| Index: third_party/libwebp/enc/histogram_enc.c
|
| diff --git a/third_party/libwebp/enc/histogram.c b/third_party/libwebp/enc/histogram_enc.c
|
| similarity index 78%
|
| rename from third_party/libwebp/enc/histogram.c
|
| rename to third_party/libwebp/enc/histogram_enc.c
|
| index 36b7f2262599c94728d30966a8370eb538722f51..808b6f78abbbf55c4636a0d4416c19aa0d8f96b3 100644
|
| --- a/third_party/libwebp/enc/histogram.c
|
| +++ b/third_party/libwebp/enc/histogram_enc.c
|
| @@ -15,9 +15,10 @@
|
|
|
| #include <math.h>
|
|
|
| -#include "./backward_references.h"
|
| -#include "./histogram.h"
|
| +#include "./backward_references_enc.h"
|
| +#include "./histogram_enc.h"
|
| #include "../dsp/lossless.h"
|
| +#include "../dsp/lossless_common.h"
|
| #include "../utils/utils.h"
|
|
|
| #define MAX_COST 1.e38
|
| @@ -213,10 +214,19 @@ static double InitialHuffmanCost(void) {
|
|
|
| // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
|
| static double FinalHuffmanCost(const VP8LStreaks* const stats) {
|
| + // The constants in this function are experimental and got rounded from
|
| + // their original values in 1/8 when switched to 1/1024.
|
| double retval = InitialHuffmanCost();
|
| + // Second coefficient: Many zeros in the histogram are covered efficiently
|
| + // by a run-length encode. Originally 2/8.
|
| retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
|
| + // Second coefficient: Constant values are encoded less efficiently, but still
|
| + // RLE'ed. Originally 6/8.
|
| retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
|
| + // 0s are usually encoded more efficiently than non-0s.
|
| + // Originally 15/8.
|
| retval += 1.796875 * stats->streaks[0][0];
|
| + // Originally 26/8.
|
| retval += 3.28125 * stats->streaks[1][0];
|
| return retval;
|
| }
|
| @@ -236,14 +246,30 @@ static double PopulationCost(const uint32_t* const population, int length,
|
| return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
|
| }
|
|
|
| +// trivial_at_end is 1 if the two histograms only have one element that is
|
| +// non-zero: both the zero-th one, or both the last one.
|
| static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
|
| const uint32_t* const Y,
|
| - int length) {
|
| - VP8LBitEntropy bit_entropy;
|
| + int length, int trivial_at_end) {
|
| VP8LStreaks stats;
|
| - VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
|
| + if (trivial_at_end) {
|
| + // This configuration is due to palettization that transforms an indexed
|
| + // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
|
| + // BitsEntropyRefine is 0 for histograms with only one non-zero value.
|
| + // Only FinalHuffmanCost needs to be evaluated.
|
| + memset(&stats, 0, sizeof(stats));
|
| + // Deal with the non-zero value at index 0 or length-1.
|
| + stats.streaks[1][0] += 1;
|
| + // Deal with the following/previous zero streak.
|
| + stats.counts[0] += 1;
|
| + stats.streaks[0][1] += length - 1;
|
| + return FinalHuffmanCost(&stats);
|
| + } else {
|
| + VP8LBitEntropy bit_entropy;
|
| + VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
|
|
|
| - return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
|
| + return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
|
| + }
|
| }
|
|
|
| // Estimates the Entropy + Huffman + other block overhead size cost.
|
| @@ -267,24 +293,42 @@ static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
|
| double cost_threshold,
|
| double* cost) {
|
| const int palette_code_bits = a->palette_code_bits_;
|
| + int trivial_at_end = 0;
|
| assert(a->palette_code_bits_ == b->palette_code_bits_);
|
| *cost += GetCombinedEntropy(a->literal_, b->literal_,
|
| - VP8LHistogramNumCodes(palette_code_bits));
|
| + VP8LHistogramNumCodes(palette_code_bits), 0);
|
| *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
|
| b->literal_ + NUM_LITERAL_CODES,
|
| NUM_LENGTH_CODES);
|
| if (*cost > cost_threshold) return 0;
|
|
|
| - *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
|
| + if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
|
| + a->trivial_symbol_ == b->trivial_symbol_) {
|
| + // A, R and B are all 0 or 0xff.
