| Index: third_party/libwebp/utils/huffman.c
|
| diff --git a/third_party/libwebp/utils/huffman.c b/third_party/libwebp/utils/huffman.c
|
| deleted file mode 100644
|
| index 36e5502836ab82bd5294f107e231c919601f19c8..0000000000000000000000000000000000000000
|
| --- a/third_party/libwebp/utils/huffman.c
|
| +++ /dev/null
|
| @@ -1,205 +0,0 @@
|
| -// Copyright 2012 Google Inc. All Rights Reserved.
|
| -//
|
| -// Use of this source code is governed by a BSD-style license
|
| -// that can be found in the COPYING file in the root of the source
|
| -// tree. An additional intellectual property rights grant can be found
|
| -// in the file PATENTS. All contributing project authors may
|
| -// be found in the AUTHORS file in the root of the source tree.
|
| -// -----------------------------------------------------------------------------
|
| -//
|
| -// Utilities for building and looking up Huffman trees.
|
| -//
|
| -// Author: Urvang Joshi (urvang@google.com)
|
| -
|
| -#include <assert.h>
|
| -#include <stdlib.h>
|
| -#include <string.h>
|
| -#include "./huffman.h"
|
| -#include "./utils.h"
|
| -#include "../webp/format_constants.h"
|
| -
|
| -// Huffman data read via DecodeImageStream is represented in two (red and green)
|
| -// bytes.
|
| -#define MAX_HTREE_GROUPS 0x10000
|
| -
|
| -HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
|
| - HTreeGroup* const htree_groups =
|
| - (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
|
| - if (htree_groups == NULL) {
|
| - return NULL;
|
| - }
|
| - assert(num_htree_groups <= MAX_HTREE_GROUPS);
|
| - return htree_groups;
|
| -}
|
| -
|
| -void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
|
| - if (htree_groups != NULL) {
|
| - WebPSafeFree(htree_groups);
|
| - }
|
| -}
|
| -
|
| -// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
|
| -// bit-wise reversal of the len least significant bits of key.
|
| -static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
|
| - uint32_t step = 1 << (len - 1);
|
| - while (key & step) {
|
| - step >>= 1;
|
| - }
|
| - return (key & (step - 1)) + step;
|
| -}
|
| -
|
| -// Stores code in table[0], table[step], table[2*step], ..., table[end].
|
| -// Assumes that end is an integer multiple of step.
|
| -static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
|
| - int step, int end,
|
| - HuffmanCode code) {
|
| - assert(end % step == 0);
|
| - do {
|
| - end -= step;
|
| - table[end] = code;
|
| - } while (end > 0);
|
| -}
|
| -
|
| -// Returns the table width of the next 2nd level table. count is the histogram
|
| -// of bit lengths for the remaining symbols, len is the code length of the next
|
| -// processed symbol
|
| -static WEBP_INLINE int NextTableBitSize(const int* const count,
|
| - int len, int root_bits) {
|
| - int left = 1 << (len - root_bits);
|
| - while (len < MAX_ALLOWED_CODE_LENGTH) {
|
| - left -= count[len];
|
| - if (left <= 0) break;
|
| - ++len;
|
| - left <<= 1;
|
| - }
|
| - return len - root_bits;
|
| -}
|
| -
|
| -int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
|
| - const int code_lengths[], int code_lengths_size) {
|
| - HuffmanCode* table = root_table; // next available space in table
|
| - int total_size = 1 << root_bits; // total size root table + 2nd level table
|
| - int* sorted = NULL; // symbols sorted by code length
|
| - int len; // current code length
|
| - int symbol; // symbol index in original or sorted table
|
| - // number of codes of each length:
|
| - int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
| - // offsets in sorted table for each length:
|
| - int offset[MAX_ALLOWED_CODE_LENGTH + 1];
|
| -
|
| - assert(code_lengths_size != 0);
|
| - assert(code_lengths != NULL);
|
| - assert(root_table != NULL);
|
| - assert(root_bits > 0);
|
| -
|
| - // Build histogram of code lengths.
