| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 Google Inc. All Rights Reserved. | |
| 2 // | |
| 3 // Use of this source code is governed by a BSD-style license | |
| 4 // that can be found in the COPYING file in the root of the source | |
| 5 // tree. An additional intellectual property rights grant can be found | |
| 6 // in the file PATENTS. All contributing project authors may | |
| 7 // be found in the AUTHORS file in the root of the source tree. | |
| 8 // ----------------------------------------------------------------------------- | |
| 9 // | |
| 10 // main entry for the lossless encoder. | |
| 11 // | |
| 12 // Author: Vikas Arora (vikaas.arora@gmail.com) | |
| 13 // | |
| 14 | |
| 15 #include <assert.h> | |
| 16 #include <stdlib.h> | |
| 17 | |
| 18 #include "./backward_references.h" | |
| 19 #include "./histogram.h" | |
| 20 #include "./vp8enci.h" | |
| 21 #include "./vp8li.h" | |
| 22 #include "../dsp/lossless.h" | |
| 23 #include "../utils/bit_writer.h" | |
| 24 #include "../utils/huffman_encode.h" | |
| 25 #include "../utils/utils.h" | |
| 26 #include "../webp/format_constants.h" | |
| 27 | |
| 28 #include "./delta_palettization.h" | |
| 29 | |
| 30 #define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer. | |
| 31 // Maximum number of histogram images (sub-blocks). | |
| 32 #define MAX_HUFF_IMAGE_SIZE 2600 | |
| 33 | |
| 34 // Palette reordering for smaller sum of deltas (and for smaller storage). | |
| 35 | |
| 36 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) { | |
| 37 const uint32_t a = WebPMemToUint32((uint8_t*)p1); | |
| 38 const uint32_t b = WebPMemToUint32((uint8_t*)p2); | |
| 39 assert(a != b); | |
| 40 return (a < b) ? -1 : 1; | |
| 41 } | |
| 42 | |
| 43 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) { | |
| 44 return (v <= 128) ? v : (256 - v); | |
| 45 } | |
| 46 | |
| 47 // Computes a value that is related to the entropy created by the | |
| 48 // palette entry diff. | |
| 49 // | |
| 50 // Note that the last & 0xff is a no-operation in the next statement, but | |
| 51 // removed by most compilers and is here only for regularity of the code. | |
| 52 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) { | |
| 53 const uint32_t diff = VP8LSubPixels(col1, col2); | |
| 54 const int kMoreWeightForRGBThanForAlpha = 9; | |
| 55 uint32_t score; | |
| 56 score = PaletteComponentDistance((diff >> 0) & 0xff); | |
| 57 score += PaletteComponentDistance((diff >> 8) & 0xff); | |
| 58 score += PaletteComponentDistance((diff >> 16) & 0xff); | |
| 59 score *= kMoreWeightForRGBThanForAlpha; | |
| 60 score += PaletteComponentDistance((diff >> 24) & 0xff); | |
| 61 return score; | |
| 62 } | |
| 63 | |
| 64 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) { | |
| 65 const uint32_t tmp = *col1; | |
| 66 *col1 = *col2; | |
| 67 *col2 = tmp; | |
| 68 } | |
| 69 | |
| 70 static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) { | |
| 71 // Find greedily always the closest color of the predicted color to minimize | |
| 72 // deltas in the palette. This reduces storage needs since the | |
| 73 // palette is stored with delta encoding. | |
| 74 uint32_t predict = 0x00000000; | |
| 75 int i, k; | |
| 76 for (i = 0; i < num_colors; ++i) { | |
| 77 int best_ix = i; | |
| 78 uint32_t best_score = ~0U; | |
| 79 for (k = i; k < num_colors; ++k) { | |
| 80 const uint32_t cur_score = PaletteColorDistance(palette[k], predict); | |
| 81 if (best_score > cur_score) { | |
| 82 best_score = cur_score; | |
| 83 best_ix = k; | |
| 84 } | |
| 85 } | |
| 86 SwapColor(&palette[best_ix], &palette[i]); | |
| 87 predict = palette[i]; | |
| 88 } | |
| 89 } | |
| 90 | |
| 91 // The palette has been sorted by alpha. This function checks if the other | |
| 92 // components of the palette have a monotonic development with regards to | |
| 93 // position in the palette. If all have monotonic development, there is | |
| 94 // no benefit to re-organize them greedily. A monotonic development | |
| 95 // would be spotted in green-only situations (like lossy alpha) or gray-scale | |
| 96 // images. | |
| 97 static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) { | |
| 98 uint32_t predict = 0x000000; | |
| 99 int i; | |
| 100 uint8_t sign_found = 0x00; | |
| 101 for (i = 0; i < num_colors; ++i) { | |
| 102 const uint32_t diff = VP8LSubPixels(palette[i], predict); | |
| 103 const uint8_t rd = (diff >> 16) & 0xff; | |
| 104 const uint8_t gd = (diff >> 8) & 0xff; | |
| 105 const uint8_t bd = (diff >> 0) & 0xff; | |
| 106 if (rd != 0x00) { | |
| 107 sign_found |= (rd < 0x80) ? 1 : 2; | |
| 108 } | |
| 109 if (gd != 0x00) { | |
| 110 sign_found |= (gd < 0x80) ? 8 : 16; | |
| 111 } | |
| 112 if (bd != 0x00) { | |