|
| + const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
|
| + const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
|
| + const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
|
| + if ((color_a == 0 || color_a == 0xff) &&
|
| + (color_r == 0 || color_r == 0xff) &&
|
| + (color_b == 0 || color_b == 0xff)) {
|
| + trivial_at_end = 1;
|
| + }
|
| + }
|
| +
|
| + *cost +=
|
| + GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
|
| if (*cost > cost_threshold) return 0;
|
|
|
| - *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
|
| + *cost +=
|
| + GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
|
| if (*cost > cost_threshold) return 0;
|
|
|
| - *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
|
| + *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
|
| + trivial_at_end);
|
| if (*cost > cost_threshold) return 0;
|
|
|
| - *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
|
| + *cost +=
|
| + GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
|
| *cost +=
|
| VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
|
| if (*cost > cost_threshold) return 0;
|
| @@ -292,6 +336,15 @@ static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
|
| return 1;
|
| }
|
|
|
| +static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
|
| + const VP8LHistogram* const b,
|
| + VP8LHistogram* const out) {
|
| + VP8LHistogramAdd(a, b, out);
|
| + out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
|
| + ? a->trivial_symbol_
|
| + : VP8L_NON_TRIVIAL_SYM;
|
| +}
|
| +
|
| // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
|
| // to the threshold value 'cost_threshold'. The score returned is
|
| // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
|
| @@ -307,11 +360,9 @@ static double HistogramAddEval(const VP8LHistogram* const a,
|
| cost_threshold += sum_cost;
|
|
|
| if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
|
| - VP8LHistogramAdd(a, b, out);
|
| + HistogramAdd(a, b, out);
|
| out->bit_cost_ = cost;
|
| out->palette_code_bits_ = a->palette_code_bits_;
|
| - out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ?
|
| - a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM;
|
| }
|
|
|
| return cost - sum_cost;
|
| @@ -450,113 +501,103 @@ static void HistogramCopyAndAnalyze(
|
| // Partition histograms to different entropy bins for three dominant (literal,
|
| // red and blue) symbol costs and compute the histogram aggregate bit_cost.
|
| static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
|
| - int16_t* const bin_map, int low_effort) {
|
| + uint16_t* const bin_map,
|
| + int low_effort) {
|
| int i;
|
| VP8LHistogram** const histograms = image_histo->histograms;
|
| const int histo_size = image_histo->size;
|
| - const int bin_depth = histo_size + 1;
|
| DominantCostRange cost_range;
|
| DominantCostRangeInit(&cost_range);
|
|
|
| // Analyze the dominant (literal, red and blue) entropy costs.
|
| for (i = 0; i < histo_size; ++i) {
|
| - VP8LHistogram* const histo = histograms[i];
|
| - UpdateDominantCostRange(histo, &cost_range);
|
| + UpdateDominantCostRange(histograms[i], &cost_range);
|
| }
|
|
|
| // bin-hash histograms on three of the dominant (literal, red and blue)
|
| - // symbol costs.
|
| + // symbol costs and store the resulting bin_id for each histogram.
|
| for (i = 0; i < histo_size; ++i) {
|
| - const VP8LHistogram* const histo = histograms[i];
|
| - const int bin_id = GetHistoBinIndex(histo, &cost_range, low_effort);
|
| - const int bin_offset = bin_id * bin_depth;
|
| - // bin_map[n][0] for every bin 'n' maintains the counter for the number of
|
| - // histograms in that bin.
|
| - // Get and increment the num_histos in that bin.
|
| - const int num_histos = ++bin_map[bin_offset];
|
| - assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
|
| - // Add histogram i'th index at num_histos (last) position in the bin_map.
|
| - bin_map[bin_offset + num_histos] = i;
|
| - }
|
| -}
|
| -
|
| -// Compact the histogram set by removing unused entries.
|
| -static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
|
| - VP8LHistogram** const histograms = image_histo->histograms;
|
| - int i, j;
|
| -
|
| - for (i = 0, j = 0; i < image_histo->size; ++i) {
|
| - if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) {
|
| - if (j < i) {
|
| - histograms[j] = histograms[i];
|
| - histograms[i] = NULL;
|
| - }
|
| - ++j;
|
| - }
|
| + bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
|
| }
|
| - image_histo->size = j;
|
| }
|
|
|
| +// Compact image_histo[] by merging some histograms with same bin_id together if
|
| +// it's advantageous.
