| Index: third_party/libwebp/dsp/lossless_enc.c
|
| diff --git a/third_party/libwebp/dsp/lossless_enc.c b/third_party/libwebp/dsp/lossless_enc.c
|
| index 256f6f5f8b7f6538b42b779f1b6af229cd2309b7..4e46fbab8b2cfb25fb0540c3d31e943f92902b5b 100644
|
| --- a/third_party/libwebp/dsp/lossless_enc.c
|
| +++ b/third_party/libwebp/dsp/lossless_enc.c
|
| @@ -17,16 +17,12 @@
|
|
|
| #include <math.h>
|
| #include <stdlib.h>
|
| -#include "../dec/vp8li.h"
|
| -#include "../utils/endian_inl.h"
|
| +#include "../dec/vp8li_dec.h"
|
| +#include "../utils/endian_inl_utils.h"
|
| #include "./lossless.h"
|
| +#include "./lossless_common.h"
|
| #include "./yuv.h"
|
|
|
| -#define MAX_DIFF_COST (1e30f)
|
| -
|
| -static const int kPredLowEffort = 11;
|
| -static const uint32_t kMaskAlpha = 0xff000000;
|
| -
|
| // lookup table for small values of log2(int)
|
| const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
|
| 0.0000000000000000f, 0.0000000000000000f,
|
| @@ -380,26 +376,9 @@ static float FastLog2Slow(uint32_t v) {
|
| }
|
| }
|
|
|
| -// Mostly used to reduce code size + readability
|
| -static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
| -static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
|
| -
|
| //------------------------------------------------------------------------------
|
| // Methods to calculate Entropy (Shannon).
|
|
|
| -static float PredictionCostSpatial(const int counts[256], int weight_0,
|
| - double exp_val) {
|
| - const int significant_symbols = 256 >> 4;
|
| - const double exp_decay_factor = 0.6;
|
| - double bits = weight_0 * counts[0];
|
| - int i;
|
| - for (i = 1; i < significant_symbols; ++i) {
|
| - bits += exp_val * (counts[i] + counts[256 - i]);
|
| - exp_val *= exp_decay_factor;
|
| - }
|
| - return (float)(-0.1 * bits);
|
| -}
|
| -
|
| // Compute the combined Shanon's entropy for distribution {X} and {X+Y}
|
| static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
|
| int i;
|
| @@ -422,18 +401,6 @@ static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
|
| return (float)retval;
|
| }
|
|
|
| -static float PredictionCostSpatialHistogram(const int accumulated[4][256],
|
| - const int tile[4][256]) {
|
| - int i;
|
| - double retval = 0;
|
| - for (i = 0; i < 4; ++i) {
|
| - const double kExpValue = 0.94;
|
| - retval += PredictionCostSpatial(tile[i], 1, kExpValue);
|
| - retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
|
| - }
|
| - return (float)retval;
|
| -}
|
| -
|
| void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) {
|
| entropy->entropy = 0.;
|
| entropy->sum = 0;
|
| @@ -486,9 +453,9 @@ static WEBP_INLINE void GetEntropyUnrefinedHelper(
|
| *i_prev = i;
|
| }
|
|
|
| -void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
|
| - VP8LBitEntropy* const bit_entropy,
|
| - VP8LStreaks* const stats) {
|
| +static void GetEntropyUnrefined(const uint32_t X[], int length,
|
| + VP8LBitEntropy* const bit_entropy,
|
| + VP8LStreaks* const stats) {
|
| int i;
|
| int i_prev = 0;
|
| uint32_t x_prev = X[0];
|
| @@ -499,18 +466,18 @@ void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
|
| for (i = 1; i < length; ++i) {
|
| const uint32_t x = X[i];
|
| if (x != x_prev) {
|
| - VP8LGetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
|
| + GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
|
| }
|
| }
|
| - VP8LGetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
|
| + GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
|
|
|
| bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
|
| }
|
|
|
| -void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
|
| - const uint32_t* const Y, int length,
|
| - VP8LBitEntropy* const bit_entropy,
|
| - VP8LStreaks* const stats) {
|
| +static void GetCombinedEntropyUnrefined(const uint32_t X[], const uint32_t Y[],
|
| + int length,
|
| + VP8LBitEntropy* const bit_entropy,
|
| + VP8LStreaks* const stats) {
|
| int i = 1;
|
| int i_prev = 0;
|
| uint32_t xy_prev = X[0] + Y[0];
|
| @@ -521,439 +488,29 @@ void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
|
| for (i = 1; i < length; ++i) {
|
| const uint32_t xy = X[i] + Y[i];
|
| if (xy != xy_prev) {
|
| - VP8LGetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy,
|
| - stats);
|
| + GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy, stats);
|
| }
|
| }
|
| - VP8LGetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
|
| + GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
|
|
|
| bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
|
| }
|
|
|
| -static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
|
| - ++histo_argb[0][argb >> 24];
|
| - ++histo_argb[1][(argb >> 16) & 0xff];
|
| - ++histo_argb[2][(argb >> 8) & 0xff];
|
| - ++histo_argb[3][argb & 0xff];
|
| -}
|
| -
|
| //------------------------------------------------------------------------------
|
|
|
| -static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
|
| - int x, int y,
|
| - const uint32_t* current_row,
|
| - const uint32_t* upper_row) {
|
| - if (y == 0) {
|
| - return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
|
| - } else if (x == 0) {
|
| - return upper_row[x]; // Top.