| 113 sign_found |= (bd < 0x80) ? 64 : 128; | |
| 114 } | |
| 115 predict = palette[i]; | |
| 116 } | |
| 117 return (sign_found & (sign_found << 1)) != 0; // two consequent signs. | |
| 118 } | |
| 119 | |
| 120 // ----------------------------------------------------------------------------- | |
| 121 // Palette | |
| 122 | |
| 123 // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE, | |
| 124 // creates a palette and returns true, else returns false. | |
| 125 static int AnalyzeAndCreatePalette(const WebPPicture* const pic, | |
| 126 int low_effort, | |
| 127 uint32_t palette[MAX_PALETTE_SIZE], | |
| 128 int* const palette_size) { | |
| 129 const int num_colors = WebPGetColorPalette(pic, palette); | |
| 130 if (num_colors > MAX_PALETTE_SIZE) return 0; | |
| 131 *palette_size = num_colors; | |
| 132 qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort); | |
| 133 if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) { | |
| 134 GreedyMinimizeDeltas(palette, num_colors); | |
| 135 } | |
| 136 return 1; | |
| 137 } | |
| 138 | |
| 139 // These five modes are evaluated and their respective entropy is computed. | |
| 140 typedef enum { | |
| 141 kDirect = 0, | |
| 142 kSpatial = 1, | |
| 143 kSubGreen = 2, | |
| 144 kSpatialSubGreen = 3, | |
| 145 kPalette = 4, | |
| 146 kNumEntropyIx = 5 | |
| 147 } EntropyIx; | |
| 148 | |
| 149 typedef enum { | |
| 150 kHistoAlpha = 0, | |
| 151 kHistoAlphaPred, | |
| 152 kHistoGreen, | |
| 153 kHistoGreenPred, | |
| 154 kHistoRed, | |
| 155 kHistoRedPred, | |
| 156 kHistoBlue, | |
| 157 kHistoBluePred, | |
| 158 kHistoRedSubGreen, | |
| 159 kHistoRedPredSubGreen, | |
| 160 kHistoBlueSubGreen, | |
| 161 kHistoBluePredSubGreen, | |
| 162 kHistoPalette, | |
| 163 kHistoTotal // Must be last. | |
| 164 } HistoIx; | |
| 165 | |
| 166 static void AddSingleSubGreen(uint32_t p, uint32_t* r, uint32_t* b) { | |
| 167 const uint32_t green = p >> 8; // The upper bits are masked away later. | |
| 168 ++r[((p >> 16) - green) & 0xff]; | |
| 169 ++b[(p - green) & 0xff]; | |
| 170 } | |
| 171 | |
| 172 static void AddSingle(uint32_t p, | |
| 173 uint32_t* a, uint32_t* r, uint32_t* g, uint32_t* b) { | |
| 174 ++a[p >> 24]; | |
| 175 ++r[(p >> 16) & 0xff]; | |
| 176 ++g[(p >> 8) & 0xff]; | |
| 177 ++b[(p & 0xff)]; | |
| 178 } | |
| 179 | |
| 180 static int AnalyzeEntropy(const uint32_t* argb, | |
| 181 int width, int height, int argb_stride, | |
| 182 int use_palette, | |
| 183 EntropyIx* const min_entropy_ix, | |
| 184 int* const red_and_blue_always_zero) { | |
| 185 // Allocate histogram set with cache_bits = 0. | |
| 186 uint32_t* const histo = | |
| 187 (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256); | |
| 188 if (histo != NULL) { | |
| 189 int i, x, y; | |
| 190 const uint32_t* prev_row = argb; | |
| 191 const uint32_t* curr_row = argb + argb_stride; | |
| 192 for (y = 1; y < height; ++y) { | |
| 193 uint32_t prev_pix = curr_row[0]; | |
| 194 for (x = 1; x < width; ++x) { | |
| 195 const uint32_t pix = curr_row[x]; | |
| 196 const uint32_t pix_diff = VP8LSubPixels(pix, prev_pix); | |
| 197 if ((pix_diff == 0) || (pix == prev_row[x])) continue; | |
| 198 prev_pix = pix; | |
| 199 AddSingle(pix, | |
| 200 &histo[kHistoAlpha * 256], | |
| 201 &histo[kHistoRed * 256], | |
| 202 &histo[kHistoGreen * 256], | |
| 203 &histo[kHistoBlue * 256]); | |
| 204 AddSingle(pix_diff, | |
| 205 &histo[kHistoAlphaPred * 256], | |
| 206 &histo[kHistoRedPred * 256], | |
| 207 &histo[kHistoGreenPred * 256], | |
| 208 &histo[kHistoBluePred * 256]); | |
| 209 AddSingleSubGreen(pix, | |
| 210 &histo[kHistoRedSubGreen * 256], | |
| 211 &histo[kHistoBlueSubGreen * 256]); | |
| 212 AddSingleSubGreen(pix_diff, | |
| 213 &histo[kHistoRedPredSubGreen * 256], | |
| 214 &histo[kHistoBluePredSubGreen * 256]); | |
| 215 { | |
| 216 // Approximate the palette by the entropy of the multiplicative hash. | |
| 217 const int hash = ((pix + (pix >> 19)) * 0x39c5fba7) >> 24; | |
| 218 ++histo[kHistoPalette * 256 + (hash & 0xff)]; | |
| 219 } | |
| 220 } | |
| 221 prev_row = curr_row; | |
| 222 curr_row += argb_stride; | |
| 223 } | |
| 224 { | |
| 225 double entropy_comp[kHistoTotal]; | |
| 226 double entropy[kNumEntropyIx]; | |
| 227 int k; | |
| 228 int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen; | |
| 229 int j; | |
| 230 // Let's add one zero to the predicted histograms. The zeros are removed | |
| 231 // too efficiently by the pix_diff == 0 comparison, at least one of the | |
| 232 // zeros is likely to exist. | |
| 233 ++histo[kHistoRedPredSubGreen * 256]; | |
| 234 ++histo[kHistoBluePredSubGreen * 256]; | |
| 235 ++histo[kHistoRedPred * 256]; | |
| 236 ++histo[kHistoGreenPred * 256]; | |