|
| static VP8LHistogram* HistogramCombineEntropyBin(
|
| VP8LHistogramSet* const image_histo,
|
| VP8LHistogram* cur_combo,
|
| - int16_t* const bin_map, int bin_depth, int num_bins,
|
| + const uint16_t* const bin_map, int bin_map_size, int num_bins,
|
| double combine_cost_factor, int low_effort) {
|
| - int bin_id;
|
| VP8LHistogram** const histograms = image_histo->histograms;
|
| -
|
| - for (bin_id = 0; bin_id < num_bins; ++bin_id) {
|
| - const int bin_offset = bin_id * bin_depth;
|
| - const int num_histos = bin_map[bin_offset];
|
| - const int idx1 = bin_map[bin_offset + 1];
|
| - int num_combine_failures = 0;
|
| - int n;
|
| - for (n = 2; n <= num_histos; ++n) {
|
| - const int idx2 = bin_map[bin_offset + n];
|
| - if (low_effort) {
|
| - // Merge all histograms with the same bin index, irrespective of cost of
|
| - // the merged histograms.
|
| - VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]);
|
| - histograms[idx2]->bit_cost_ = 0.;
|
| - } else {
|
| - const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
|
| - if (bit_cost_idx2 > 0.) {
|
| - const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
|
| - const double curr_cost_diff =
|
| - HistogramAddEval(histograms[idx1], histograms[idx2],
|
| - cur_combo, bit_cost_thresh);
|
| - if (curr_cost_diff < bit_cost_thresh) {
|
| - // Try to merge two histograms only if the combo is a trivial one or
|
| - // the two candidate histograms are already non-trivial.
|
| - // For some images, 'try_combine' turns out to be false for a lot of
|
| - // histogram pairs. In that case, we fallback to combining
|
| - // histograms as usual to avoid increasing the header size.
|
| - const int try_combine =
|
| - (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
|
| - ((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
|
| - (histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
|
| - const int max_combine_failures = 32;
|
| - if (try_combine || (num_combine_failures >= max_combine_failures)) {
|
| - HistogramSwap(&cur_combo, &histograms[idx1]);
|
| - histograms[idx2]->bit_cost_ = 0.;
|
| - } else {
|
| - ++num_combine_failures;
|
| - }
|
| - }
|
| + int idx;
|
| + // Work in-place: processed histograms are put at the beginning of
|
| + // image_histo[]. At the end, we just have to truncate the array.
|
| + int size = 0;
|
| + struct {
|
| + int16_t first; // position of the histogram that accumulates all
|
| + // histograms with the same bin_id
|
| + uint16_t num_combine_failures; // number of combine failures per bin_id
|
| + } bin_info[BIN_SIZE];
|
| +
|
| + assert(num_bins <= BIN_SIZE);
|
| + for (idx = 0; idx < num_bins; ++idx) {
|
| + bin_info[idx].first = -1;
|
| + bin_info[idx].num_combine_failures = 0;
|
| + }
|
| +
|
| + for (idx = 0; idx < bin_map_size; ++idx) {
|
| + const int bin_id = bin_map[idx];
|
| + const int first = bin_info[bin_id].first;
|
| + assert(size <= idx);
|
| + if (first == -1) {
|
| + // just move histogram #idx to its final position
|
| + histograms[size] = histograms[idx];
|
| + bin_info[bin_id].first = size++;
|
| + } else if (low_effort) {
|
| + HistogramAdd(histograms[idx], histograms[first], histograms[first]);
|
| + } else {
|
| + // try to merge #idx into #first (both share the same bin_id)
|
| + const double bit_cost = histograms[idx]->bit_cost_;
|
| + const double bit_cost_thresh = -bit_cost * combine_cost_factor;
|
| + const double curr_cost_diff =
|
| + HistogramAddEval(histograms[first], histograms[idx],
|
| + cur_combo, bit_cost_thresh);
|
| + if (curr_cost_diff < bit_cost_thresh) {
|
| + // Try to merge two histograms only if the combo is a trivial one or
|
| + // the two candidate histograms are already non-trivial.