|
| - } else {
|
| - return pred_func(current_row[x - 1], upper_row + x);
|
| - }
|
| -}
|
| -
|
| -static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
|
| - const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
|
| - const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
|
| - const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
|
| - const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
|
| - return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
|
| -}
|
| -
|
| -static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
|
| - uint32_t left, uint32_t right) {
|
| - const int diff_up = MaxDiffBetweenPixels(current, up);
|
| - const int diff_down = MaxDiffBetweenPixels(current, down);
|
| - const int diff_left = MaxDiffBetweenPixels(current, left);
|
| - const int diff_right = MaxDiffBetweenPixels(current, right);
|
| - return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
|
| -}
|
| -
|
| -static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
|
| - const uint32_t green = (argb >> 8) & 0xff;
|
| - uint32_t red_blue = argb & 0x00ff00ffu;
|
| - red_blue += (green << 16) | green;
|
| - red_blue &= 0x00ff00ffu;
|
| - return (argb & 0xff00ff00u) | red_blue;
|
| -}
|
| -
|
| -static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
|
| - uint8_t* const max_diffs, int used_subtract_green) {
|
| - uint32_t current, up, down, left, right;
|
| - int x;
|
| - if (width <= 2) return;
|
| - current = argb[0];
|
| - right = argb[1];
|
| - if (used_subtract_green) {
|
| - current = AddGreenToBlueAndRed(current);
|
| - right = AddGreenToBlueAndRed(right);
|
| - }
|
| - // max_diffs[0] and max_diffs[width - 1] are never used.
|
| - for (x = 1; x < width - 1; ++x) {
|
| - up = argb[-stride + x];
|
| - down = argb[stride + x];
|
| - left = current;
|
| - current = right;
|
| - right = argb[x + 1];
|
| - if (used_subtract_green) {
|
| - up = AddGreenToBlueAndRed(up);
|
| - down = AddGreenToBlueAndRed(down);
|
| - right = AddGreenToBlueAndRed(right);
|
| - }
|
| - max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
|
| - }
|
| -}
|
| -
|
| -// Quantize the difference between the actual component value and its prediction
|
| -// to a multiple of quantization, working modulo 256, taking care not to cross
|
| -// a boundary (inclusive upper limit).
|
| -static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
|
| - uint8_t boundary, int quantization) {
|
| - const int residual = (value - predict) & 0xff;
|
| - const int boundary_residual = (boundary - predict) & 0xff;
|
| - const int lower = residual & ~(quantization - 1);
|
| - const int upper = lower + quantization;
|
| - // Resolve ties towards a value closer to the prediction (i.e. towards lower
|
| - // if value comes after prediction and towards upper otherwise).
|
| - const int bias = ((boundary - value) & 0xff) < boundary_residual;
|
| - if (residual - lower < upper - residual + bias) {
|
| - // lower is closer to residual than upper.
|
| - if (residual > boundary_residual && lower <= boundary_residual) {
|
| - // Halve quantization step to avoid crossing boundary. This midpoint is
|
| - // on the same side of boundary as residual because midpoint >= residual
|
| - // (since lower is closer than upper) and residual is above the boundary.
|
| - return lower + (quantization >> 1);
|
| - }
|
| - return lower;
|
| - } else {
|
| - // upper is closer to residual than lower.
|
| - if (residual <= boundary_residual && upper > boundary_residual) {
|
| - // Halve quantization step to avoid crossing boundary. This midpoint is
|
| - // on the same side of boundary as residual because midpoint <= residual
|
| - // (since upper is closer than lower) and residual is below the boundary.
|
| - return lower + (quantization >> 1);
|
| - }
|
| - return upper & 0xff;
|
| - }
|
| -}
|
| -
|
| -// Quantize every component of the difference between the actual pixel value and
|
| -// its prediction to a multiple of a quantization (a power of 2, not larger than
|
| -// max_quantization which is a power of 2, smaller than max_diff). Take care if
|
| -// value and predict have undergone subtract green, which means that red and
|
| -// blue are represented as offsets from green.
|
| -static uint32_t NearLossless(uint32_t value, uint32_t predict,
|
| - int max_quantization, int max_diff,
|
| - int used_subtract_green) {
|
| - int quantization;
|
| - uint8_t new_green = 0;
|
| - uint8_t green_diff = 0;
|
| - uint8_t a, r, g, b;
|
| - if (max_diff <= 2) {
|
| - return VP8LSubPixels(value, predict);
|
| - }
|
| - quantization = max_quantization;
|
| - while (quantization >= max_diff) {
|
| - quantization >>= 1;
|
| - }
|
| - if ((value >> 24) == 0 || (value >> 24) == 0xff) {
|
| - // Preserve transparency of fully transparent or fully opaque pixels.
|
| - a = ((value >> 24) - (predict >> 24)) & 0xff;
|
| - } else {
|
| - a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
|
| - }
|
| - g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
|
| - quantization);
|
| - if (used_subtract_green) {
|
| - // The green offset will be added to red and blue components during decoding
|
| - // to obtain the actual red and blue values.
|
| - new_green = ((predict >> 8) + g) & 0xff;
|
| - // The amount by which green has been adjusted during quantization. It is
|
| - // subtracted from red and blue for compensation, to avoid accumulating two
|
| - // quantization errors in them.
