992 } | |
| 993 break; | |
| 994 case InstArithmetic::Sdiv: | |
| 995 T_edx = makeReg(IceType_i32, Reg_edx); | |
| 996 _mov(T, Src0, Reg_eax); | |
| 997 _cdq(T_edx, T); | |
| 998 _idiv(T, Src1, T_edx); | |
| 999 _mov(Dest, T); | |
| 1000 break; | |
| 1001 case InstArithmetic::Urem: | |
| 1002 if (Dest->getType() == IceType_i8) { | |
| 1003 Variable *T_ah = NULL; | |
| 1004 Constant *Zero = Ctx->getConstantInt(IceType_i8, 0); | |
| 1005 _mov(T, Src0, Reg_eax); | |
| 1006 _mov(T_ah, Zero, Reg_ah); | |
| 1007 _div(T_ah, Src1, T); | |
| 1008 _mov(Dest, T_ah); | |
| 1009 } else { | |
| 1010 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 1011 _mov(T_edx, Zero, Reg_edx); | |
| 1012 _mov(T, Src0, Reg_eax); | |
| 1013 _div(T_edx, Src1, T); | |
| 1014 _mov(Dest, T_edx); | |
| 1015 } | |
| 1016 break; | |
| 1017 case InstArithmetic::Srem: | |
| 1018 T_edx = makeReg(IceType_i32, Reg_edx); | |
| 1019 _mov(T, Src0, Reg_eax); | |
| 1020 _cdq(T_edx, T); | |
| 1021 _idiv(T_edx, Src1, T); | |
| 1022 _mov(Dest, T_edx); | |
| 1023 break; | |
| 1024 case InstArithmetic::Fadd: | |
| 1025 _mov(T, Src0); | |
| 1026 _addss(T, Src1); | |
| 1027 _mov(Dest, T); | |
| 1028 break; | |
| 1029 case InstArithmetic::Fsub: | |
| 1030 _mov(T, Src0); | |
| 1031 _subss(T, Src1); | |
| 1032 _mov(Dest, T); | |
| 1033 break; | |
| 1034 case InstArithmetic::Fmul: | |
| 1035 _mov(T, Src0); | |
| 1036 _mulss(T, Src1); | |
| 1037 _mov(Dest, T); | |
| 1038 break; | |
| 1039 case InstArithmetic::Fdiv: | |
| 1040 _mov(T, Src0); | |
| 1041 _divss(T, Src1); | |
| 1042 _mov(Dest, T); | |
| 1043 break; | |
| 1044 case InstArithmetic::Frem: { | |
| 1045 const SizeT MaxSrcs = 2; | |
| 1046 Type Ty = Dest->getType(); | |
| 1047 InstCall *Call = | |
| 1048 makeHelperCall(Ty == IceType_f32 ? "fmodf" : "fmod", Dest, MaxSrcs); | |
| 1049 Call->addArg(Src0); | |
| 1050 Call->addArg(Src1); | |
| 1051 return lowerCall(Call); | |
| 1052 } break; | |
| 1053 } | |
| 1054 } | |
| 1055 } | |
| 1056 | |
| 1057 void TargetX8632::lowerAssign(const InstAssign *Inst) { | |
| 1058 Variable *Dest = Inst->getDest(); | |
| 1059 Operand *Src0 = legalize(Inst->getSrc(0)); | |
| 1060 assert(Dest->getType() == Src0->getType()); | |
| 1061 if (Dest->getType() == IceType_i64) { | |
| 1062 Operand *Src0Lo = loOperand(Src0); | |
| 1063 Operand *Src0Hi = hiOperand(Src0); | |
| 1064 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 1065 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 1066 Variable *T_Lo = NULL, *T_Hi = NULL; | |
| 1067 _mov(T_Lo, Src0Lo); | |
| 1068 _mov(DestLo, T_Lo); | |
| 1069 _mov(T_Hi, Src0Hi); | |
| 1070 _mov(DestHi, T_Hi); | |
| 1071 } else { | |
| 1072 const bool AllowOverlap = true; | |
| 1073 // RI is either a physical register or an immediate. | |
| 1074 Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap); | |
| 1075 _mov(Dest, RI); | |
| 1076 } | |
| 1077 } | |
| 1078 | |
| 1079 void TargetX8632::lowerBr(const InstBr *Inst) { | |
| 1080 if (Inst->isUnconditional()) { | |
| 1081 _br(Inst->getTargetUnconditional()); | |
| 1082 } else { | |
| 1083 Operand *Src0 = legalize(Inst->getCondition()); | |
| 1084 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 1085 _cmp(Src0, Zero); | |
| 1086 _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse()); | |
| 1087 } | |
| 1088 } | |
| 1089 | |
| 1090 void TargetX8632::lowerCall(const InstCall *Instr) { | |
| 1091 // Generate a sequence of push instructions, pushing right to left, | |
| 1092 // keeping track of stack offsets in case a push involves a stack | |
| 1093 // operand and we are using an esp-based frame. | |
| 1094 uint32_t StackOffset = 0; | |
| 1095 // TODO: If for some reason the call instruction gets dead-code | |
| 1096 // eliminated after lowering, we would need to ensure that the | |
| 1097 // pre-call push instructions and the post-call esp adjustment get | |
| 1098 // eliminated as well. | |
| 1099 for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) { | |
| 1100 Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1)); | |
| 1101 if (Arg->getType() == IceType_i64) { | |
| 1102 _push(hiOperand(Arg)); | |
| 1103 _push(loOperand(Arg)); | |
| 1104 } else if (Arg->getType() == IceType_f64) { | |
| 1105 // If the Arg turns out to be a memory operand, we need to push | |
| 1106 // 8 bytes, which requires two push instructions. This ends up | |
| 1107 // being somewhat clumsy in the current IR, so we use a | |
| 1108 // workaround. Force the operand into a (xmm) register, and | |