|
| + // For some images, 'try_combine' turns out to be false for a lot of
|
| + // histogram pairs. In that case, we fallback to combining
|
| + // histograms as usual to avoid increasing the header size.
|
| + const int try_combine =
|
| + (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
|
| + ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
|
| + (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
|
| + const int max_combine_failures = 32;
|
| + if (try_combine ||
|
| + bin_info[bin_id].num_combine_failures >= max_combine_failures) {
|
| + // move the (better) merged histogram to its final slot
|
| + HistogramSwap(&cur_combo, &histograms[first]);
|
| + } else {
|
| + histograms[size++] = histograms[idx];
|
| + ++bin_info[bin_id].num_combine_failures;
|
| }
|
| + } else {
|
| + histograms[size++] = histograms[idx];
|
| }
|
| }
|
| - if (low_effort) {
|
| - // Update the bit_cost for the merged histograms (per bin index).
|
| - UpdateHistogramCost(histograms[idx1]);
|
| + }
|
| + image_histo->size = size;
|
| + if (low_effort) {
|
| + // for low_effort case, update the final cost when everything is merged
|
| + for (idx = 0; idx < size; ++idx) {
|
| + UpdateHistogramCost(histograms[idx]);
|
| }
|
| }
|
| - HistogramCompactBins(image_histo);
|
| return cur_combo;
|
| }
|
|
|
| -static uint32_t MyRand(uint32_t *seed) {
|
| - *seed *= 16807U;
|
| +static uint32_t MyRand(uint32_t* const seed) {
|
| + *seed = (*seed * 16807ull) & 0xffffffffu;
|
| if (*seed == 0) {
|
| *seed = 1;
|
| }
|
| @@ -682,7 +723,7 @@ static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
|
| HistogramPair* copy_to;
|
| const int idx1 = histo_queue.queue[0].idx1;
|
| const int idx2 = histo_queue.queue[0].idx2;
|
| - VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
|
| + HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
|
| histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
|
| // Remove merged histogram.
|
| for (i = 0; i + 1 < image_histo_size; ++i) {
|
| @@ -748,6 +789,8 @@ static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
|
| const int outer_iters = image_histo_size * iter_mult;
|
| const int num_pairs = image_histo_size / 2;
|
| const int num_tries_no_success = outer_iters / 2;
|
| + int idx2_max = image_histo_size - 1;
|
| + int do_brute_dorce = 0;
|
| VP8LHistogram** const histograms = image_histo->histograms;
|
|
|
| // Collapse similar histograms in 'image_histo'.
|
| @@ -758,43 +801,62 @@ static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
|
| double best_cost_diff = 0.;
|
| int best_idx1 = -1, best_idx2 = 1;
|
| int j;
|
| - const int num_tries =
|
| + int num_tries =
|
| (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
|
| + // Use a brute force approach if:
|
| + // - stochastic has not worked for a while and
|
| + // - if the number of iterations for brute force is less than the number of
|
| + // iterations if we never find a match ever again stochastically (hence
|
| + // num_tries times the number of remaining outer iterations).
|
| + do_brute_dorce =
|
| + (tries_with_no_success > 10) &&
|
| + (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter));
|
| + if (do_brute_dorce) num_tries = idx2_max;
|
| +
|
| seed += iter;
|
| for (j = 0; j < num_tries; ++j) {
|
| double curr_cost_diff;
|
| // Choose two histograms at random and try to combine them.
|
| - const uint32_t idx1 = MyRand(&seed) % image_histo_size;
|
| - const uint32_t tmp = (j & 7) + 1;
|
| - const uint32_t diff =
|
| - (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
|
| - const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
|
| - if (idx1 == idx2) {
|
| - continue;
|
| + uint32_t idx1, idx2;
|
| + if (do_brute_dorce) {
|
| + // Use a brute force approach.
|
| + idx1 = (uint32_t)j;
|
| + idx2 = (uint32_t)idx2_max;
|
| + } else {
|
| + const uint32_t tmp = (j & 7) + 1;
|
| + const uint32_t diff =
|
| + (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
|
| + idx1 = MyRand(&seed) % image_histo_size;
|
| + idx2 = (idx1 + diff + 1) % image_histo_size;
|
| + if (idx1 == idx2) {
|
| + continue;
|
| + }
|
| }
|
|
|
| // Calculate cost reduction on combining.