|
| - green_diff = (new_green - (value >> 8)) & 0xff;
|
| - }
|
| - r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
|
| - (predict >> 16) & 0xff, 0xff - new_green,
|
| - quantization);
|
| - b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
|
| - 0xff - new_green, quantization);
|
| - return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
| -}
|
| -
|
| -// Returns the difference between the pixel and its prediction. In case of a
|
| -// lossy encoding, updates the source image to avoid propagating the deviation
|
| -// further to pixels which depend on the current pixel for their predictions.
|
| -static WEBP_INLINE uint32_t GetResidual(int width, int height,
|
| - uint32_t* const upper_row,
|
| - uint32_t* const current_row,
|
| - const uint8_t* const max_diffs,
|
| - int mode, VP8LPredictorFunc pred_func,
|
| - int x, int y, int max_quantization,
|
| - int exact, int used_subtract_green) {
|
| - const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
|
| - uint32_t residual;
|
| - if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
|
| - x == 0 || x == width - 1) {
|
| - residual = VP8LSubPixels(current_row[x], predict);
|
| - } else {
|
| - residual = NearLossless(current_row[x], predict, max_quantization,
|
| - max_diffs[x], used_subtract_green);
|
| - // Update the source image.
|
| - current_row[x] = VP8LAddPixels(predict, residual);
|
| - // x is never 0 here so we do not need to update upper_row like below.
|
| - }
|
| - if (!exact && (current_row[x] & kMaskAlpha) == 0) {
|
| - // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
|
| - // for best compression. The prediction of alpha itself can be non-zero and
|
| - // must be kept though. We choose RGB of the residual to be 0.
|
| - residual &= kMaskAlpha;
|
| - // Update the source image.
|
| - current_row[x] = predict & ~kMaskAlpha;
|
| - // The prediction for the rightmost pixel in a row uses the leftmost pixel
|
| - // in that row as its top-right context pixel. Hence if we change the
|
| - // leftmost pixel of current_row, the corresponding change must be applied
|
| - // to upper_row as well where top-right context is being read from.
|
| - if (x == 0 && y != 0) upper_row[width] = current_row[0];
|
| - }
|
| - return residual;
|
| -}
|
| -
|
| -// Returns best predictor and updates the accumulated histogram.
|
| -// If max_quantization > 1, assumes that near lossless processing will be
|
| -// applied, quantizing residuals to multiples of quantization levels up to
|
| -// max_quantization (the actual quantization level depends on smoothness near
|
| -// the given pixel).
|
| -static int GetBestPredictorForTile(int width, int height,
|
| - int tile_x, int tile_y, int bits,
|
| - int accumulated[4][256],
|
| - uint32_t* const argb_scratch,
|
| - const uint32_t* const argb,
|
| - int max_quantization,
|
| - int exact, int used_subtract_green) {
|
| - const int kNumPredModes = 14;
|
| - const int start_x = tile_x << bits;
|
| - const int start_y = tile_y << bits;
|
| - const int tile_size = 1 << bits;
|
| - const int max_y = GetMin(tile_size, height - start_y);
|
| - const int max_x = GetMin(tile_size, width - start_x);
|
| - // Whether there exist columns just outside the tile.
|
| - const int have_left = (start_x > 0);
|
| - const int have_right = (max_x < width - start_x);
|
| - // Position and size of the strip covering the tile and adjacent columns if
|
| - // they exist.
|
| - const int context_start_x = start_x - have_left;
|
| - const int context_width = max_x + have_left + have_right;
|
| - // The width of upper_row and current_row is one pixel larger than image width
|
| - // to allow the top right pixel to point to the leftmost pixel of the next row
|
| - // when at the right edge.
|
| - uint32_t* upper_row = argb_scratch;
|
| - uint32_t* current_row = upper_row + width + 1;
|
| - uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
| - float best_diff = MAX_DIFF_COST;
|
| - int best_mode = 0;
|
| - int mode;
|
| - int histo_stack_1[4][256];
|
| - int histo_stack_2[4][256];
|
| - // Need pointers to be able to swap arrays.
|
| - int (*histo_argb)[256] = histo_stack_1;
|
| - int (*best_histo)[256] = histo_stack_2;
|
| - int i, j;
|
| -
|
| - for (mode = 0; mode < kNumPredModes; ++mode) {
|
| - const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
|
| - float cur_diff;
|
| - int relative_y;
|
| - memset(histo_argb, 0, sizeof(histo_stack_1));
|
| - if (start_y > 0) {
|
| - // Read the row above the tile which will become the first upper_row.
|
| - // Include a pixel to the left if it exists; include a pixel to the right
|
| - // in all cases (wrapping to the leftmost pixel of the next row if it does
|
| - // not exist).
|
| - memcpy(current_row + context_start_x,
|
| - argb + (start_y - 1) * width + context_start_x,
|
| - sizeof(*argb) * (max_x + have_left + 1));
|
| - }
|
| - for (relative_y = 0; relative_y < max_y; ++relative_y) {
|
| - const int y = start_y + relative_y;
|
| - int relative_x;
|
| - uint32_t* tmp = upper_row;
|
| - upper_row = current_row;
|
| - current_row = tmp;
|
| - // Read current_row. Include a pixel to the left if it exists; include a
|
| - // pixel to the right in all cases except at the bottom right corner of
|
| - // the image (wrapping to the leftmost pixel of the next row if it does
|
| - // not exist in the current row).
