| Index: third_party/libwebp/utils/filters.c
|
| diff --git a/third_party/libwebp/utils/filters.c b/third_party/libwebp/utils/filters.c
|
| deleted file mode 100644
|
| index 15543b1271e67904991a419d3babbaeb161973c4..0000000000000000000000000000000000000000
|
| --- a/third_party/libwebp/utils/filters.c
|
| +++ /dev/null
|
| @@ -1,76 +0,0 @@
|
| -// Copyright 2011 Google Inc. All Rights Reserved.
|
| -//
|
| -// Use of this source code is governed by a BSD-style license
|
| -// that can be found in the COPYING file in the root of the source
|
| -// tree. An additional intellectual property rights grant can be found
|
| -// in the file PATENTS. All contributing project authors may
|
| -// be found in the AUTHORS file in the root of the source tree.
|
| -// -----------------------------------------------------------------------------
|
| -//
|
| -// filter estimation
|
| -//
|
| -// Author: Urvang (urvang@google.com)
|
| -
|
| -#include "./filters.h"
|
| -#include <stdlib.h>
|
| -#include <string.h>
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Quick estimate of a potentially interesting filter mode to try.
|
| -
|
| -#define SMAX 16
|
| -#define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX)
|
| -
|
| -static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
|
| - const int g = a + b - c;
|
| - return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit
|
| -}
|
| -
|
| -WEBP_FILTER_TYPE WebPEstimateBestFilter(const uint8_t* data,
|
| - int width, int height, int stride) {
|
| - int i, j;
|
| - int bins[WEBP_FILTER_LAST][SMAX];
|
| - memset(bins, 0, sizeof(bins));
|
| -
|
| - // We only sample every other pixels. That's enough.
|
| - for (j = 2; j < height - 1; j += 2) {
|
| - const uint8_t* const p = data + j * stride;
|
| - int mean = p[0];
|
| - for (i = 2; i < width - 1; i += 2) {
|
| - const int diff0 = SDIFF(p[i], mean);
|
| - const int diff1 = SDIFF(p[i], p[i - 1]);
|
| - const int diff2 = SDIFF(p[i], p[i - width]);
|
| - const int grad_pred =
|
| - GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
|
| - const int diff3 = SDIFF(p[i], grad_pred);
|
| - bins[WEBP_FILTER_NONE][diff0] = 1;
|
| - bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
|
| - bins[WEBP_FILTER_VERTICAL][diff2] = 1;
|
| - bins[WEBP_FILTER_GRADIENT][diff3] = 1;
|
| - mean = (3 * mean + p[i] + 2) >> 2;
|
| - }
|
| - }
|
| - {
|
| - int filter;
|
| - WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE;
|
| - int best_score = 0x7fffffff;
|
| - for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
|
| - int score = 0;
|
| - for (i = 0; i < SMAX; ++i) {
|
| - if (bins[filter][i] > 0) {
|
| - score += i;
|
| - }
|
| - }
|
| - if (score < best_score) {
|
| - best_score = score;
|
| - best_filter = (WEBP_FILTER_TYPE)filter;
|
| - }
|
| - }
|
| - return best_filter;
|
| - }
|
| -}
|
| -
|
| -#undef SMAX
|
| -#undef SDIFF
|
| -
|
| -//------------------------------------------------------------------------------
|
|
|