|
| curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
|
| tmp_histo, best_cost_diff);
|
| - if (curr_cost_diff < best_cost_diff) { // found a better pair?
|
| + if (curr_cost_diff < best_cost_diff) { // found a better pair?
|
| HistogramSwap(&best_combo, &tmp_histo);
|
| best_cost_diff = curr_cost_diff;
|
| best_idx1 = idx1;
|
| best_idx2 = idx2;
|
| }
|
| }
|
| + if (do_brute_dorce) --idx2_max;
|
|
|
| if (best_idx1 >= 0) {
|
| HistogramSwap(&best_combo, &histograms[best_idx1]);
|
| // swap best_idx2 slot with last one (which is now unused)
|
| --image_histo_size;
|
| + if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1;
|
| if (best_idx2 != image_histo_size) {
|
| HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
|
| histograms[image_histo_size] = NULL;
|
| }
|
| tries_with_no_success = 0;
|
| }
|
| - if (++tries_with_no_success >= num_tries_no_success) {
|
| + if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) {
|
| break;
|
| }
|
| }
|
| @@ -843,7 +905,7 @@ static void HistogramRemap(const VP8LHistogramSet* const in,
|
|
|
| for (i = 0; i < in_size; ++i) {
|
| const int idx = symbols[i];
|
| - VP8LHistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
|
| + HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
|
| }
|
| }
|
|
|
| @@ -869,32 +931,18 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
| const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
|
| const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
|
| const int image_histo_raw_size = histo_xsize * histo_ysize;
|
| - const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
|
| -
|
| - // The bin_map for every bin follows following semantics:
|
| - // bin_map[n][0] = num_histo; // The number of histograms in that bin.
|
| - // bin_map[n][1] = index of first histogram in that bin;
|
| - // bin_map[n][num_histo] = index of last histogram in that bin;
|
| - // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices.
|
| - const int bin_depth = image_histo_raw_size + 1;
|
| - int16_t* bin_map = NULL;
|
| VP8LHistogramSet* const orig_histo =
|
| VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
|
| VP8LHistogram* cur_combo;
|
| + // Don't attempt linear bin-partition heuristic for
|
| + // histograms of small sizes (as bin_map will be very sparse) and
|
| + // maximum quality q==100 (to preserve the compression gains at that level).
|
| + const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
|
| const int entropy_combine =
|
| (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
|
|
|
| if (orig_histo == NULL) goto Error;
|
|
|
| - // Don't attempt linear bin-partition heuristic for:
|
| - // histograms of small sizes, as bin_map will be very sparse and;
|
| - // Maximum quality (q==100), to preserve the compression gains at that level.
|
| - if (entropy_combine) {
|
| - const int bin_map_size = bin_depth * entropy_combine_num_bins;
|
| - bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
|
| - if (bin_map == NULL) goto Error;
|
| - }
|
| -
|
| // Construct the histograms from backward references.
|
| HistogramBuild(xsize, histo_bits, refs, orig_histo);
|
| // Copies the histograms and computes its bit_cost.
|
| @@ -902,12 +950,17 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
|
|
| cur_combo = tmp_histos->histograms[1]; // pick up working slot
|
| if (entropy_combine) {
|
| + const int bin_map_size = orig_histo->size;
|
| + // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
|
| + uint16_t* const bin_map = histogram_symbols;
|
| const double combine_cost_factor =
|
| GetCombineCostFactor(image_histo_raw_size, quality);
|
| +
|
| HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
|
| // Collapse histograms with similar entropy.
|
| - cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map,
|
| - bin_depth, entropy_combine_num_bins,
|
| + cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo,
|
| + bin_map, bin_map_size,
|
| + entropy_combine_num_bins,
|
| combine_cost_factor, low_effort);
|
| }
|
|
|
| @@ -932,7 +985,6 @@ int VP8LGetHistoImageSymbols(int xsize, int ysize,
|
| ok = 1;
|
|
|
| Error:
|
| - WebPSafeFree(bin_map);
|
| VP8LFreeHistogramSet(orig_histo);
|
| return ok;
|
| }
|
|
|