|
| - memcpy(current_row + context_start_x,
|
| - argb + y * width + context_start_x,
|
| - sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
|
| - if (max_quantization > 1 && y >= 1 && y + 1 < height) {
|
| - MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
|
| - max_diffs + context_start_x, used_subtract_green);
|
| - }
|
| -
|
| - for (relative_x = 0; relative_x < max_x; ++relative_x) {
|
| - const int x = start_x + relative_x;
|
| - UpdateHisto(histo_argb,
|
| - GetResidual(width, height, upper_row, current_row,
|
| - max_diffs, mode, pred_func, x, y,
|
| - max_quantization, exact, used_subtract_green));
|
| - }
|
| - }
|
| - cur_diff = PredictionCostSpatialHistogram(
|
| - (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
|
| - if (cur_diff < best_diff) {
|
| - int (*tmp)[256] = histo_argb;
|
| - histo_argb = best_histo;
|
| - best_histo = tmp;
|
| - best_diff = cur_diff;
|
| - best_mode = mode;
|
| - }
|
| - }
|
| -
|
| - for (i = 0; i < 4; i++) {
|
| - for (j = 0; j < 256; j++) {
|
| - accumulated[i][j] += best_histo[i][j];
|
| - }
|
| - }
|
| -
|
| - return best_mode;
|
| -}
|
| -
|
| -// Converts pixels of the image to residuals with respect to predictions.
|
| -// If max_quantization > 1, applies near lossless processing, quantizing
|
| -// residuals to multiples of quantization levels up to max_quantization
|
| -// (the actual quantization level depends on smoothness near the given pixel).
|
| -static void CopyImageWithPrediction(int width, int height,
|
| - int bits, uint32_t* const modes,
|
| - uint32_t* const argb_scratch,
|
| - uint32_t* const argb,
|
| - int low_effort, int max_quantization,
|
| - int exact, int used_subtract_green) {
|
| - const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
| - const int mask = (1 << bits) - 1;
|
| - // The width of upper_row and current_row is one pixel larger than image width
|
| - // to allow the top right pixel to point to the leftmost pixel of the next row
|
| - // when at the right edge.
|
| - uint32_t* upper_row = argb_scratch;
|
| - uint32_t* current_row = upper_row + width + 1;
|
| - uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
|
| - uint8_t* lower_max_diffs = current_max_diffs + width;
|
| - int y;
|
| - int mode = 0;
|
| - VP8LPredictorFunc pred_func = NULL;
|
| -
|
| - for (y = 0; y < height; ++y) {
|
| - int x;
|
| - uint32_t* const tmp32 = upper_row;
|
| - upper_row = current_row;
|
| - current_row = tmp32;
|
| - memcpy(current_row, argb + y * width,
|
| - sizeof(*argb) * (width + (y + 1 < height)));
|
| -
|
| - if (low_effort) {
|
| - for (x = 0; x < width; ++x) {
|
| - const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
|
| - current_row, upper_row);
|
| - argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
|
| - }
|
| - } else {
|
| - if (max_quantization > 1) {
|
| - // Compute max_diffs for the lower row now, because that needs the
|
| - // contents of argb for the current row, which we will overwrite with
|
| - // residuals before proceeding with the next row.
|
| - uint8_t* const tmp8 = current_max_diffs;
|
| - current_max_diffs = lower_max_diffs;
|
| - lower_max_diffs = tmp8;
|
| - if (y + 2 < height) {
|
| - MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
|
| - used_subtract_green);
|
| - }
|
| - }
|
| - for (x = 0; x < width; ++x) {
|
| - if ((x & mask) == 0) {
|
| - mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
| - pred_func = VP8LPredictors[mode];
|
| - }
|
| - argb[y * width + x] = GetResidual(
|
| - width, height, upper_row, current_row, current_max_diffs, mode,
|
| - pred_func, x, y, max_quantization, exact, used_subtract_green);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Finds the best predictor for each tile, and converts the image to residuals
|
| -// with respect to predictions. If near_lossless_quality < 100, applies
|
| -// near lossless processing, shaving off more bits of residuals for lower
|
| -// qualities.
