Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(100)

Side by Side Diff: third_party/libwebp/utils/huffman_utils.c

Issue 2651883004: libwebp-0.6.0-rc1 (Closed)
Patch Set: Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/libwebp/utils/huffman_utils.h ('k') | third_party/libwebp/utils/quant_levels.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 Google Inc. All Rights Reserved. 1 // Copyright 2012 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // Utilities for building and looking up Huffman trees. 10 // Utilities for building and looking up Huffman trees.
11 // 11 //
12 // Author: Urvang Joshi (urvang@google.com) 12 // Author: Urvang Joshi (urvang@google.com)
13 13
14 #include <assert.h> 14 #include <assert.h>
15 #include <stdlib.h> 15 #include <stdlib.h>
16 #include <string.h> 16 #include <string.h>
17 #include "./huffman.h" 17 #include "./huffman_utils.h"
18 #include "./utils.h" 18 #include "./utils.h"
19 #include "../webp/format_constants.h" 19 #include "../webp/format_constants.h"
20 20
21 // Huffman data read via DecodeImageStream is represented in two (red and green) 21 // Huffman data read via DecodeImageStream is represented in two (red and green)
22 // bytes. 22 // bytes.
23 #define MAX_HTREE_GROUPS 0x10000 23 #define MAX_HTREE_GROUPS 0x10000
24 24
25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { 25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
26 HTreeGroup* const htree_groups = 26 HTreeGroup* const htree_groups =
27 (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups)); 27 (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
(...skipping 10 matching lines...) Expand all
38 } 38 }
39 } 39 }
40 40
41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the 41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
42 // bit-wise reversal of the len least significant bits of key. 42 // bit-wise reversal of the len least significant bits of key.
43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) { 43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
44 uint32_t step = 1 << (len - 1); 44 uint32_t step = 1 << (len - 1);
45 while (key & step) { 45 while (key & step) {
46 step >>= 1; 46 step >>= 1;
47 } 47 }
48 return (key & (step - 1)) + step; 48 return step ? (key & (step - 1)) + step : key;
49 } 49 }
50 50
51 // Stores code in table[0], table[step], table[2*step], ..., table[end]. 51 // Stores code in table[0], table[step], table[2*step], ..., table[end].
52 // Assumes that end is an integer multiple of step. 52 // Assumes that end is an integer multiple of step.
53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table, 53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
54 int step, int end, 54 int step, int end,
55 HuffmanCode code) { 55 HuffmanCode code) {
56 assert(end % step == 0); 56 assert(end % step == 0);
57 do { 57 do {
58 end -= step; 58 end -= step;
59 table[end] = code; 59 table[end] = code;
60 } while (end > 0); 60 } while (end > 0);
61 } 61 }
62 62
63 // Returns the table width of the next 2nd level table. count is the histogram 63 // Returns the table width of the next 2nd level table. count is the histogram
64 // of bit lengths for the remaining symbols, len is the code length of the next 64 // of bit lengths for the remaining symbols, len is the code length of the next
65 // processed symbol 65 // processed symbol
66 static WEBP_INLINE int NextTableBitSize(const int* const count, 66 static WEBP_INLINE int NextTableBitSize(const int* const count,
67 int len, int root_bits) { 67 int len, int root_bits) {
68 int left = 1 << (len - root_bits); 68 int left = 1 << (len - root_bits);
69 while (len < MAX_ALLOWED_CODE_LENGTH) { 69 while (len < MAX_ALLOWED_CODE_LENGTH) {
70 left -= count[len]; 70 left -= count[len];
71 if (left <= 0) break; 71 if (left <= 0) break;
72 ++len; 72 ++len;
73 left <<= 1; 73 left <<= 1;
74 } 74 }
75 return len - root_bits; 75 return len - root_bits;
76 } 76 }
77 77
78 int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits, 78 // sorted[code_lengths_size] is a pre-allocated array for sorting symbols
79 const int code_lengths[], int code_lengths_size) { 79 // by code length.