| 237 ++histo[kHistoBluePred * 256]; | |
| 238 ++histo[kHistoAlphaPred * 256]; | |
| 239 | |
| 240 for (j = 0; j < kHistoTotal; ++j) { | |
| 241 entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256, NULL); | |
| 242 } | |
| 243 entropy[kDirect] = entropy_comp[kHistoAlpha] + | |
| 244 entropy_comp[kHistoRed] + | |
| 245 entropy_comp[kHistoGreen] + | |
| 246 entropy_comp[kHistoBlue]; | |
| 247 entropy[kSpatial] = entropy_comp[kHistoAlphaPred] + | |
| 248 entropy_comp[kHistoRedPred] + | |
| 249 entropy_comp[kHistoGreenPred] + | |
| 250 entropy_comp[kHistoBluePred]; | |
| 251 entropy[kSubGreen] = entropy_comp[kHistoAlpha] + | |
| 252 entropy_comp[kHistoRedSubGreen] + | |
| 253 entropy_comp[kHistoGreen] + | |
| 254 entropy_comp[kHistoBlueSubGreen]; | |
| 255 entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] + | |
| 256 entropy_comp[kHistoRedPredSubGreen] + | |
| 257 entropy_comp[kHistoGreenPred] + | |
| 258 entropy_comp[kHistoBluePredSubGreen]; | |
| 259 // Palette mode seems more efficient in a breakeven case. Bias with 1.0. | |
| 260 entropy[kPalette] = entropy_comp[kHistoPalette] - 1.0; | |
| 261 | |
| 262 *min_entropy_ix = kDirect; | |
| 263 for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) { | |
| 264 if (entropy[*min_entropy_ix] > entropy[k]) { | |
| 265 *min_entropy_ix = (EntropyIx)k; | |
| 266 } | |
| 267 } | |
| 268 *red_and_blue_always_zero = 1; | |
| 269 // Let's check if the histogram of the chosen entropy mode has | |
| 270 // non-zero red and blue values. If all are zero, we can later skip | |
| 271 // the cross color optimization. | |
| 272 { | |
| 273 static const uint8_t kHistoPairs[5][2] = { | |
| 274 { kHistoRed, kHistoBlue }, | |
| 275 { kHistoRedPred, kHistoBluePred }, | |
| 276 { kHistoRedSubGreen, kHistoBlueSubGreen }, | |
| 277 { kHistoRedPredSubGreen, kHistoBluePredSubGreen }, | |
| 278 { kHistoRed, kHistoBlue } | |
| 279 }; | |
| 280 const uint32_t* const red_histo = | |
| 281 &histo[256 * kHistoPairs[*min_entropy_ix][0]]; | |
| 282 const uint32_t* const blue_histo = | |
| 283 &histo[256 * kHistoPairs[*min_entropy_ix][1]]; | |
| 284 for (i = 1; i < 256; ++i) { | |
| 285 if ((red_histo[i] | blue_histo[i]) != 0) { | |
| 286 *red_and_blue_always_zero = 0; | |
| 287 break; | |
| 288 } | |
| 289 } | |
| 290 } | |
| 291 } | |
| 292 WebPSafeFree(histo); | |
| 293 return 1; | |
| 294 } else { | |
| 295 return 0; | |
| 296 } | |
| 297 } | |
| 298 | |
| 299 static int GetHistoBits(int method, int use_palette, int width, int height) { | |
| 300 // Make tile size a function of encoding method (Range: 0 to 6). | |
| 301 int histo_bits = (use_palette ? 9 : 7) - method; | |
| 302 while (1) { | |
| 303 const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * | |
| 304 VP8LSubSampleSize(height, histo_bits); | |
| 305 if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break; | |
| 306 ++histo_bits; | |
| 307 } | |
| 308 return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : | |
| 309 (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; | |
| 310 } | |
| 311 | |
| 312 static int GetTransformBits(int method, int histo_bits) { | |
| 313 const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; | |
| 314 return (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; | |
| 315 } | |
| 316 | |
| 317 static int AnalyzeAndInit(VP8LEncoder* const enc) { | |
| 318 const WebPPicture* const pic = enc->pic_; | |
| 319 const int width = pic->width; | |
| 320 const int height = pic->height; | |
| 321 const int pix_cnt = width * height; | |
| 322 const WebPConfig* const config = enc->config_; | |
| 323 const int method = config->method; | |
| 324 const int low_effort = (config->method == 0); | |
| 325 // we round the block size up, so we're guaranteed to have | |
| 326 // at max MAX_REFS_BLOCK_PER_IMAGE blocks used: | |
| 327 int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; | |
| 328 assert(pic != NULL && pic->argb != NULL); | |
| 329 | |
| 330 enc->use_cross_color_ = 0; | |
| 331 enc->use_predict_ = 0; | |
| 332 enc->use_subtract_green_ = 0; | |
| 333 enc->use_palette_ = | |
| 334 AnalyzeAndCreatePalette(pic, low_effort, | |
| 335 enc->palette_, &enc->palette_size_); | |
| 336 | |
| 337 // TODO(jyrki): replace the decision to be based on an actual estimate | |
| 338 // of entropy, or even spatial variance of entropy. | |
| 339 enc->histo_bits_ = GetHistoBits(method, enc->use_palette_, | |
| 340 pic->width, pic->height); | |
| 341 enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); | |
| 342 | |
| 343 if (low_effort) { | |
| 344 // AnalyzeEntropy is somewhat slow. | |
| 345 enc->use_predict_ = !enc->use_palette_; | |
| 346 enc->use_subtract_green_ = !enc->use_palette_; | |