|
| -void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
| - uint32_t* const argb, uint32_t* const argb_scratch,
|
| - uint32_t* const image, int near_lossless_quality,
|
| - int exact, int used_subtract_green) {
|
| - const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
| - const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
| - int tile_y;
|
| - int histo[4][256];
|
| - const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
|
| - if (low_effort) {
|
| - int i;
|
| - for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
|
| - image[i] = ARGB_BLACK | (kPredLowEffort << 8);
|
| - }
|
| - } else {
|
| - memset(histo, 0, sizeof(histo));
|
| - for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
|
| - int tile_x;
|
| - for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
|
| - const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
|
| - bits, histo, argb_scratch, argb, max_quantization, exact,
|
| - used_subtract_green);
|
| - image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
|
| - }
|
| - }
|
| - }
|
| -
|
| - CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
|
| - low_effort, max_quantization, exact,
|
| - used_subtract_green);
|
| -}
|
| -
|
| void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
|
| int i;
|
| for (i = 0; i < num_pixels; ++i) {
|
| - const uint32_t argb = argb_data[i];
|
| - const uint32_t green = (argb >> 8) & 0xff;
|
| + const int argb = argb_data[i];
|
| + const int green = (argb >> 8) & 0xff;
|
| const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
|
| - const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
|
| - argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
|
| + const uint32_t new_b = (((argb >> 0) & 0xff) - green) & 0xff;
|
| + argb_data[i] = (argb & 0xff00ff00u) | (new_r << 16) | new_b;
|
| }
|
| }
|
|
|
| -static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
|
| - m->green_to_red_ = 0;
|
| - m->green_to_blue_ = 0;
|
| - m->red_to_blue_ = 0;
|
| -}
|
| -
|
| -static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
|
| - int8_t color) {
|
| - return (uint32_t)((int)(color_pred) * color) >> 5;
|
| -}
|
| -
|
| -static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
| - VP8LMultipliers* const m) {
|
| - m->green_to_red_ = (color_code >> 0) & 0xff;
|
| - m->green_to_blue_ = (color_code >> 8) & 0xff;
|
| - m->red_to_blue_ = (color_code >> 16) & 0xff;
|
| -}
|
| -
|
| -static WEBP_INLINE uint32_t MultipliersToColorCode(
|
| - const VP8LMultipliers* const m) {
|
| - return 0xff000000u |
|
| - ((uint32_t)(m->red_to_blue_) << 16) |
|
| - ((uint32_t)(m->green_to_blue_) << 8) |
|
| - m->green_to_red_;
|
| +static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) {
|
| + return ((int)color_pred * color) >> 5;
|
| }
|
|
|
| void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
|
| @@ -963,8 +520,8 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
|
| const uint32_t argb = data[i];
|
| const uint32_t green = argb >> 8;
|
| const uint32_t red = argb >> 16;
|
| - uint32_t new_red = red;
|
| - uint32_t new_blue = argb;
|
| + int new_red = red;
|
| + int new_blue = argb;
|
| new_red -= ColorTransformDelta(m->green_to_red_, green);
|
| new_red &= 0xff;
|
| new_blue -= ColorTransformDelta(m->green_to_blue_, green);
|
| @@ -977,7 +534,7 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
|
| static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red,
|
| uint32_t argb) {
|
| const uint32_t green = argb >> 8;
|
| - uint32_t new_red = argb >> 16;
|
| + int new_red = argb >> 16;
|
| new_red -= ColorTransformDelta(green_to_red, green);
|
| return (new_red & 0xff);
|
| }
|
| @@ -993,15 +550,6 @@ static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
|
| return (new_blue & 0xff);
|
| }
|
|
|
| -static float PredictionCostCrossColor(const int accumulated[256],
|
| - const int counts[256]) {
|
| - // Favor low entropy, locally and globally.
|
| - // Favor small absolute values for PredictionCostSpatial
|
| - static const double kExpValue = 2.4;
|
| - return VP8LCombinedShannonEntropy(counts, accumulated) +
|
| - PredictionCostSpatial(counts, 3, kExpValue);
|
| -}
|
| -
|
| void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
|
| int tile_width, int tile_height,
|
| int green_to_red, int histo[]) {
|
| @@ -1014,59 +562,6 @@ void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
|
| }
|
| }
|
|
|
| -static float GetPredictionCostCrossColorRed(
|
| - const uint32_t* argb, int stride, int tile_width, int tile_height,
|
| - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
|
| - const int accumulated_red_histo[256]) {
|
| - int histo[256] = { 0 };
|
| - float cur_diff;
|
| -
|
| - VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
|
| - green_to_red, histo);
|
| -
|
| - cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
|
| - if ((uint8_t)green_to_red == prev_x.green_to_red_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if ((uint8_t)green_to_red == prev_y.green_to_red_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if (green_to_red == 0) {
|
| - cur_diff -= 3;
|
| - }
|
| - return cur_diff;
|
| -}
|
| -
|
| -static void GetBestGreenToRed(
|
| - const uint32_t* argb, int stride, int tile_width, int tile_height,
|
| - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
| - const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
|
| - const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
|
| - int green_to_red_best = 0;
|
| - int iter, offset;
|
| - float best_diff = GetPredictionCostCrossColorRed(
|
| - argb, stride, tile_width, tile_height, prev_x, prev_y,
|
| - green_to_red_best, accumulated_red_histo);
|
| - for (iter = 0; iter < kMaxIters; ++iter) {
|
| - // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
|
| - // one in color computation. Having initial delta here as 1 is sufficient
|
| - // to explore the range of (-2, 2).
|
| - const int delta = 32 >> iter;
|
| - // Try a negative and a positive delta from the best known value.