|
| - for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| - if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
|
| - return 0;
|
| - }
|
| - ++count[code_lengths[symbol]];
|
| - }
|
| -
|
| - // Error, all code lengths are zeros.
|
| - if (count[0] == code_lengths_size) {
|
| - return 0;
|
| - }
|
| -
|
| - // Generate offsets into sorted symbol table by code length.
|
| - offset[1] = 0;
|
| - for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
|
| - if (count[len] > (1 << len)) {
|
| - return 0;
|
| - }
|
| - offset[len + 1] = offset[len] + count[len];
|
| - }
|
| -
|
| - sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
|
| - if (sorted == NULL) {
|
| - return 0;
|
| - }
|
| -
|
| - // Sort symbols by length, by symbol order within each length.
|
| - for (symbol = 0; symbol < code_lengths_size; ++symbol) {
|
| - const int symbol_code_length = code_lengths[symbol];
|
| - if (code_lengths[symbol] > 0) {
|
| - sorted[offset[symbol_code_length]++] = symbol;
|
| - }
|
| - }
|
| -
|
| - // Special case code with only one value.
|
| - if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
|
| - HuffmanCode code;
|
| - code.bits = 0;
|
| - code.value = (uint16_t)sorted[0];
|
| - ReplicateValue(table, 1, total_size, code);
|
| - WebPSafeFree(sorted);
|
| - return total_size;
|
| - }
|
| -
|
| - {
|
| - int step; // step size to replicate values in current table
|
| - uint32_t low = -1; // low bits for current root entry
|
| - uint32_t mask = total_size - 1; // mask for low bits
|
| - uint32_t key = 0; // reversed prefix code
|
| - int num_nodes = 1; // number of Huffman tree nodes
|
| - int num_open = 1; // number of open branches in current tree level
|
| - int table_bits = root_bits; // key length of current table
|
| - int table_size = 1 << table_bits; // size of current table
|
| - symbol = 0;
|
| - // Fill in root table.
|
| - for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
|
| - num_open <<= 1;
|
| - num_nodes += num_open;
|
| - num_open -= count[len];
|
| - if (num_open < 0) {
|
| - WebPSafeFree(sorted);
|
| - return 0;
|
| - }
|
| - for (; count[len] > 0; --count[len]) {
|
| - HuffmanCode code;
|
| - code.bits = (uint8_t)len;
|
| - code.value = (uint16_t)sorted[symbol++];
|
| - ReplicateValue(&table[key], step, table_size, code);
|
| - key = GetNextKey(key, len);
|
| - }
|
| - }
|
| -
|
| - // Fill in 2nd level tables and add pointers to root table.
|
| - for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
|
| - ++len, step <<= 1) {
|
| - num_open <<= 1;
|
| - num_nodes += num_open;
|
| - num_open -= count[len];
|
| - if (num_open < 0) {
|
| - WebPSafeFree(sorted);
|
| - return 0;
|
| - }
|
| - for (; count[len] > 0; --count[len]) {
|
| - HuffmanCode code;
|
| - if ((key & mask) != low) {
|
| - table += table_size;
|
| - table_bits = NextTableBitSize(count, len, root_bits);
|
| - table_size = 1 << table_bits;
|
| - total_size += table_size;
|
| - low = key & mask;
|
| - root_table[low].bits = (uint8_t)(table_bits + root_bits);
|
| - root_table[low].value = (uint16_t)((table - root_table) - low);
|
| - }
|
| - code.bits = (uint8_t)(len - root_bits);
|
| - code.value = (uint16_t)sorted[symbol++];
|
| - ReplicateValue(&table[key >> root_bits], step, table_size, code);
|
| - key = GetNextKey(key, len);
|
| - }
|
| - }
|
| -
|
| - // Check if tree is full.
|
| - if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
|
| - WebPSafeFree(sorted);
|
| - return 0;
|
| - }
|
| - }
|
| -
|
| - WebPSafeFree(sorted);
|
| - return total_size;
|
| -}
|
|
|