| 347 enc->use_cross_color_ = 0; | |
| 348 } else { | |
| 349 int red_and_blue_always_zero; | |
| 350 EntropyIx min_entropy_ix; | |
| 351 if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, | |
| 352 enc->use_palette_, &min_entropy_ix, | |
| 353 &red_and_blue_always_zero)) { | |
| 354 return 0; | |
| 355 } | |
| 356 enc->use_palette_ = (min_entropy_ix == kPalette); | |
| 357 enc->use_subtract_green_ = | |
| 358 (min_entropy_ix == kSubGreen) || (min_entropy_ix == kSpatialSubGreen); | |
| 359 enc->use_predict_ = | |
| 360 (min_entropy_ix == kSpatial) || (min_entropy_ix == kSpatialSubGreen); | |
| 361 enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_; | |
| 362 } | |
| 363 | |
| 364 if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; | |
| 365 | |
| 366 // palette-friendly input typically uses less literals | |
| 367 // -> reduce block size a bit | |
| 368 if (enc->use_palette_) refs_block_size /= 2; | |
| 369 VP8LBackwardRefsInit(&enc->refs_[0], refs_block_size); | |
| 370 VP8LBackwardRefsInit(&enc->refs_[1], refs_block_size); | |
| 371 | |
| 372 return 1; | |
| 373 } | |
| 374 | |
| 375 // Returns false in case of memory error. | |
| 376 static int GetHuffBitLengthsAndCodes( | |
| 377 const VP8LHistogramSet* const histogram_image, | |
| 378 HuffmanTreeCode* const huffman_codes) { | |
| 379 int i, k; | |
| 380 int ok = 0; | |
| 381 uint64_t total_length_size = 0; | |
| 382 uint8_t* mem_buf = NULL; | |
| 383 const int histogram_image_size = histogram_image->size; | |
| 384 int max_num_symbols = 0; | |
| 385 uint8_t* buf_rle = NULL; | |
| 386 HuffmanTree* huff_tree = NULL; | |
| 387 | |
| 388 // Iterate over all histograms and get the aggregate number of codes used. | |
| 389 for (i = 0; i < histogram_image_size; ++i) { | |
| 390 const VP8LHistogram* const histo = histogram_image->histograms[i]; | |
| 391 HuffmanTreeCode* const codes = &huffman_codes[5 * i]; | |
| 392 for (k = 0; k < 5; ++k) { | |
| 393 const int num_symbols = | |
| 394 (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : | |
| 395 (k == 4) ? NUM_DISTANCE_CODES : 256; | |
| 396 codes[k].num_symbols = num_symbols; | |
| 397 total_length_size += num_symbols; | |
| 398 } | |
| 399 } | |
| 400 | |
| 401 // Allocate and Set Huffman codes. | |
| 402 { | |
| 403 uint16_t* codes; | |
| 404 uint8_t* lengths; | |
| 405 mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, | |
| 406 sizeof(*lengths) + sizeof(*codes)); | |
| 407 if (mem_buf == NULL) goto End; | |
| 408 | |
| 409 codes = (uint16_t*)mem_buf; | |
| 410 lengths = (uint8_t*)&codes[total_length_size]; | |
| 411 for (i = 0; i < 5 * histogram_image_size; ++i) { | |
| 412 const int bit_length = huffman_codes[i].num_symbols; | |
| 413 huffman_codes[i].codes = codes; | |
| 414 huffman_codes[i].code_lengths = lengths; | |
| 415 codes += bit_length; | |
| 416 lengths += bit_length; | |
| 417 if (max_num_symbols < bit_length) { | |
| 418 max_num_symbols = bit_length; | |
| 419 } | |
| 420 } | |
| 421 } | |
| 422 | |
| 423 buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); | |
| 424 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, | |
| 425 sizeof(*huff_tree)); | |
| 426 if (buf_rle == NULL || huff_tree == NULL) goto End; | |
| 427 | |
| 428 // Create Huffman trees. | |
| 429 for (i = 0; i < histogram_image_size; ++i) { | |
| 430 HuffmanTreeCode* const codes = &huffman_codes[5 * i]; | |
| 431 VP8LHistogram* const histo = histogram_image->histograms[i]; | |
| 432 VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); | |
| 433 VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); | |
| 434 VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); | |
| 435 VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); | |
| 436 VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); | |
| 437 } | |
| 438 ok = 1; | |
| 439 End: | |
| 440 WebPSafeFree(huff_tree); | |
| 441 WebPSafeFree(buf_rle); | |
| 442 if (!ok) { | |
| 443 WebPSafeFree(mem_buf); | |
| 444 memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); | |
| 445 } | |
| 446 return ok; | |
| 447 } | |
| 448 | |
| 449 static void StoreHuffmanTreeOfHuffmanTreeToBitMask( | |
| 450 VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { | |
| 451 // RFC 1951 will calm you down if you are worried about this funny sequence. | |
| 452 // This sequence is tuned from that, but more weighted for lower symbol count, | |
| 453 // and more spiking histograms. | |
| 454 static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { | |
| 455 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | |
| 456 }; | |
| 457 int i; | |
| 458 // Throw away trailing zeros: | |
| 459 int codes_to_store = CODE_LENGTH_CODES; | |
| 460 for (; codes_to_store > 4; --codes_to_store) { | |