|
| - for (offset = -delta; offset <= delta; offset += 2 * delta) {
|
| - const int green_to_red_cur = offset + green_to_red_best;
|
| - const float cur_diff = GetPredictionCostCrossColorRed(
|
| - argb, stride, tile_width, tile_height, prev_x, prev_y,
|
| - green_to_red_cur, accumulated_red_histo);
|
| - if (cur_diff < best_diff) {
|
| - best_diff = cur_diff;
|
| - green_to_red_best = green_to_red_cur;
|
| - }
|
| - }
|
| - }
|
| - best_tx->green_to_red_ = green_to_red_best;
|
| -}
|
| -
|
| void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
|
| int tile_width, int tile_height,
|
| int green_to_blue, int red_to_blue,
|
| @@ -1080,187 +575,6 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
|
| }
|
| }
|
|
|
| -static float GetPredictionCostCrossColorBlue(
|
| - const uint32_t* argb, int stride, int tile_width, int tile_height,
|
| - VP8LMultipliers prev_x, VP8LMultipliers prev_y,
|
| - int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
|
| - int histo[256] = { 0 };
|
| - float cur_diff;
|
| -
|
| - VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
|
| - green_to_blue, red_to_blue, histo);
|
| -
|
| - cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
|
| - if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
|
| - cur_diff -= 3; // favor keeping the areas locally similar
|
| - }
|
| - if (green_to_blue == 0) {
|
| - cur_diff -= 3;
|
| - }
|
| - if (red_to_blue == 0) {
|
| - cur_diff -= 3;
|
| - }
|
| - return cur_diff;
|
| -}
|
| -
|
| -#define kGreenRedToBlueNumAxis 8
|
| -#define kGreenRedToBlueMaxIters 7
|
| -static void GetBestGreenRedToBlue(
|
| - const uint32_t* argb, int stride, int tile_width, int tile_height,
|
| - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
| - const int accumulated_blue_histo[256],
|
| - VP8LMultipliers* const best_tx) {
|
| - const int8_t offset[kGreenRedToBlueNumAxis][2] =
|
| - {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
|
| - const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
|
| - const int iters =
|
| - (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
|
| - int green_to_blue_best = 0;
|
| - int red_to_blue_best = 0;
|
| - int iter;
|
| - // Initial value at origin:
|
| - float best_diff = GetPredictionCostCrossColorBlue(
|
| - argb, stride, tile_width, tile_height, prev_x, prev_y,
|
| - green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
|
| - for (iter = 0; iter < iters; ++iter) {
|
| - const int delta = delta_lut[iter];
|
| - int axis;
|
| - for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
|
| - const int green_to_blue_cur =
|
| - offset[axis][0] * delta + green_to_blue_best;
|
| - const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
|
| - const float cur_diff = GetPredictionCostCrossColorBlue(
|
| - argb, stride, tile_width, tile_height, prev_x, prev_y,
|
| - green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
|
| - if (cur_diff < best_diff) {
|
| - best_diff = cur_diff;
|
| - green_to_blue_best = green_to_blue_cur;
|
| - red_to_blue_best = red_to_blue_cur;
|
| - }
|
| - if (quality < 25 && iter == 4) {
|
| - // Only axis aligned diffs for lower quality.
|
| - break; // next iter.
|
| - }
|
| - }
|
| - if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
|
| - // Further iterations would not help.
|
| - break; // out of iter-loop.
|
| - }
|
| - }
|
| - best_tx->green_to_blue_ = green_to_blue_best;
|
| - best_tx->red_to_blue_ = red_to_blue_best;
|
| -}
|
| -#undef kGreenRedToBlueMaxIters
|
| -#undef kGreenRedToBlueNumAxis
|
| -
|
| -static VP8LMultipliers GetBestColorTransformForTile(
|
| - int tile_x, int tile_y, int bits,
|
| - VP8LMultipliers prev_x,
|
| - VP8LMultipliers prev_y,
|
| - int quality, int xsize, int ysize,
|
| - const int accumulated_red_histo[256],
|
| - const int accumulated_blue_histo[256],
|
| - const uint32_t* const argb) {
|
| - const int max_tile_size = 1 << bits;
|
| - const int tile_y_offset = tile_y * max_tile_size;
|
| - const int tile_x_offset = tile_x * max_tile_size;
|
| - const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
|
| - const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
|
| - const int tile_width = all_x_max - tile_x_offset;
|
| - const int tile_height = all_y_max - tile_y_offset;
|
| - const uint32_t* const tile_argb = argb + tile_y_offset * xsize
|
| - + tile_x_offset;
|
| - VP8LMultipliers best_tx;
|
| - MultipliersClear(&best_tx);
|
| -
|
| - GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
|
| - prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
|
| - GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
|
| - prev_x, prev_y, quality, accumulated_blue_histo,
|
| - &best_tx);
|
| - return best_tx;
|
| -}
|
| -
|
| -static void CopyTileWithColorTransform(int xsize, int ysize,
|
| - int tile_x, int tile_y,
|
| - int max_tile_size,
|
| - VP8LMultipliers color_transform,
|
| - uint32_t* argb) {
|
| - const int xscan = GetMin(max_tile_size, xsize - tile_x);
|
| - int yscan = GetMin(max_tile_size, ysize - tile_y);
|
| - argb += tile_y * xsize + tile_x;
|
| - while (yscan-- > 0) {
|
| - VP8LTransformColor(&color_transform, argb, xscan);
|
| - argb += xsize;
|
| - }
|
| -}
|
| -
|
| -void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
| - uint32_t* const argb, uint32_t* image) {
|
| - const int max_tile_size = 1 << bits;
|
| - const int tile_xsize = VP8LSubSampleSize(width, bits);
|
| - const int tile_ysize = VP8LSubSampleSize(height, bits);
|
| - int accumulated_red_histo[256] = { 0 };
|
| - int accumulated_blue_histo[256] = { 0 };
|
| - int tile_x, tile_y;
|
| - VP8LMultipliers prev_x, prev_y;
|
| - MultipliersClear(&prev_y);
|
| - MultipliersClear(&prev_x);
|
| - for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
|
| - for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
|
| - int y;
|
| - const int tile_x_offset = tile_x * max_tile_size;
|
| - const int tile_y_offset = tile_y * max_tile_size;
|
| - const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
|
| - const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
|
| - const int offset = tile_y * tile_xsize + tile_x;
|
| - if (tile_y != 0) {
|
| - ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
|
| - }
|
| - prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
|
| - prev_x, prev_y,
|
| - quality, width, height,
|
| - accumulated_red_histo,
|
| - accumulated_blue_histo,
|
| - argb);
|
| - image[offset] = MultipliersToColorCode(&prev_x);
|
| - CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
|
| - max_tile_size, prev_x, argb);
|
| -
|
| - // Gather accumulated histogram data.