| 1109 // then push the register. An xmm register push is actually not | |
| 1110 // possible in x86, but the Push instruction emitter handles | |
| 1111 // this by decrementing the stack pointer and directly writing | |
| 1112 // the xmm register value. | |
| 1113 Variable *T = NULL; | |
| 1114 _mov(T, Arg); | |
| 1115 _push(T); | |
| 1116 } else { | |
| 1117 _push(Arg); | |
| 1118 } | |
| 1119 StackOffset += typeWidthInBytesOnStack(Arg->getType()); | |
| 1120 } | |
| 1121 // Generate the call instruction. Assign its result to a temporary | |
| 1122 // with high register allocation weight. | |
| 1123 Variable *Dest = Instr->getDest(); | |
| 1124 Variable *eax = NULL; // doubles as RegLo as necessary | |
| 1125 Variable *edx = NULL; | |
| 1126 if (Dest) { | |
| 1127 switch (Dest->getType()) { | |
| 1128 case IceType_NUM: | |
| 1129 llvm_unreachable("Invalid Call dest type"); | |
| 1130 break; | |
| 1131 case IceType_void: | |
| 1132 break; | |
| 1133 case IceType_i1: | |
| 1134 case IceType_i8: | |
| 1135 case IceType_i16: | |
| 1136 case IceType_i32: | |
| 1137 eax = makeReg(Dest->getType(), Reg_eax); | |
| 1138 break; | |
| 1139 case IceType_i64: | |
| 1140 eax = makeReg(IceType_i32, Reg_eax); | |
| 1141 edx = makeReg(IceType_i32, Reg_edx); | |
| 1142 break; | |
| 1143 case IceType_f32: | |
| 1144 case IceType_f64: | |
| 1145 // Leave eax==edx==NULL, and capture the result with the fstp | |
| 1146 // instruction. | |
| 1147 break; | |
| 1148 } | |
| 1149 } | |
| 1150 Operand *CallTarget = legalize(Instr->getCallTarget()); | |
| 1151 Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget); | |
| 1152 Context.insert(NewCall); | |
| 1153 if (edx) | |
| 1154 Context.insert(InstFakeDef::create(Func, edx)); | |
| 1155 | |
| 1156 // Add the appropriate offset to esp. | |
| 1157 if (StackOffset) { | |
| 1158 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); | |
| 1159 _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset)); | |
| 1160 } | |
| 1161 | |
| 1162 // Insert a register-kill pseudo instruction. | |
| 1163 VarList KilledRegs; | |
| 1164 for (SizeT i = 0; i < ScratchRegs.size(); ++i) { | |
| 1165 if (ScratchRegs[i]) | |
| 1166 KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i)); | |
| 1167 } | |
| 1168 if (!KilledRegs.empty()) { | |
| 1169 Inst *Kill = InstFakeKill::create(Func, KilledRegs, NewCall); | |
| 1170 Context.insert(Kill); | |
| 1171 } | |
| 1172 | |
| 1173 // Generate a FakeUse to keep the call live if necessary. | |
| 1174 if (Instr->hasSideEffects() && eax) { | |
| 1175 Inst *FakeUse = InstFakeUse::create(Func, eax); | |
| 1176 Context.insert(FakeUse); | |
| 1177 } | |
| 1178 | |
| 1179 // Generate Dest=eax assignment. | |
| 1180 if (Dest && eax) { | |
| 1181 if (edx) { | |
| 1182 split64(Dest); | |
| 1183 Variable *DestLo = Dest->getLo(); | |
| 1184 Variable *DestHi = Dest->getHi(); | |
| 1185 DestLo->setPreferredRegister(eax, false); | |
| 1186 DestHi->setPreferredRegister(edx, false); | |
| 1187 _mov(DestLo, eax); | |
| 1188 _mov(DestHi, edx); | |
| 1189 } else { | |
| 1190 Dest->setPreferredRegister(eax, false); | |
| 1191 _mov(Dest, eax); | |
| 1192 } | |
| 1193 } | |
| 1194 | |
| 1195 // Special treatment for an FP function which returns its result in | |
| 1196 // st(0). | |
| 1197 if (Dest && | |
| 1198 (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) { | |
| 1199 _fstp(Dest); | |
| 1200 // If Dest ends up being a physical xmm register, the fstp emit | |
| 1201 // code will route st(0) through a temporary stack slot. | |
| 1202 } | |
| 1203 } | |
| 1204 | |
| 1205 void TargetX8632::lowerCast(const InstCast *Inst) { | |
| 1206 // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap) | |
| 1207 InstCast::OpKind CastKind = Inst->getCastKind(); | |
| 1208 Variable *Dest = Inst->getDest(); | |
| 1209 // Src0RM is the source operand legalized to physical register or memory, but | |
| 1210 // not immediate, since the relevant x86 native instructions don't allow an | |
| 1211 // immediate operand. If the operand is an immediate, we could consider | |
| 1212 // computing the strength-reduced result at translation time, but we're | |
| 1213 // unlikely to see something like that in the bitcode that the optimizer | |
| 1214 // wouldn't have already taken care of. | |
| 1215 Operand *Src0RM = legalize(Inst->getSrc(0), Legal_Reg | Legal_Mem, true); | |
| 1216 switch (CastKind) { | |
| 1217 default: | |
| 1218 Func->setError("Cast type not supported"); | |
| 1219 return; | |
| 1220 case InstCast::Sext: | |