| 461 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { | |
| 462 break; | |
| 463 } | |
| 464 } | |
| 465 VP8LPutBits(bw, codes_to_store - 4, 4); | |
| 466 for (i = 0; i < codes_to_store; ++i) { | |
| 467 VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3); | |
| 468 } | |
| 469 } | |
| 470 | |
| 471 static void ClearHuffmanTreeIfOnlyOneSymbol( | |
| 472 HuffmanTreeCode* const huffman_code) { | |
| 473 int k; | |
| 474 int count = 0; | |
| 475 for (k = 0; k < huffman_code->num_symbols; ++k) { | |
| 476 if (huffman_code->code_lengths[k] != 0) { | |
| 477 ++count; | |
| 478 if (count > 1) return; | |
| 479 } | |
| 480 } | |
| 481 for (k = 0; k < huffman_code->num_symbols; ++k) { | |
| 482 huffman_code->code_lengths[k] = 0; | |
| 483 huffman_code->codes[k] = 0; | |
| 484 } | |
| 485 } | |
| 486 | |
| 487 static void StoreHuffmanTreeToBitMask( | |
| 488 VP8LBitWriter* const bw, | |
| 489 const HuffmanTreeToken* const tokens, const int num_tokens, | |
| 490 const HuffmanTreeCode* const huffman_code) { | |
| 491 int i; | |
| 492 for (i = 0; i < num_tokens; ++i) { | |
| 493 const int ix = tokens[i].code; | |
| 494 const int extra_bits = tokens[i].extra_bits; | |
| 495 VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]); | |
| 496 switch (ix) { | |
| 497 case 16: | |
| 498 VP8LPutBits(bw, extra_bits, 2); | |
| 499 break; | |
| 500 case 17: | |
| 501 VP8LPutBits(bw, extra_bits, 3); | |
| 502 break; | |
| 503 case 18: | |
| 504 VP8LPutBits(bw, extra_bits, 7); | |
| 505 break; | |
| 506 } | |
| 507 } | |
| 508 } | |
| 509 | |
| 510 // 'huff_tree' and 'tokens' are pre-alloacted buffers. | |
| 511 static void StoreFullHuffmanCode(VP8LBitWriter* const bw, | |
| 512 HuffmanTree* const huff_tree, | |
| 513 HuffmanTreeToken* const tokens, | |
| 514 const HuffmanTreeCode* const tree) { | |
| 515 uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; | |
| 516 uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; | |
| 517 const int max_tokens = tree->num_symbols; | |
| 518 int num_tokens; | |
| 519 HuffmanTreeCode huffman_code; | |
| 520 huffman_code.num_symbols = CODE_LENGTH_CODES; | |
| 521 huffman_code.code_lengths = code_length_bitdepth; | |
| 522 huffman_code.codes = code_length_bitdepth_symbols; | |
| 523 | |
| 524 VP8LPutBits(bw, 0, 1); | |
| 525 num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); | |
| 526 { | |
| 527 uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; | |
| 528 uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; | |
| 529 int i; | |
| 530 for (i = 0; i < num_tokens; ++i) { | |
| 531 ++histogram[tokens[i].code]; | |
| 532 } | |
| 533 | |
| 534 VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); | |
| 535 } | |
| 536 | |
| 537 StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); | |
| 538 ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); | |
| 539 { | |
| 540 int trailing_zero_bits = 0; | |
| 541 int trimmed_length = num_tokens; | |
| 542 int write_trimmed_length; | |
| 543 int length; | |
| 544 int i = num_tokens; | |
| 545 while (i-- > 0) { | |
| 546 const int ix = tokens[i].code; | |
| 547 if (ix == 0 || ix == 17 || ix == 18) { | |
| 548 --trimmed_length; // discount trailing zeros | |
| 549 trailing_zero_bits += code_length_bitdepth[ix]; | |
| 550 if (ix == 17) { | |
| 551 trailing_zero_bits += 3; | |
| 552 } else if (ix == 18) { | |
| 553 trailing_zero_bits += 7; | |
| 554 } | |
| 555 } else { | |
| 556 break; | |
| 557 } | |
| 558 } | |
| 559 write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); | |
| 560 length = write_trimmed_length ? trimmed_length : num_tokens; | |
| 561 VP8LPutBits(bw, write_trimmed_length, 1); | |
| 562 if (write_trimmed_length) { | |
| 563 const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1); | |
| 564 const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2; | |
| 565 VP8LPutBits(bw, nbitpairs - 1, 3); | |
| 566 assert(trimmed_length >= 2); | |
| 567 VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2); | |
| 568 } | |
| 569 StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); | |
| 570 } | |
| 571 } | |
| 572 | |
| 573 // 'huff_tree' and 'tokens' are pre-alloacted buffers. | |
| 574 static void StoreHuffmanCode(VP8LBitWriter* const bw, | |
| 575 HuffmanTree* const huff_tree, | |
| 576 HuffmanTreeToken* const tokens, | |
| 577 const HuffmanTreeCode* const huffman_code) { | |
| 578 int i; | |
| 579 int count = 0; | |
| 580 int symbols[2] = { 0, 0 }; | |
| 581 const int kMaxBits = 8; | |
| 582 const int kMaxSymbol = 1 << kMaxBits; | |
| 583 | |
| 584 // Check whether it's a small tree. | |
| 585 for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { | |
| 586 if (huffman_code->code_lengths[i] != 0) { | |