|
| - for (y = tile_y_offset; y < all_y_max; ++y) {
|
| - int ix = y * width + tile_x_offset;
|
| - const int ix_end = ix + all_x_max - tile_x_offset;
|
| - for (; ix < ix_end; ++ix) {
|
| - const uint32_t pix = argb[ix];
|
| - if (ix >= 2 &&
|
| - pix == argb[ix - 2] &&
|
| - pix == argb[ix - 1]) {
|
| - continue; // repeated pixels are handled by backward references
|
| - }
|
| - if (ix >= width + 2 &&
|
| - argb[ix - 2] == argb[ix - width - 2] &&
|
| - argb[ix - 1] == argb[ix - width - 1] &&
|
| - pix == argb[ix - width]) {
|
| - continue; // repeated pixels are handled by backward references
|
| - }
|
| - ++accumulated_red_histo[(pix >> 16) & 0xff];
|
| - ++accumulated_blue_histo[(pix >> 0) & 0xff];
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| //------------------------------------------------------------------------------
|
|
|
| static int VectorMismatch(const uint32_t* const array1,
|
| @@ -1274,8 +588,8 @@ static int VectorMismatch(const uint32_t* const array1,
|
| }
|
|
|
| // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
|
| -void VP8LBundleColorMap(const uint8_t* const row, int width,
|
| - int xbits, uint32_t* const dst) {
|
| +void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits,
|
| + uint32_t* dst) {
|
| int x;
|
| if (xbits > 0) {
|
| const int bit_depth = 1 << (3 - xbits);
|
| @@ -1350,8 +664,172 @@ static void HistogramAdd(const VP8LHistogram* const a,
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
| +// Image transforms.
|
|
|
| -VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
|
| +static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
|
| + return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
|
| +}
|
| +
|
| +static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
|
| + return Average2(Average2(a0, a2), a1);
|
| +}
|
| +
|
| +static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
|
| + uint32_t a2, uint32_t a3) {
|
| + return Average2(Average2(a0, a1), Average2(a2, a3));
|
| +}
|
| +
|
| +static WEBP_INLINE uint32_t Clip255(uint32_t a) {
|
| + if (a < 256) {
|
| + return a;
|
| + }
|
| + // return 0, when a is a negative integer.
|
| + // return 255, when a is positive.
|
| + return ~a >> 24;
|
| +}
|
| +
|
| +static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
|
| + return Clip255(a + b - c);
|
| +}
|
| +
|
| +static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
|
| + uint32_t c2) {
|
| + const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
|
| + const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
|
| + (c1 >> 16) & 0xff,
|
| + (c2 >> 16) & 0xff);
|
| + const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
|
| + (c1 >> 8) & 0xff,
|
| + (c2 >> 8) & 0xff);
|
| + const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
|
| + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
| +}
|
| +
|
| +static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
|
| + return Clip255(a + (a - b) / 2);
|
| +}
|
| +
|
| +static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
|
| + uint32_t c2) {
|
| + const uint32_t ave = Average2(c0, c1);
|
| + const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
|
| + const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
|
| + const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
|
| + const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
|
| + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
| +}
|
| +
|
| +// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined.
|
| +#if defined(__arm__) && \
|
| + (LOCAL_GCC_VERSION == 0x409 || LOCAL_GCC_VERSION == 0x408)
|
| +# define LOCAL_INLINE __attribute__ ((noinline))
|
| +#else
|
| +# define LOCAL_INLINE WEBP_INLINE
|
| +#endif
|
| +
|
| +static LOCAL_INLINE int Sub3(int a, int b, int c) {
|
| + const int pb = b - c;
|
| + const int pa = a - c;
|
| + return abs(pb) - abs(pa);
|
| +}
|
| +
|
| +#undef LOCAL_INLINE
|
| +
|
| +static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
|
| + const int pa_minus_pb =
|
| + Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
|
| + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
|
| + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
|
| + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
|
| + return (pa_minus_pb <= 0) ? a : b;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Predictors
|
| +
|
| +static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
|
| + (void)left;
|
| + return top[0];
|
| +}
|
| +static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
|
| + (void)left;
|
| + return top[1];
|
| +}
|
| +static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
|
| + (void)left;
|
| + return top[-1];
|
| +}
|
| +static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average3(left, top[0], top[1]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average2(left, top[-1]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average2(left, top[0]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average2(top[-1], top[0]);
|
| + (void)left;
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average2(top[0], top[1]);
|
| + (void)left;
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = Select(top[0], left, top[-1]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