| 1221 if (Dest->getType() == IceType_i64) { | |
| 1222 // t1=movsx src; t2=t1; t2=sar t2, 31; dst.lo=t1; dst.hi=t2 | |
| 1223 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 1224 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 1225 Variable *T_Lo = makeReg(DestLo->getType()); | |
| 1226 if (Src0RM->getType() == IceType_i32) | |
| 1227 _mov(T_Lo, Src0RM); | |
| 1228 else | |
| 1229 _movsx(T_Lo, Src0RM); | |
| 1230 _mov(DestLo, T_Lo); | |
| 1231 Variable *T_Hi = NULL; | |
| 1232 Constant *Shift = Ctx->getConstantInt(IceType_i32, 31); | |
| 1233 _mov(T_Hi, T_Lo); | |
| 1234 _sar(T_Hi, Shift); | |
| 1235 _mov(DestHi, T_Hi); | |
| 1236 } else { | |
| 1237 // TODO: Sign-extend an i1 via "shl reg, 31; sar reg, 31", and | |
| 1238 // also copy to the high operand of a 64-bit variable. | |
| 1239 // t1 = movsx src; dst = t1 | |
| 1240 Variable *T = makeReg(Dest->getType()); | |
| 1241 _movsx(T, Src0RM); | |
| 1242 _mov(Dest, T); | |
| 1243 } | |
| 1244 break; | |
| 1245 case InstCast::Zext: | |
| 1246 if (Dest->getType() == IceType_i64) { | |
| 1247 // t1=movzx src; dst.lo=t1; dst.hi=0 | |
| 1248 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 1249 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 1250 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 1251 Variable *Tmp = makeReg(DestLo->getType()); | |
| 1252 if (Src0RM->getType() == IceType_i32) | |
| 1253 _mov(Tmp, Src0RM); | |
| 1254 else | |
| 1255 _movzx(Tmp, Src0RM); | |
| 1256 _mov(DestLo, Tmp); | |
| 1257 _mov(DestHi, Zero); | |
| 1258 } else if (Src0RM->getType() == IceType_i1) { | |
| 1259 // t = Src0RM; t &= 1; Dest = t | |
| 1260 Operand *One = Ctx->getConstantInt(IceType_i32, 1); | |
| 1261 Variable *T = makeReg(IceType_i32); | |
| 1262 _movzx(T, Src0RM); | |
| 1263 _and(T, One); | |
| 1264 _mov(Dest, T); | |
| 1265 } else { | |
| 1266 // t1 = movzx src; dst = t1 | |
| 1267 Variable *T = makeReg(Dest->getType()); | |
| 1268 _movzx(T, Src0RM); | |
| 1269 _mov(Dest, T); | |
| 1270 } | |
| 1271 break; | |
| 1272 case InstCast::Trunc: { | |
| 1273 if (Src0RM->getType() == IceType_i64) | |
| 1274 Src0RM = loOperand(Src0RM); | |
| 1275 // t1 = trunc Src0RM; Dest = t1 | |
| 1276 Variable *T = NULL; | |
| 1277 _mov(T, Src0RM); | |
| 1278 _mov(Dest, T); | |
| 1279 break; | |
| 1280 } | |
| 1281 case InstCast::Fptrunc: | |
| 1282 case InstCast::Fpext: { | |
| 1283 // t1 = cvt Src0RM; Dest = t1 | |
| 1284 Variable *T = makeReg(Dest->getType()); | |
| 1285 _cvt(T, Src0RM); | |
| 1286 _mov(Dest, T); | |
| 1287 break; | |
| 1288 } | |
| 1289 case InstCast::Fptosi: | |
| 1290 if (Dest->getType() == IceType_i64) { | |
| 1291 // Use a helper for converting floating-point values to 64-bit | |
| 1292 // integers. SSE2 appears to have no way to convert from xmm | |
| 1293 // registers to something like the edx:eax register pair, and | |
| 1294 // gcc and clang both want to use x87 instructions complete with | |
| 1295 // temporary manipulation of the status word. This helper is | |
| 1296 // not needed for x86-64. | |
| 1297 split64(Dest); | |
| 1298 const SizeT MaxSrcs = 1; | |
| 1299 Type SrcType = Inst->getSrc(0)->getType(); | |
| 1300 InstCall *Call = makeHelperCall( | |
| 1301 SrcType == IceType_f32 ? "cvtftosi64" : "cvtdtosi64", Dest, MaxSrcs); | |
| 1302 Call->addArg(Inst->getSrc(0)); | |
| 1303 lowerCall(Call); | |
| 1304 } else { | |
| 1305 // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type | |
| 1306 Variable *T_1 = makeReg(IceType_i32); | |
| 1307 Variable *T_2 = makeReg(Dest->getType()); | |
| 1308 _cvt(T_1, Src0RM); | |
| 1309 _mov(T_2, T_1); // T_1 and T_2 may have different integer types | |
| 1310 _mov(Dest, T_2); | |
| 1311 T_2->setPreferredRegister(T_1, true); | |
| 1312 } | |
| 1313 break; | |
| 1314 case InstCast::Fptoui: | |
| 1315 if (Dest->getType() == IceType_i64 || Dest->getType() == IceType_i32) { | |
| 1316 // Use a helper for both x86-32 and x86-64. | |
| 1317 split64(Dest); | |
| 1318 const SizeT MaxSrcs = 1; | |
| 1319 Type DestType = Dest->getType(); | |
| 1320 Type SrcType = Src0RM->getType(); | |
| 1321 IceString DstSubstring = (DestType == IceType_i64 ? "64" : "32"); | |
| 1322 IceString SrcSubstring = (SrcType == IceType_f32 ? "f" : "d"); | |
| 1323 // Possibilities are cvtftoui32, cvtdtoui32, cvtftoui64, cvtdtoui64 | |
| 1324 IceString TargetString = "cvt" + SrcSubstring + "toui" + DstSubstring; | |
| 1325 InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); | |
| 1326 Call->addArg(Inst->getSrc(0)); | |
| 1327 lowerCall(Call); | |