80 static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
81 const int code_lengths[], int code_lengths_size,
82 uint16_t sorted[]) {
80 HuffmanCode* table = root_table; // next available space in table 83 HuffmanCode* table = root_table; // next available space in table
81 int total_size = 1 << root_bits; // total size root table + 2nd level table 84 int total_size = 1 << root_bits; // total size root table + 2nd level table
82 int* sorted = NULL; // symbols sorted by code length
83 int len; // current code length 85 int len; // current code length
84 int symbol; // symbol index in original or sorted table 86 int symbol; // symbol index in original or sorted table
85 // number of codes of each length: 87 // number of codes of each length:
86 int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; 88 int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
87 // offsets in sorted table for each length: 89 // offsets in sorted table for each length:
88 int offset[MAX_ALLOWED_CODE_LENGTH + 1]; 90 int offset[MAX_ALLOWED_CODE_LENGTH + 1];
89 91
90 assert(code_lengths_size != 0); 92 assert(code_lengths_size != 0);
91 assert(code_lengths != NULL); 93 assert(code_lengths != NULL);
92 assert(root_table != NULL); 94 assert(root_table != NULL);
(...skipping 14 matching lines...) Expand all
107 109
108 // Generate offsets into sorted symbol table by code length. 110 // Generate offsets into sorted symbol table by code length.
109 offset[1] = 0; 111 offset[1] = 0;
110 for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) { 112 for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
111 if (count[len] > (1 << len)) { 113 if (count[len] > (1 << len)) {
112 return 0; 114 return 0;
113 } 115 }
114 offset[len + 1] = offset[len] + count[len]; 116 offset[len + 1] = offset[len] + count[len];
115 } 117 }
116 118
117 sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
118 if (sorted == NULL) {
119 return 0;
120 }
121
122 // Sort symbols by length, by symbol order within each length. 119 // Sort symbols by length, by symbol order within each length.
123 for (symbol = 0; symbol < code_lengths_size; ++symbol) { 120 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
124 const int symbol_code_length = code_lengths[symbol]; 121 const int symbol_code_length = code_lengths[symbol];
125 if (code_lengths[symbol] > 0) { 122 if (code_lengths[symbol] > 0) {
126 sorted[offset[symbol_code_length]++] = symbol; 123 sorted[offset[symbol_code_length]++] = symbol;
127 } 124 }
128 } 125 }
129 126
130 // Special case code with only one value. 127 // Special case code with only one value.
131 if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) { 128 if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
132 HuffmanCode code; 129 HuffmanCode code;
133 code.bits = 0; 130 code.bits = 0;
134 code.value = (uint16_t)sorted[0]; 131 code.value = (uint16_t)sorted[0];
135 ReplicateValue(table, 1, total_size, code); 132 ReplicateValue(table, 1, total_size, code);
136 WebPSafeFree(sorted);
137 return total_size; 133 return total_size;
138 } 134 }
139 135
140 { 136 {
141 int step; // step size to replicate values in current table 137 int step; // step size to replicate values in current table
142 uint32_t low = -1; // low bits for current root entry 138 uint32_t low = -1; // low bits for current root entry
143 uint32_t mask = total_size - 1; // mask for low bits 139 uint32_t mask = total_size - 1; // mask for low bits
144 uint32_t key = 0; // reversed prefix code 140 uint32_t key = 0; // reversed prefix code
145 int num_nodes = 1; // number of Huffman tree nodes 141 int num_nodes = 1; // number of Huffman tree nodes
146 int num_open = 1; // number of open branches in current tree level 142 int num_open = 1; // number of open branches in current tree level
147 int table_bits = root_bits; // key length of current table 143 int table_bits = root_bits; // key length of current table
148 int table_size = 1 << table_bits; // size of current table 144 int table_size = 1 << table_bits; // size of current table
149 symbol = 0; 145 symbol = 0;
150 // Fill in root table. 146 // Fill in root table.