| 587 if (count < 2) symbols[count] = i; | |
| 588 ++count; | |
| 589 } | |
| 590 } | |
| 591 | |
| 592 if (count == 0) { // emit minimal tree for empty cases | |
| 593 // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 | |
| 594 VP8LPutBits(bw, 0x01, 4); | |
| 595 } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { | |
| 596 VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. | |
| 597 VP8LPutBits(bw, count - 1, 1); | |
| 598 if (symbols[0] <= 1) { | |
| 599 VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value. | |
| 600 VP8LPutBits(bw, symbols[0], 1); | |
| 601 } else { | |
| 602 VP8LPutBits(bw, 1, 1); | |
| 603 VP8LPutBits(bw, symbols[0], 8); | |
| 604 } | |
| 605 if (count == 2) { | |
| 606 VP8LPutBits(bw, symbols[1], 8); | |
| 607 } | |
| 608 } else { | |
| 609 StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); | |
| 610 } | |
| 611 } | |
| 612 | |
| 613 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw, | |
| 614 const HuffmanTreeCode* const code, | |
| 615 int code_index) { | |
| 616 const int depth = code->code_lengths[code_index]; | |
| 617 const int symbol = code->codes[code_index]; | |
| 618 VP8LPutBits(bw, symbol, depth); | |
| 619 } | |
| 620 | |
| 621 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits( | |
| 622 VP8LBitWriter* const bw, | |
| 623 const HuffmanTreeCode* const code, | |
| 624 int code_index, | |
| 625 int bits, | |
| 626 int n_bits) { | |
| 627 const int depth = code->code_lengths[code_index]; | |
| 628 const int symbol = code->codes[code_index]; | |
| 629 VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits); | |
| 630 } | |
| 631 | |
| 632 static WebPEncodingError StoreImageToBitMask( | |
| 633 VP8LBitWriter* const bw, int width, int histo_bits, | |
| 634 VP8LBackwardRefs* const refs, | |
| 635 const uint16_t* histogram_symbols, | |
| 636 const HuffmanTreeCode* const huffman_codes) { | |
| 637 const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; | |
| 638 const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits); | |
| 639 // x and y trace the position in the image. | |
| 640 int x = 0; | |
| 641 int y = 0; | |
| 642 int tile_x = x & tile_mask; | |
| 643 int tile_y = y & tile_mask; | |
| 644 int histogram_ix = histogram_symbols[0]; | |
| 645 const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix; | |
| 646 VP8LRefsCursor c = VP8LRefsCursorInit(refs); | |
| 647 while (VP8LRefsCursorOk(&c)) { | |
| 648 const PixOrCopy* const v = c.cur_pos; | |
| 649 if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) { | |
| 650 tile_x = x & tile_mask; | |
| 651 tile_y = y & tile_mask; | |
| 652 histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize + | |
| 653 (x >> histo_bits)]; | |
| 654 codes = huffman_codes + 5 * histogram_ix; | |
| 655 } | |
| 656 if (PixOrCopyIsLiteral(v)) { | |
| 657 static const int order[] = { 1, 2, 0, 3 }; | |
| 658 int k; | |
| 659 for (k = 0; k < 4; ++k) { | |
| 660 const int code = PixOrCopyLiteral(v, order[k]); | |
| 661 WriteHuffmanCode(bw, codes + k, code); | |
| 662 } | |
| 663 } else if (PixOrCopyIsCacheIdx(v)) { | |
| 664 const int code = PixOrCopyCacheIdx(v); | |
| 665 const int literal_ix = 256 + NUM_LENGTH_CODES + code; | |
| 666 WriteHuffmanCode(bw, codes, literal_ix); | |
| 667 } else { | |
| 668 int bits, n_bits; | |
| 669 int code; | |
| 670 | |
| 671 const int distance = PixOrCopyDistance(v); | |
| 672 VP8LPrefixEncode(v->len, &code, &n_bits, &bits); | |
| 673 WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits); | |
| 674 | |
| 675 // Don't write the distance with the extra bits code since | |
| 676 // the distance can be up to 18 bits of extra bits, and the prefix | |
| 677 // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits. | |
| 678 // TODO(jyrki): optimize this further. | |
| 679 VP8LPrefixEncode(distance, &code, &n_bits, &bits); | |
| 680 WriteHuffmanCode(bw, codes + 4, code); | |
| 681 VP8LPutBits(bw, bits, n_bits); | |
| 682 } | |
| 683 x += PixOrCopyLength(v); | |
| 684 while (x >= width) { | |
| 685 x -= width; | |
| 686 ++y; | |
| 687 } | |
| 688 VP8LRefsCursorNext(&c); | |
| 689 } | |
| 690 return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK; | |
| 691 } | |
| 692 | |
| 693 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31 | |
| 694 static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw, | |
| 695 const uint32_t* const argb, | |
| 696 VP8LHashChain* const hash_chain, | |
| 697 VP8LBackwardRefs refs_array[2], | |
| 698 int width, int height, | |
| 699 int quality) { | |
| 700 int i; | |
| 701 int max_tokens = 0; | |
| 702 WebPEncodingError err = VP8_ENC_OK; | |
| 703 VP8LBackwardRefs* refs; | |
| 704 HuffmanTreeToken* tokens = NULL; | |