| 1328 return; | |
| 1329 } else { | |
| 1330 // t1.i32 = cvt Src0RM; t2.dest_type = t1; Dest = t2.dest_type | |
| 1331 Variable *T_1 = makeReg(IceType_i32); | |
| 1332 Variable *T_2 = makeReg(Dest->getType()); | |
| 1333 _cvt(T_1, Src0RM); | |
| 1334 _mov(T_2, T_1); // T_1 and T_2 may have different integer types | |
| 1335 _mov(Dest, T_2); | |
| 1336 T_2->setPreferredRegister(T_1, true); | |
| 1337 } | |
| 1338 break; | |
| 1339 case InstCast::Sitofp: | |
| 1340 if (Src0RM->getType() == IceType_i64) { | |
| 1341 // Use a helper for x86-32. | |
| 1342 const SizeT MaxSrcs = 1; | |
| 1343 Type DestType = Dest->getType(); | |
| 1344 InstCall *Call = makeHelperCall( | |
| 1345 DestType == IceType_f32 ? "cvtsi64tof" : "cvtsi64tod", Dest, MaxSrcs); | |
| 1346 Call->addArg(Inst->getSrc(0)); | |
| 1347 lowerCall(Call); | |
| 1348 return; | |
| 1349 } else { | |
| 1350 // Sign-extend the operand. | |
| 1351 // t1.i32 = movsx Src0RM; t2 = Cvt t1.i32; Dest = t2 | |
| 1352 Variable *T_1 = makeReg(IceType_i32); | |
| 1353 Variable *T_2 = makeReg(Dest->getType()); | |
| 1354 if (Src0RM->getType() == IceType_i32) | |
| 1355 _mov(T_1, Src0RM); | |
| 1356 else | |
| 1357 _movsx(T_1, Src0RM); | |
| 1358 _cvt(T_2, T_1); | |
| 1359 _mov(Dest, T_2); | |
| 1360 } | |
| 1361 break; | |
| 1362 case InstCast::Uitofp: | |
| 1363 if (Src0RM->getType() == IceType_i64 || Src0RM->getType() == IceType_i32) { | |
| 1364 // Use a helper for x86-32 and x86-64. Also use a helper for | |
| 1365 // i32 on x86-32. | |
| 1366 const SizeT MaxSrcs = 1; | |
| 1367 Type DestType = Dest->getType(); | |
| 1368 IceString SrcSubstring = (Src0RM->getType() == IceType_i64 ? "64" : "32"); | |
| 1369 IceString DstSubstring = (DestType == IceType_f32 ? "f" : "d"); | |
| 1370 // Possibilities are cvtui32tof, cvtui32tod, cvtui64tof, cvtui64tod | |
| 1371 IceString TargetString = "cvtui" + SrcSubstring + "to" + DstSubstring; | |
| 1372 InstCall *Call = makeHelperCall(TargetString, Dest, MaxSrcs); | |
| 1373 Call->addArg(Inst->getSrc(0)); | |
| 1374 lowerCall(Call); | |
| 1375 return; | |
| 1376 } else { | |
| 1377 // Zero-extend the operand. | |
| 1378 // t1.i32 = movzx Src0RM; t2 = Cvt t1.i32; Dest = t2 | |
| 1379 Variable *T_1 = makeReg(IceType_i32); | |
| 1380 Variable *T_2 = makeReg(Dest->getType()); | |
| 1381 if (Src0RM->getType() == IceType_i32) | |
| 1382 _mov(T_1, Src0RM); | |
| 1383 else | |
| 1384 _movzx(T_1, Src0RM); | |
| 1385 _cvt(T_2, T_1); | |
| 1386 _mov(Dest, T_2); | |
| 1387 } | |
| 1388 break; | |
| 1389 case InstCast::Bitcast: | |
| 1390 if (Dest->getType() == Src0RM->getType()) { | |
| 1391 InstAssign *Assign = InstAssign::create(Func, Dest, Src0RM); | |
| 1392 lowerAssign(Assign); | |
| 1393 llvm_unreachable("Pointer bitcasts aren't lowered correctly."); | |
| 1394 return; | |
| 1395 } | |
| 1396 switch (Dest->getType()) { | |
| 1397 default: | |
| 1398 llvm_unreachable("Unexpected Bitcast dest type"); | |
| 1399 case IceType_i32: | |
| 1400 case IceType_f32: { | |
| 1401 Type DestType = Dest->getType(); | |
| 1402 Type SrcType = Src0RM->getType(); | |
| 1403 assert((DestType == IceType_i32 && SrcType == IceType_f32) || | |
| 1404 (DestType == IceType_f32 && SrcType == IceType_i32)); | |
| 1405 // a.i32 = bitcast b.f32 ==> | |
| 1406 // t.f32 = b.f32 | |
| 1407 // s.f32 = spill t.f32 | |
| 1408 // a.i32 = s.f32 | |
| 1409 Variable *T = NULL; | |
| 1410 // TODO: Should be able to force a spill setup by calling legalize() with | |
| 1411 // Legal_Mem and not Legal_Reg or Legal_Imm. | |
| 1412 Variable *Spill = Func->makeVariable(SrcType, Context.getNode()); | |
| 1413 Spill->setWeight(RegWeight::Zero); | |
| 1414 Spill->setPreferredRegister(Dest, true); | |
| 1415 _mov(T, Src0RM); | |
| 1416 _mov(Spill, T); | |
| 1417 _mov(Dest, Spill); | |
| 1418 } break; | |
| 1419 case IceType_i64: { | |
| 1420 assert(Src0RM->getType() == IceType_f64); | |
| 1421 // a.i64 = bitcast b.f64 ==> | |
| 1422 // s.f64 = spill b.f64 | |
| 1423 // t_lo.i32 = lo(s.f64) | |
| 1424 // a_lo.i32 = t_lo.i32 | |
| 1425 // t_hi.i32 = hi(s.f64) | |
| 1426 // a_hi.i32 = t_hi.i32 | |
| 1427 Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); | |
| 1428 Spill->setWeight(RegWeight::Zero); | |
| 1429 Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); | |
| 1430 _mov(Spill, Src0RM); | |
| 1431 | |
| 1432 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 1433 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 1434 Variable *T_Lo = makeReg(IceType_i32); | |