|
| + return pred;
|
| +}
|
| +static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
|
| + const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
|
| + return pred;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +static void PredictorSub0_C(const uint32_t* in, const uint32_t* upper,
|
| + int num_pixels, uint32_t* out) {
|
| + int i;
|
| + for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], ARGB_BLACK);
|
| + (void)upper;
|
| +}
|
| +
|
| +static void PredictorSub1_C(const uint32_t* in, const uint32_t* upper,
|
| + int num_pixels, uint32_t* out) {
|
| + int i;
|
| + for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], in[i - 1]);
|
| + (void)upper;
|
| +}
|
| +
|
| +GENERATE_PREDICTOR_SUB(Predictor2, PredictorSub2_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor3, PredictorSub3_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor4, PredictorSub4_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor5, PredictorSub5_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor6, PredictorSub6_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor7, PredictorSub7_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor8, PredictorSub8_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor9, PredictorSub9_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor10, PredictorSub10_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor11, PredictorSub11_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor12, PredictorSub12_C)
|
| +GENERATE_PREDICTOR_SUB(Predictor13, PredictorSub13_C)
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
|
|
|
| VP8LTransformColorFunc VP8LTransformColor;
|
|
|
| @@ -1365,17 +843,23 @@ VP8LCostFunc VP8LExtraCost;
|
| VP8LCostCombinedFunc VP8LExtraCostCombined;
|
| VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy;
|
|
|
| -GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
|
| +VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined;
|
| +VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined;
|
|
|
| VP8LHistogramAddFunc VP8LHistogramAdd;
|
|
|
| VP8LVectorMismatchFunc VP8LVectorMismatch;
|
| +VP8LBundleColorMapFunc VP8LBundleColorMap;
|
| +
|
| +VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
|
| +VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
|
|
|
| extern void VP8LEncDspInitSSE2(void);
|
| extern void VP8LEncDspInitSSE41(void);
|
| extern void VP8LEncDspInitNEON(void);
|
| extern void VP8LEncDspInitMIPS32(void);
|
| extern void VP8LEncDspInitMIPSdspR2(void);
|
| +extern void VP8LEncDspInitMSA(void);
|
|
|
| static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
|
| (VP8CPUInfo)&lossless_enc_last_cpuinfo_used;
|
| @@ -1399,11 +883,47 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
|
| VP8LExtraCostCombined = ExtraCostCombined;
|
| VP8LCombinedShannonEntropy = CombinedShannonEntropy;
|
|
|
| - VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper;
|
| + VP8LGetEntropyUnrefined = GetEntropyUnrefined;
|
| + VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined;
|
|
|
| VP8LHistogramAdd = HistogramAdd;
|
|
|
| VP8LVectorMismatch = VectorMismatch;
|
| + VP8LBundleColorMap = VP8LBundleColorMap_C;
|
| +
|
| + VP8LPredictorsSub[0] = PredictorSub0_C;
|
| + VP8LPredictorsSub[1] = PredictorSub1_C;
|
| + VP8LPredictorsSub[2] = PredictorSub2_C;
|
| + VP8LPredictorsSub[3] = PredictorSub3_C;
|
| + VP8LPredictorsSub[4] = PredictorSub4_C;
|
| + VP8LPredictorsSub[5] = PredictorSub5_C;
|
| + VP8LPredictorsSub[6] = PredictorSub6_C;
|
| + VP8LPredictorsSub[7] = PredictorSub7_C;
|
| + VP8LPredictorsSub[8] = PredictorSub8_C;
|
| + VP8LPredictorsSub[9] = PredictorSub9_C;
|
| + VP8LPredictorsSub[10] = PredictorSub10_C;
|
| + VP8LPredictorsSub[11] = PredictorSub11_C;
|
| + VP8LPredictorsSub[12] = PredictorSub12_C;
|
| + VP8LPredictorsSub[13] = PredictorSub13_C;
|
| + VP8LPredictorsSub[14] = PredictorSub0_C; // <- padding security sentinels
|
| + VP8LPredictorsSub[15] = PredictorSub0_C;
|
| +
|
| + VP8LPredictorsSub_C[0] = PredictorSub0_C;
|
| + VP8LPredictorsSub_C[1] = PredictorSub1_C;
|
| + VP8LPredictorsSub_C[2] = PredictorSub2_C;
|
| + VP8LPredictorsSub_C[3] = PredictorSub3_C;
|
| + VP8LPredictorsSub_C[4] = PredictorSub4_C;
|
| + VP8LPredictorsSub_C[5] = PredictorSub5_C;
|
| + VP8LPredictorsSub_C[6] = PredictorSub6_C;
|
| + VP8LPredictorsSub_C[7] = PredictorSub7_C;
|
| + VP8LPredictorsSub_C[8] = PredictorSub8_C;
|
| + VP8LPredictorsSub_C[9] = PredictorSub9_C;
|
| + VP8LPredictorsSub_C[10] = PredictorSub10_C;
|
| + VP8LPredictorsSub_C[11] = PredictorSub11_C;
|
| + VP8LPredictorsSub_C[12] = PredictorSub12_C;
|
| + VP8LPredictorsSub_C[13] = PredictorSub13_C;
|
| + VP8LPredictorsSub_C[14] = PredictorSub0_C; // <- padding security sentinels
|
| + VP8LPredictorsSub_C[15] = PredictorSub0_C;
|
|
|
| // If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
| if (VP8GetCPUInfo != NULL) {
|
| @@ -1432,6 +952,11 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
|
| VP8LEncDspInitMIPSdspR2();
|
| }
|
| #endif
|
| +#if defined(WEBP_USE_MSA)
|
| + if (VP8GetCPUInfo(kMSA)) {
|
| + VP8LEncDspInitMSA();
|
| + }
|
| +#endif
|
| }
|
| lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
|
| }
|
|
|