| 705 HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } }; | |
| 706 const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol | |
| 707 int cache_bits = 0; | |
| 708 VP8LHistogramSet* histogram_image = NULL; | |
| 709 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( | |
| 710 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); | |
| 711 if (huff_tree == NULL) { | |
| 712 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 713 goto Error; | |
| 714 } | |
| 715 | |
| 716 // Calculate backward references from ARGB image. | |
| 717 if (VP8LHashChainFill(hash_chain, quality, argb, width, height) == 0) { | |
| 718 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 719 goto Error; | |
| 720 } | |
| 721 refs = VP8LGetBackwardReferences(width, height, argb, quality, 0, &cache_bits, | |
| 722 hash_chain, refs_array); | |
| 723 if (refs == NULL) { | |
| 724 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 725 goto Error; | |
| 726 } | |
| 727 histogram_image = VP8LAllocateHistogramSet(1, cache_bits); | |
| 728 if (histogram_image == NULL) { | |
| 729 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 730 goto Error; | |
| 731 } | |
| 732 | |
| 733 // Build histogram image and symbols from backward references. | |
| 734 VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); | |
| 735 | |
| 736 // Create Huffman bit lengths and codes for each histogram image. | |
| 737 assert(histogram_image->size == 1); | |
| 738 if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { | |
| 739 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 740 goto Error; | |
| 741 } | |
| 742 | |
| 743 // No color cache, no Huffman image. | |
| 744 VP8LPutBits(bw, 0, 1); | |
| 745 | |
| 746 // Find maximum number of symbols for the huffman tree-set. | |
| 747 for (i = 0; i < 5; ++i) { | |
| 748 HuffmanTreeCode* const codes = &huffman_codes[i]; | |
| 749 if (max_tokens < codes->num_symbols) { | |
| 750 max_tokens = codes->num_symbols; | |
| 751 } | |
| 752 } | |
| 753 | |
| 754 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); | |
| 755 if (tokens == NULL) { | |
| 756 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 757 goto Error; | |
| 758 } | |
| 759 | |
| 760 // Store Huffman codes. | |
| 761 for (i = 0; i < 5; ++i) { | |
| 762 HuffmanTreeCode* const codes = &huffman_codes[i]; | |
| 763 StoreHuffmanCode(bw, huff_tree, tokens, codes); | |
| 764 ClearHuffmanTreeIfOnlyOneSymbol(codes); | |
| 765 } | |
| 766 | |
| 767 // Store actual literals. | |
| 768 err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, | |
| 769 huffman_codes); | |
| 770 | |
| 771 Error: | |
| 772 WebPSafeFree(tokens); | |
| 773 WebPSafeFree(huff_tree); | |
| 774 VP8LFreeHistogramSet(histogram_image); | |
| 775 WebPSafeFree(huffman_codes[0].codes); | |
| 776 return err; | |
| 777 } | |
| 778 | |
| 779 static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw, | |
| 780 const uint32_t* const argb, | |
| 781 VP8LHashChain* const hash_chain, | |
| 782 VP8LBackwardRefs refs_array[2], | |
| 783 int width, int height, int quality, | |
| 784 int low_effort, | |
| 785 int use_cache, int* cache_bits, | |
| 786 int histogram_bits, | |
| 787 size_t init_byte_position, | |
| 788 int* const hdr_size, | |
| 789 int* const data_size) { | |
| 790 WebPEncodingError err = VP8_ENC_OK; | |
| 791 const uint32_t histogram_image_xysize = | |
| 792 VP8LSubSampleSize(width, histogram_bits) * | |
| 793 VP8LSubSampleSize(height, histogram_bits); | |
| 794 VP8LHistogramSet* histogram_image = NULL; | |
| 795 VP8LHistogramSet* tmp_histos = NULL; | |
| 796 int histogram_image_size = 0; | |
| 797 size_t bit_array_size = 0; | |
| 798 HuffmanTree* huff_tree = NULL; | |
| 799 HuffmanTreeToken* tokens = NULL; | |
| 800 HuffmanTreeCode* huffman_codes = NULL; | |
| 801 VP8LBackwardRefs refs; | |
| 802 VP8LBackwardRefs* best_refs; | |
| 803 uint16_t* const histogram_symbols = | |
| 804 (uint16_t*)WebPSafeMalloc(histogram_image_xysize, | |
| 805 sizeof(*histogram_symbols)); | |
| 806 assert(histogram_bits >= MIN_HUFFMAN_BITS); | |
| 807 assert(histogram_bits <= MAX_HUFFMAN_BITS); | |
| 808 assert(hdr_size != NULL); | |
| 809 assert(data_size != NULL); | |
| 810 | |
| 811 VP8LBackwardRefsInit(&refs, refs_array[0].block_size_); | |
| 812 if (histogram_symbols == NULL) { | |
| 813 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 814 goto Error; | |
| 815 } | |
| 816 | |
| 817 *cache_bits = use_cache ? MAX_COLOR_CACHE_BITS : 0; | |
| 818 // 'best_refs' is the reference to the best backward refs and points to one | |
| 819 // of refs_array[0] or refs_array[1]. | |
| 820 // Calculate backward references from ARGB image. | |