| 1435 Variable *T_Hi = makeReg(IceType_i32); | |
| 1436 VariableSplit *SpillLo = | |
| 1437 VariableSplit::create(Func, Spill, VariableSplit::Low); | |
| 1438 VariableSplit *SpillHi = | |
| 1439 VariableSplit::create(Func, Spill, VariableSplit::High); | |
| 1440 | |
| 1441 _mov(T_Lo, SpillLo); | |
| 1442 _mov(DestLo, T_Lo); | |
| 1443 _mov(T_Hi, SpillHi); | |
| 1444 _mov(DestHi, T_Hi); | |
| 1445 } break; | |
| 1446 case IceType_f64: { | |
| 1447 assert(Src0RM->getType() == IceType_i64); | |
| 1448 // a.f64 = bitcast b.i64 ==> | |
| 1449 // t_lo.i32 = b_lo.i32 | |
| 1450 // lo(s.f64) = t_lo.i32 | |
| 1451 // FakeUse(s.f64) | |
| 1452 // t_hi.i32 = b_hi.i32 | |
| 1453 // hi(s.f64) = t_hi.i32 | |
| 1454 // a.f64 = s.f64 | |
| 1455 Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); | |
| 1456 Spill->setWeight(RegWeight::Zero); | |
| 1457 Spill->setPreferredRegister(Dest, true); | |
| 1458 | |
| 1459 Context.insert(InstFakeDef::create(Func, Spill)); | |
| 1460 | |
| 1461 Variable *T_Lo = NULL, *T_Hi = NULL; | |
| 1462 VariableSplit *SpillLo = | |
| 1463 VariableSplit::create(Func, Spill, VariableSplit::Low); | |
| 1464 VariableSplit *SpillHi = | |
| 1465 VariableSplit::create(Func, Spill, VariableSplit::High); | |
| 1466 _mov(T_Lo, loOperand(Src0RM)); | |
| 1467 _store(T_Lo, SpillLo); | |
| 1468 _mov(T_Hi, hiOperand(Src0RM)); | |
| 1469 _store(T_Hi, SpillHi); | |
| 1470 _mov(Dest, Spill); | |
| 1471 } break; | |
| 1472 } | |
| 1473 break; | |
| 1474 } | |
| 1475 } | |
| 1476 | |
| 1477 void TargetX8632::lowerFcmp(const InstFcmp *Inst) { | |
| 1478 Operand *Src0 = Inst->getSrc(0); | |
| 1479 Operand *Src1 = Inst->getSrc(1); | |
| 1480 Variable *Dest = Inst->getDest(); | |
| 1481 // Lowering a = fcmp cond, b, c | |
| 1482 // ucomiss b, c /* only if C1 != Br_None */ | |
| 1483 // /* but swap b,c order if SwapOperands==true */ | |
| 1484 // mov a, <default> | |
| 1485 // j<C1> label /* only if C1 != Br_None */ | |
| 1486 // j<C2> label /* only if C2 != Br_None */ | |
| 1487 // FakeUse(a) /* only if C1 != Br_None */ | |
| 1488 // mov a, !<default> /* only if C1 != Br_None */ | |
| 1489 // label: /* only if C1 != Br_None */ | |
| 1490 InstFcmp::FCond Condition = Inst->getCondition(); | |
| 1491 size_t Index = static_cast<size_t>(Condition); | |
| 1492 assert(Index < TableFcmpSize); | |
| 1493 // The table is indexed by InstFcmp::Condition. Make sure it didn't fall | |
|
jvoung (off chromium)
2014/05/19 20:28:54
Should have already been checked by xMacroIntegrit
Jim Stichnoth
2014/05/20 18:20:08
Ah, that comment is for an assert that used to be
| |
| 1494 // out of order. | |
| 1495 if (TableFcmp[Index].SwapOperands) { | |
| 1496 Operand *Tmp = Src0; | |
| 1497 Src0 = Src1; | |
| 1498 Src1 = Tmp; | |
| 1499 } | |
| 1500 bool HasC1 = (TableFcmp[Index].C1 != InstX8632Br::Br_None); | |
| 1501 bool HasC2 = (TableFcmp[Index].C2 != InstX8632Br::Br_None); | |
| 1502 if (HasC1) { | |
| 1503 Src0 = legalize(Src0); | |
| 1504 Operand *Src1RM = legalize(Src1, Legal_Reg | Legal_Mem); | |
| 1505 Variable *T = NULL; | |
| 1506 _mov(T, Src0); | |
| 1507 _ucomiss(T, Src1RM); | |
| 1508 } | |
| 1509 Constant *Default = | |
| 1510 Ctx->getConstantInt(IceType_i32, TableFcmp[Index].Default); | |
| 1511 _mov(Dest, Default); | |
| 1512 if (HasC1) { | |
| 1513 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 1514 _br(TableFcmp[Index].C1, Label); | |
| 1515 if (HasC2) { | |
| 1516 _br(TableFcmp[Index].C2, Label); | |
| 1517 } | |
| 1518 Context.insert(InstFakeUse::create(Func, Dest)); | |
| 1519 Constant *NonDefault = | |
| 1520 Ctx->getConstantInt(IceType_i32, !TableFcmp[Index].Default); | |
| 1521 _mov(Dest, NonDefault); | |
| 1522 Context.insert(Label); | |
| 1523 } | |
| 1524 } | |
| 1525 | |
| 1526 void TargetX8632::lowerIcmp(const InstIcmp *Inst) { | |
| 1527 Operand *Src0 = legalize(Inst->getSrc(0)); | |
| 1528 Operand *Src1 = legalize(Inst->getSrc(1)); | |
| 1529 Variable *Dest = Inst->getDest(); | |
| 1530 | |
| 1531 // If Src1 is an immediate, or known to be a physical register, we can | |
| 1532 // allow Src0 to be a memory operand. Otherwise, Src0 must be copied into | |
| 1533 // a physical register. (Actually, either Src0 or Src1 can be chosen for | |
| 1534 // the physical register, but unfortunately we have to commit to one or | |
| 1535 // the other before register allocation.) | |
| 1536 bool IsSrc1ImmOrReg = false; | |
|
jvoung (off chromium)
2014/05/19 20:28:54
Can move this to below the i64 case, since it's no
Jim Stichnoth
2014/05/20 18:20:08
Done.
