| Index: third_party/libwebp/utils/quant_levels.c
|
| diff --git a/third_party/libwebp/utils/quant_levels.c b/third_party/libwebp/utils/quant_levels.c
|
| deleted file mode 100644
|
| index d7c8aab92212394b01a9a359b67ea15e93254fd0..0000000000000000000000000000000000000000
|
| --- a/third_party/libwebp/utils/quant_levels.c
|
| +++ /dev/null
|
| @@ -1,140 +0,0 @@
|
| -// Copyright 2011 Google Inc. All Rights Reserved.
|
| -//
|
| -// Use of this source code is governed by a BSD-style license
|
| -// that can be found in the COPYING file in the root of the source
|
| -// tree. An additional intellectual property rights grant can be found
|
| -// in the file PATENTS. All contributing project authors may
|
| -// be found in the AUTHORS file in the root of the source tree.
|
| -// -----------------------------------------------------------------------------
|
| -//
|
| -// Quantize levels for specified number of quantization-levels ([2, 256]).
|
| -// Min and max values are preserved (usual 0 and 255 for alpha plane).
|
| -//
|
| -// Author: Skal (pascal.massimino@gmail.com)
|
| -
|
| -#include <assert.h>
|
| -
|
| -#include "./quant_levels.h"
|
| -
|
| -#define NUM_SYMBOLS 256
|
| -
|
| -#define MAX_ITER 6 // Maximum number of convergence steps.
|
| -#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Quantize levels.
|
| -
|
| -int QuantizeLevels(uint8_t* const data, int width, int height,
|
| - int num_levels, uint64_t* const sse) {
|
| - int freq[NUM_SYMBOLS] = { 0 };
|
| - int q_level[NUM_SYMBOLS] = { 0 };
|
| - double inv_q_level[NUM_SYMBOLS] = { 0 };
|
| - int min_s = 255, max_s = 0;
|
| - const size_t data_size = height * width;
|
| - int i, num_levels_in, iter;
|
| - double last_err = 1.e38, err = 0.;
|
| - const double err_threshold = ERROR_THRESHOLD * data_size;
|
| -
|
| - if (data == NULL) {
|
| - return 0;
|
| - }
|
| -
|
| - if (width <= 0 || height <= 0) {
|
| - return 0;
|
| - }
|
| -
|
| - if (num_levels < 2 || num_levels > 256) {
|
| - return 0;
|
| - }
|
| -
|
| - {
|
| - size_t n;
|
| - num_levels_in = 0;
|
| - for (n = 0; n < data_size; ++n) {
|
| - num_levels_in += (freq[data[n]] == 0);
|
| - if (min_s > data[n]) min_s = data[n];
|
| - if (max_s < data[n]) max_s = data[n];
|
| - ++freq[data[n]];
|
| - }
|
| - }
|
| -
|
| - if (num_levels_in <= num_levels) goto End; // nothing to do!
|
| -
|
| - // Start with uniformly spread centroids.
|
| - for (i = 0; i < num_levels; ++i) {
|
| - inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
|
| - }
|
| -
|
| - // Fixed values. Won't be changed.
|
| - q_level[min_s] = 0;
|
| - q_level[max_s] = num_levels - 1;
|
| - assert(inv_q_level[0] == min_s);
|
| - assert(inv_q_level[num_levels - 1] == max_s);
|
| -
|
| - // k-Means iterations.
|
| - for (iter = 0; iter < MAX_ITER; ++iter) {
|
| - double q_sum[NUM_SYMBOLS] = { 0 };
|
| - double q_count[NUM_SYMBOLS] = { 0 };
|
| - int s, slot = 0;
|
| -
|
| - // Assign classes to representatives.
|
| - for (s = min_s; s <= max_s; ++s) {
|
| - // Keep track of the nearest neighbour 'slot'
|
| - while (slot < num_levels - 1 &&
|
| - 2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
|
| - ++slot;
|
| - }
|
| - if (freq[s] > 0) {
|
| - q_sum[slot] += s * freq[s];
|
| - q_count[slot] += freq[s];
|
| - }
|
| - q_level[s] = slot;
|
| - }
|
| -
|
| - // Assign new representatives to classes.
|
| - if (num_levels > 2) {
|
| - for (slot = 1; slot < num_levels - 1; ++slot) {
|
| - const double count = q_count[slot];
|
| - if (count > 0.) {
|
| - inv_q_level[slot] = q_sum[slot] / count;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Compute convergence error.
|
| - err = 0.;
|
| - for (s = min_s; s <= max_s; ++s) {
|
| - const double error = s - inv_q_level[q_level[s]];
|
| - err += freq[s] * error * error;
|
| - }
|
| -
|
| - // Check for convergence: we stop as soon as the error is no
|
| - // longer improving.
|
| - if (last_err - err < err_threshold) break;
|
| - last_err = err;
|
| - }
|
| -
|
| - // Remap the alpha plane to quantized values.
|
| - {
|
| - // double->int rounding operation can be costly, so we do it
|
| - // once for all before remapping. We also perform the data[] -> slot
|
| - // mapping, while at it (avoid one indirection in the final loop).
|
| - uint8_t map[NUM_SYMBOLS];
|
| - int s;
|
| - size_t n;
|
| - for (s = min_s; s <= max_s; ++s) {
|
| - const int slot = q_level[s];
|
| - map[s] = (uint8_t)(inv_q_level[slot] + .5);
|
| - }
|
| - // Final pass.
|
| - for (n = 0; n < data_size; ++n) {
|
| - data[n] = map[data[n]];
|
| - }
|
| - }
|
| - End:
|
| - // Store sum of squared error if needed.
|
| - if (sse != NULL) *sse = (uint64_t)err;
|
| -
|
| - return 1;
|
| -}
|
| -
|
|
|