151 for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) { 147 for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
152 num_open <<= 1; 148 num_open <<= 1;
153 num_nodes += num_open; 149 num_nodes += num_open;
154 num_open -= count[len]; 150 num_open -= count[len];
155 if (num_open < 0) { 151 if (num_open < 0) {
156 WebPSafeFree(sorted);
157 return 0; 152 return 0;
158 } 153 }
159 for (; count[len] > 0; --count[len]) { 154 for (; count[len] > 0; --count[len]) {
160 HuffmanCode code; 155 HuffmanCode code;
161 code.bits = (uint8_t)len; 156 code.bits = (uint8_t)len;
162 code.value = (uint16_t)sorted[symbol++]; 157 code.value = (uint16_t)sorted[symbol++];
163 ReplicateValue(&table[key], step, table_size, code); 158 ReplicateValue(&table[key], step, table_size, code);
164 key = GetNextKey(key, len); 159 key = GetNextKey(key, len);
165 } 160 }
166 } 161 }
167 162
168 // Fill in 2nd level tables and add pointers to root table. 163 // Fill in 2nd level tables and add pointers to root table.
169 for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH; 164 for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
170 ++len, step <<= 1) { 165 ++len, step <<= 1) {
171 num_open <<= 1; 166 num_open <<= 1;
172 num_nodes += num_open; 167 num_nodes += num_open;
173 num_open -= count[len]; 168 num_open -= count[len];
174 if (num_open < 0) { 169 if (num_open < 0) {
175 WebPSafeFree(sorted);
176 return 0; 170 return 0;
177 } 171 }
178 for (; count[len] > 0; --count[len]) { 172 for (; count[len] > 0; --count[len]) {
179 HuffmanCode code; 173 HuffmanCode code;
180 if ((key & mask) != low) { 174 if ((key & mask) != low) {
181 table += table_size; 175 table += table_size;
182 table_bits = NextTableBitSize(count, len, root_bits); 176 table_bits = NextTableBitSize(count, len, root_bits);
183 table_size = 1 << table_bits; 177 table_size = 1 << table_bits;
184 total_size += table_size; 178 total_size += table_size;
185 low = key & mask; 179 low = key & mask;
186 root_table[low].bits = (uint8_t)(table_bits + root_bits); 180 root_table[low].bits = (uint8_t)(table_bits + root_bits);
187 root_table[low].value = (uint16_t)((table - root_table) - low); 181 root_table[low].value = (uint16_t)((table - root_table) - low);
188 } 182 }
189 code.bits = (uint8_t)(len - root_bits); 183 code.bits = (uint8_t)(len - root_bits);
190 code.value = (uint16_t)sorted[symbol++]; 184 code.value = (uint16_t)sorted[symbol++];
191 ReplicateValue(&table[key >> root_bits], step, table_size, code); 185 ReplicateValue(&table[key >> root_bits], step, table_size, code);
192 key = GetNextKey(key, len); 186 key = GetNextKey(key, len);
193 } 187 }
194 } 188 }
195 189
196 // Check if tree is full. 190 // Check if tree is full.
197 if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) { 191 if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
198 WebPSafeFree(sorted);
199 return 0; 192 return 0;
200 } 193 }
201 } 194 }
202 195
203 WebPSafeFree(sorted);
204 return total_size; 196 return total_size;
205 } 197 }
198
199 // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
200 // More commonly, the value is around ~280.
201 #define MAX_CODE_LENGTHS_SIZE \
202 ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
203 // Cut-off value for switching between heap and stack allocation.
204 #define SORTED_SIZE_CUTOFF 512
205 int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
206 const int code_lengths[], int code_lengths_size) {
207 int total_size;
208 assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
209 if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
210 // use local stack-allocated array.
211 uint16_t sorted[SORTED_SIZE_CUTOFF];
212 total_size = BuildHuffmanTable(root_table, root_bits,
213 code_lengths, code_lengths_size, sorted);
214 } else { // rare case. Use heap allocation.
215 uint16_t* const sorted =
216 (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
217 if (sorted == NULL) return 0;
218 total_size = BuildHuffmanTable(root_table, root_bits,
219 code_lengths, code_lengths_size, sorted);
220 WebPSafeFree(sorted);
221 }
222 return total_size;
223 }
OLDNEW
« no previous file with comments | « third_party/libwebp/utils/huffman_utils.h ('k') | third_party/libwebp/utils/quant_levels.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698