| |
| 1537 if (llvm::isa<Constant>(Src1)) | |
| 1538 IsSrc1ImmOrReg = true; | |
| 1539 else if (Variable *Var = llvm::dyn_cast<Variable>(Src1)) { | |
| 1540 if (Var->hasReg()) | |
| 1541 IsSrc1ImmOrReg = true; | |
| 1542 } | |
| 1543 | |
| 1544 // a=icmp cond, b, c ==> cmp b,c; a=1; br cond,L1; FakeUse(a); a=0; L1: | |
| 1545 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 1546 Constant *One = Ctx->getConstantInt(IceType_i32, 1); | |
| 1547 if (Src0->getType() == IceType_i64) { | |
| 1548 InstIcmp::ICond Condition = Inst->getCondition(); | |
| 1549 size_t Index = static_cast<size_t>(Condition); | |
| 1550 assert(Index < TableIcmp64Size); | |
| 1551 // The table is indexed by InstIcmp::Condition. Make sure it didn't fall | |
| 1552 // out of order. | |
| 1553 Operand *Src1LoRI = legalize(loOperand(Src1), Legal_Reg | Legal_Imm); | |
| 1554 Operand *Src1HiRI = legalize(hiOperand(Src1), Legal_Reg | Legal_Imm); | |
| 1555 if (Condition == InstIcmp::Eq || Condition == InstIcmp::Ne) { | |
| 1556 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 1557 _mov(Dest, (Condition == InstIcmp::Eq ? Zero : One)); | |
| 1558 _cmp(loOperand(Src0), Src1LoRI); | |
| 1559 _br(InstX8632Br::Br_ne, Label); | |
| 1560 _cmp(hiOperand(Src0), Src1HiRI); | |
| 1561 _br(InstX8632Br::Br_ne, Label); | |
| 1562 Context.insert(InstFakeUse::create(Func, Dest)); | |
| 1563 _mov(Dest, (Condition == InstIcmp::Eq ? One : Zero)); | |
| 1564 Context.insert(Label); | |
| 1565 } else { | |
| 1566 InstX8632Label *LabelFalse = InstX8632Label::create(Func, this); | |
| 1567 InstX8632Label *LabelTrue = InstX8632Label::create(Func, this); | |
| 1568 _mov(Dest, One); | |
| 1569 _cmp(hiOperand(Src0), Src1HiRI); | |
| 1570 _br(TableIcmp64[Index].C1, LabelTrue); | |
| 1571 _br(TableIcmp64[Index].C2, LabelFalse); | |
| 1572 _cmp(loOperand(Src0), Src1LoRI); | |
| 1573 _br(TableIcmp64[Index].C3, LabelTrue); | |
| 1574 Context.insert(LabelFalse); | |
| 1575 Context.insert(InstFakeUse::create(Func, Dest)); | |
| 1576 _mov(Dest, Zero); | |
| 1577 Context.insert(LabelTrue); | |
| 1578 } | |
| 1579 return; | |
| 1580 } | |
| 1581 // cmp b, c | |
|
jvoung (off chromium)
2014/05/19 20:28:54
Similarly, would it be worth TODO use _test when o
Jim Stichnoth
2014/05/20 18:20:08
I think this is better as a later peephole, since
| |
| 1582 Operand *Src0New = | |
| 1583 legalize(Src0, IsSrc1ImmOrReg ? Legal_All : Legal_Reg, true); | |
| 1584 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 1585 _cmp(Src0New, Src1); | |
| 1586 _mov(Dest, One); | |
| 1587 _br(getIcmp32Mapping(Inst->getCondition()), Label); | |
| 1588 Context.insert(InstFakeUse::create(Func, Dest)); | |
| 1589 _mov(Dest, Zero); | |
| 1590 Context.insert(Label); | |
| 1591 } | |
| 1592 | |
| 1593 void TargetX8632::lowerLoad(const InstLoad *Inst) { | |
| 1594 // A Load instruction can be treated the same as an Assign | |
| 1595 // instruction, after the source operand is transformed into an | |
| 1596 // OperandX8632Mem operand. Note that the address mode | |
| 1597 // optimization already creates an OperandX8632Mem operand, so it | |
| 1598 // doesn't need another level of transformation. | |
| 1599 Type Ty = Inst->getDest()->getType(); | |
| 1600 Operand *Src0 = Inst->getSourceAddress(); | |
| 1601 // Address mode optimization already creates an OperandX8632Mem | |
| 1602 // operand, so it doesn't need another level of transformation. | |
| 1603 if (!llvm::isa<OperandX8632Mem>(Src0)) { | |
| 1604 Variable *Base = llvm::dyn_cast<Variable>(Src0); | |
| 1605 Constant *Offset = llvm::dyn_cast<Constant>(Src0); | |
| 1606 assert(Base || Offset); | |
| 1607 Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset); | |
| 1608 } | |
| 1609 | |
| 1610 InstAssign *Assign = InstAssign::create(Func, Inst->getDest(), Src0); | |
| 1611 lowerAssign(Assign); | |
| 1612 } | |
| 1613 | |
| 1614 void TargetX8632::lowerPhi(const InstPhi * /*Inst*/) { | |
| 1615 Func->setError("Phi found in regular instruction list"); | |
| 1616 } | |
| 1617 | |
| 1618 void TargetX8632::lowerRet(const InstRet *Inst) { | |
| 1619 Variable *Reg = NULL; | |
| 1620 if (Inst->hasRetValue()) { | |
| 1621 Operand *Src0 = legalize(Inst->getRetValue()); | |
| 1622 if (Src0->getType() == IceType_i64) { | |
| 1623 Variable *eax = legalizeToVar(loOperand(Src0), false, Reg_eax); | |
| 1624 Variable *edx = legalizeToVar(hiOperand(Src0), false, Reg_edx); | |
| 1625 Reg = eax; | |
| 1626 Context.insert(InstFakeUse::create(Func, edx)); | |
| 1627 } else if (Src0->getType() == IceType_f32 || | |
| 1628 Src0->getType() == IceType_f64) { | |
| 1629 _fld(Src0); | |
| 1630 } else { | |
| 1631 _mov(Reg, Src0, Reg_eax); | |
| 1632 } | |
| 1633 } | |
| 1634 _ret(Reg); | |
| 1635 // Add a fake use of esp to make sure esp stays alive for the entire | |
| 1636 // function. Otherwise post-call esp adjustments get dead-code | |
| 1637 // eliminated. TODO: Are there more places where the fake use | |
| 1638 // should be inserted? E.g. "void f(int n){while(1) g(n);}" may not | |
| 1639 // have a ret instruction. | |
| 1640 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); | |
| 1641 Context.insert(InstFakeUse::create(Func, esp)); | |
| 1642 } | |
| 1643 | |
| 1644 void TargetX8632::lowerSelect(const InstSelect *Inst) { | |
| 1645 // a=d?b:c ==> cmp d,0; a=b; jne L1; FakeUse(a); a=c; L1: | |
| 1646 Variable *Dest = Inst->getDest(); | |
| 1647 Operand *SrcT = Inst->getTrueOperand(); | |
| 1648 Operand *SrcF = Inst->getFalseOperand(); | |
| 1649 Operand *Condition = legalize(Inst->getCondition()); | |
| 1650 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | |
| 1651 InstX8632Label *Label = InstX8632Label::create(Func, this); | |
| 1652 | |
| 1653 if (Dest->getType() == IceType_i64) { | |
| 1654 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
| 1655 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
| 1656 Operand *SrcLoRI = legalize(loOperand(SrcT), Legal_Reg | Legal_Imm, true); | |
| 1657 Operand *SrcHiRI = legalize(hiOperand(SrcT), Legal_Reg | Legal_Imm, true); | |
| 1658 _cmp(Condition, Zero); | |
|
jvoung (off chromium)
2014/05/19 20:28:54
Another place w/ _test vs _cmp
Jim Stichnoth
2014/05/20 18:20:08
Similar situation where it's unlikely that we can
| |
| 1659 _mov(DestLo, SrcLoRI); | |
| 1660 _mov(DestHi, SrcHiRI); | |
| 1661 _br(InstX8632Br::Br_ne, Label); | |
| 1662 Context.insert(InstFakeUse::create(Func, DestLo)); | |
| 1663 Context.insert(InstFakeUse::create(Func, DestHi)); | |
| 1664 Operand *SrcFLo = loOperand(SrcF); | |
| 1665 Operand *SrcFHi = hiOperand(SrcF); | |
| 1666 SrcLoRI = legalize(SrcFLo, Legal_Reg | Legal_Imm, true); | |
| 1667 SrcHiRI = legalize(SrcFHi, Legal_Reg | Legal_Imm, true); | |
| 1668 _mov(DestLo, SrcLoRI); | |
| 1669 _mov(DestHi, SrcHiRI); | |
| 1670 } else { | |
| 1671 _cmp(Condition, Zero); | |
| 1672 SrcT = legalize(SrcT, Legal_Reg | Legal_Imm, true); | |
| 1673 _mov(Dest, SrcT); | |
| 1674 _br(InstX8632Br::Br_ne, Label); | |
| 1675 Context.insert(InstFakeUse::create(Func, Dest)); | |
| 1676 SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true); | |
| 1677 _mov(Dest, SrcF); | |
| 1678 } | |
| 1679 | |
| 1680 Context.insert(Label); | |
| 1681 } | |
| 1682 | |
| 1683 void TargetX8632::lowerStore(const InstStore *Inst) { | |
| 1684 Operand *Value = Inst->getData(); | |
| 1685 Operand *Addr = Inst->getAddr(); | |
| 1686 OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr); | |
| 1687 // Address mode optimization already creates an OperandX8632Mem | |
| 1688 // operand, so it doesn't need another level of transformation. | |
| 1689 if (!NewAddr) { | |
| 1690 // The address will be either a constant (which represents a global | |
| 1691 // variable) or a variable, so either the Base or Offset component | |
| 1692 // of the OperandX8632Mem will be set. | |
| 1693 Variable *Base = llvm::dyn_cast<Variable>(Addr); | |
| 1694 Constant *Offset = llvm::dyn_cast<Constant>(Addr); | |
| 1695 assert(Base || Offset); | |
| 1696 NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset); | |
| 1697 } | |
| 1698 NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr)); | |
| 1699 | |
| 1700 if (NewAddr->getType() == IceType_i64) { | |
| 1701 Value = legalize(Value); | |
| 1702 Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true); | |
| 1703 Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true); | |
| 1704 _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr))); | |
| 1705 _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr))); | |
| 1706 } else { | |
| 1707 Value = legalize(Value, Legal_Reg | Legal_Imm, true); | |
| 1708 _store(Value, NewAddr); | |
| 1709 } | |
| 1710 } | |
| 1711 | |
| 1712 void TargetX8632::lowerSwitch(const InstSwitch *Inst) { | |
| 1713 // This implements the most naive possible lowering. | |
| 1714 // cmp a,val[0]; jeq label[0]; cmp a,val[1]; jeq label[1]; ... jmp default | |
| 1715 Operand *Src0 = Inst->getComparison(); | |
| 1716 SizeT NumCases = Inst->getNumCases(); | |
| 1717 // OK, we'll be slightly less naive by forcing Src into a physical | |
| 1718 // register if there are 2 or more uses. | |
| 1719 if (NumCases >= 2) | |
| 1720 Src0 = legalizeToVar(Src0, true); | |
| 1721 else | |
| 1722 Src0 = legalize(Src0, Legal_All, true); | |
| 1723 for (SizeT I = 0; I < NumCases; ++I) { | |
| 1724 Operand *Value = Ctx->getConstantInt(IceType_i32, Inst->getValue(I)); | |
| 1725 _cmp(Src0, Value); | |
| 1726 _br(InstX8632Br::Br_e, Inst->getLabel(I)); | |
| 1727 } | |
| 1728 | |
| 1729 _br(Inst->getLabelDefault()); | |
| 1730 } | |
| 1731 | |
| 1732 void TargetX8632::lowerUnreachable(const InstUnreachable * /*Inst*/) { | |
| 1733 const SizeT MaxSrcs = 0; | |
| 1734 Variable *Dest = NULL; | |
| 1735 InstCall *Call = makeHelperCall("ice_unreachable", Dest, MaxSrcs); | |
| 1736 lowerCall(Call); | |
| 1737 } | |
| 1738 | |
| 1739 Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, | |
| 1740 bool AllowOverlap, int32_t RegNum) { | |
| 1741 // Assert that a physical register is allowed. To date, all calls | |
| 1742 // to legalize() allow a physical register. If a physical register | |
| 1743 // needs to be explicitly disallowed, then new code will need to be | |
| 1744 // written to force a spill. | |
| 1745 assert(Allowed & Legal_Reg); | |
| 1746 // If we're asking for a specific physical register, make sure we're | |
| 1747 // not allowing any other operand kinds. (This could be future | |
| 1748 // work, e.g. allow the shl shift amount to be either an immediate | |
| 1749 // or in ecx.) | |
| 1750 assert(RegNum == Variable::NoRegister || Allowed == Legal_Reg); | |
| 1751 if (OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(From)) { | |
| 1752 // Before doing anything with a Mem operand, we need to ensure | |
| 1753 // that the Base and Index components are in physical registers. | |
| 1754 Variable *Base = Mem->getBase(); | |
| 1755 Variable *Index = Mem->getIndex(); | |
| 1756 Variable *RegBase = NULL; | |
| 1757 Variable *RegIndex = NULL; | |
| 1758 if (Base) { | |
| 1759 RegBase = legalizeToVar(Base, true); | |
| 1760 } | |
| 1761 if (Index) { | |
| 1762 RegIndex = legalizeToVar(Index, true); | |
| 1763 } | |
| 1764 if (Base != RegBase || Index != RegIndex) { | |
| 1765 From = | |
| 1766 OperandX8632Mem::create(Func, Mem->getType(), RegBase, | |
| 1767 Mem->getOffset(), RegIndex, Mem->getShift()); | |
| 1768 } | |
| 1769 | |
| 1770 if (!(Allowed & Legal_Mem)) { | |
| 1771 Variable *Reg = makeReg(From->getType(), RegNum); | |
| 1772 _mov(Reg, From, RegNum); | |
| 1773 From = Reg; | |
| 1774 } | |
| 1775 return From; | |
| 1776 } | |
| 1777 if (llvm::isa<Constant>(From)) { | |
| 1778 if (!(Allowed & Legal_Imm)) { | |
| 1779 Variable *Reg = makeReg(From->getType(), RegNum); | |
| 1780 _mov(Reg, From); | |
| 1781 From = Reg; | |
| 1782 } | |
| 1783 return From; | |
| 1784 } | |
| 1785 if (Variable *Var = llvm::dyn_cast<Variable>(From)) { | |
| 1786 // We need a new physical register for the operand if: | |
| 1787 // Mem is not allowed and Var->getRegNum() is unknown, or | |
| 1788 // RegNum is required and Var->getRegNum() doesn't match. | |
| 1789 if ((!(Allowed & Legal_Mem) && !Var->hasReg()) || | |
| 1790 (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) { | |
| 1791 Variable *Reg = makeReg(From->getType(), RegNum); | |
| 1792 if (RegNum == Variable::NoRegister) { | |
| 1793 Reg->setPreferredRegister(Var, AllowOverlap); | |
| 1794 } | |
| 1795 _mov(Reg, From); | |
| 1796 From = Reg; | |
| 1797 } | |
| 1798 return From; | |
| 1799 } | |
| 1800 llvm_unreachable("Unhandled operand kind in legalize()"); | |
| 1801 return From; | |
| 1802 } | |
| 1803 | |
| 1804 // Provide a trivial wrapper to legalize() for this common usage. | |
| 1805 Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, | |
| 1806 int32_t RegNum) { | |
| 1807 return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); | |
| 1808 } | |
| 1809 | |
| 1810 Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { | |
| 1811 Variable *Reg = Func->makeVariable(Type, Context.getNode()); | |
| 1812 if (RegNum == Variable::NoRegister) | |
| 1813 Reg->setWeightInfinite(); | |
| 1814 else | |
| 1815 Reg->setRegNum(RegNum); | |
| 1816 return Reg; | |
| 1817 } | |
| 1818 | |
| 1819 void TargetX8632::postLower() { | |
| 1820 if (Ctx->getOptLevel() != Opt_m1) | |
| 1821 return; | |
| 1822 // TODO: Avoid recomputing WhiteList every instruction. | |
| 1823 llvm::SmallBitVector WhiteList = getRegisterSet(RegSet_All, RegSet_None); | |
| 1824 // Make one pass to black-list pre-colored registers. TODO: If | |
| 1825 // there was some prior register allocation pass that made register | |
| 1826 // assignments, those registers need to be black-listed here as | |
| 1827 // well. | |
| 1828 for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; | |
| 1829 ++I) { | |
| 1830 const Inst *Inst = *I; | |
| 1831 if (Inst->isDeleted()) | |
| 1832 continue; | |
| 1833 if (llvm::isa<InstFakeKill>(Inst)) | |
| 1834 continue; | |
| 1835 SizeT VarIndex = 0; | |
| 1836 for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { | |
| 1837 Operand *Src = Inst->getSrc(SrcNum); | |
| 1838 SizeT NumVars = Src->getNumVars(); | |
| 1839 for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) { | |
| 1840 const Variable *Var = Src->getVar(J); | |
| 1841 if (!Var->hasReg()) | |
| 1842 continue; | |
| 1843 WhiteList[Var->getRegNum()] = false; | |
| 1844 } | |
| 1845 } | |
| 1846 } | |
| 1847 // The second pass colors infinite-weight variables. | |
| 1848 llvm::SmallBitVector AvailableRegisters = WhiteList; | |
| 1849 for (InstList::iterator I = Context.getCur(), E = Context.getEnd(); I != E; | |
| 1850 ++I) { | |
| 1851 const Inst *Inst = *I; | |
| 1852 if (Inst->isDeleted()) | |
| 1853 continue; | |
| 1854 SizeT VarIndex = 0; | |
| 1855 for (SizeT SrcNum = 0; SrcNum < Inst->getSrcSize(); ++SrcNum) { | |
| 1856 Operand *Src = Inst->getSrc(SrcNum); | |
| 1857 SizeT NumVars = Src->getNumVars(); | |
| 1858 for (SizeT J = 0; J < NumVars; ++J, ++VarIndex) { | |
| 1859 Variable *Var = Src->getVar(J); | |
| 1860 if (Var->hasReg()) | |
| 1861 continue; | |
| 1862 if (!Var->getWeight().isInf()) | |
| 1863 continue; | |
| 1864 llvm::SmallBitVector AvailableTypedRegisters = | |
| 1865 AvailableRegisters & getRegisterSetForType(Var->getType()); | |
| 1866 if (!AvailableTypedRegisters.any()) { | |
| 1867 // This is a hack in case we run out of physical registers | |
| 1868 // due to an excessive number of "push" instructions from | |
| 1869 // lowering a call. | |
| 1870 AvailableRegisters = WhiteList; | |
| 1871 AvailableTypedRegisters = | |
| 1872 AvailableRegisters & getRegisterSetForType(Var->getType()); | |
| 1873 } | |
| 1874 assert(AvailableTypedRegisters.any()); | |
| 1875 int32_t RegNum = AvailableTypedRegisters.find_first(); | |
| 1876 Var->setRegNum(RegNum); | |
| 1877 AvailableRegisters[RegNum] = false; | |
| 1878 } | |
| 1879 } | |
| 1880 } | |
| 1881 } | |
| 1882 | |
| 1883 } // end of namespace Ice | |
| OLD | NEW |