| 821 if (VP8LHashChainFill(hash_chain, quality, argb, width, height) == 0) { | |
| 822 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 823 goto Error; | |
| 824 } | |
| 825 best_refs = VP8LGetBackwardReferences(width, height, argb, quality, | |
| 826 low_effort, cache_bits, hash_chain, | |
| 827 refs_array); | |
| 828 if (best_refs == NULL || !VP8LBackwardRefsCopy(best_refs, &refs)) { | |
| 829 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 830 goto Error; | |
| 831 } | |
| 832 histogram_image = | |
| 833 VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits); | |
| 834 tmp_histos = VP8LAllocateHistogramSet(2, *cache_bits); | |
| 835 if (histogram_image == NULL || tmp_histos == NULL) { | |
| 836 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 837 goto Error; | |
| 838 } | |
| 839 | |
| 840 // Build histogram image and symbols from backward references. | |
| 841 if (!VP8LGetHistoImageSymbols(width, height, &refs, quality, low_effort, | |
| 842 histogram_bits, *cache_bits, histogram_image, | |
| 843 tmp_histos, histogram_symbols)) { | |
| 844 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 845 goto Error; | |
| 846 } | |
| 847 // Create Huffman bit lengths and codes for each histogram image. | |
| 848 histogram_image_size = histogram_image->size; | |
| 849 bit_array_size = 5 * histogram_image_size; | |
| 850 huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, | |
| 851 sizeof(*huffman_codes)); | |
| 852 // Note: some histogram_image entries may point to tmp_histos[], so the latter | |
| 853 // need to outlive the following call to GetHuffBitLengthsAndCodes(). | |
| 854 if (huffman_codes == NULL || | |
| 855 !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { | |
| 856 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 857 goto Error; | |
| 858 } | |
| 859 // Free combined histograms. | |
| 860 VP8LFreeHistogramSet(histogram_image); | |
| 861 histogram_image = NULL; | |
| 862 | |
| 863 // Free scratch histograms. | |
| 864 VP8LFreeHistogramSet(tmp_histos); | |
| 865 tmp_histos = NULL; | |
| 866 | |
| 867 // Color Cache parameters. | |
| 868 if (*cache_bits > 0) { | |
| 869 VP8LPutBits(bw, 1, 1); | |
| 870 VP8LPutBits(bw, *cache_bits, 4); | |
| 871 } else { | |
| 872 VP8LPutBits(bw, 0, 1); | |
| 873 } | |
| 874 | |
| 875 // Huffman image + meta huffman. | |
| 876 { | |
| 877 const int write_histogram_image = (histogram_image_size > 1); | |
| 878 VP8LPutBits(bw, write_histogram_image, 1); | |
| 879 if (write_histogram_image) { | |
| 880 uint32_t* const histogram_argb = | |
| 881 (uint32_t*)WebPSafeMalloc(histogram_image_xysize, | |
| 882 sizeof(*histogram_argb)); | |
| 883 int max_index = 0; | |
| 884 uint32_t i; | |
| 885 if (histogram_argb == NULL) { | |
| 886 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 887 goto Error; | |
| 888 } | |
| 889 for (i = 0; i < histogram_image_xysize; ++i) { | |
| 890 const int symbol_index = histogram_symbols[i] & 0xffff; | |
| 891 histogram_argb[i] = (symbol_index << 8); | |
| 892 if (symbol_index >= max_index) { | |
| 893 max_index = symbol_index + 1; | |
| 894 } | |
| 895 } | |
| 896 histogram_image_size = max_index; | |
| 897 | |
| 898 VP8LPutBits(bw, histogram_bits - 2, 3); | |
| 899 err = EncodeImageNoHuffman(bw, histogram_argb, hash_chain, refs_array, | |
| 900 VP8LSubSampleSize(width, histogram_bits), | |
| 901 VP8LSubSampleSize(height, histogram_bits), | |
| 902 quality); | |
| 903 WebPSafeFree(histogram_argb); | |
| 904 if (err != VP8_ENC_OK) goto Error; | |
| 905 } | |
| 906 } | |
| 907 | |
| 908 // Store Huffman codes. | |
| 909 { | |
| 910 int i; | |
| 911 int max_tokens = 0; | |
| 912 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * CODE_LENGTH_CODES, | |
| 913 sizeof(*huff_tree)); | |
| 914 if (huff_tree == NULL) { | |
| 915 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 916 goto Error; | |
| 917 } | |
| 918 // Find maximum number of symbols for the huffman tree-set. | |
| 919 for (i = 0; i < 5 * histogram_image_size; ++i) { | |
| 920 HuffmanTreeCode* const codes = &huffman_codes[i]; | |
| 921 if (max_tokens < codes->num_symbols) { | |
| 922 max_tokens = codes->num_symbols; | |
| 923 } | |
| 924 } | |
| 925 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, | |
| 926 sizeof(*tokens)); | |
| 927 if (tokens == NULL) { | |
| 928 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 929 goto Error; | |
| 930 } | |
| 931 for (i = 0; i < 5 * histogram_image_size; ++i) { | |
| 932 HuffmanTreeCode* const codes = &huffman_codes[i]; | |
| 933 StoreHuffmanCode(bw, huff_tree, tokens, codes); | |
| 934 ClearHuffmanTreeIfOnlyOneSymbol(codes); | |
| 935 } | |
| 936 } | |
| 937 | |
| 938 *hdr_size = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position); | |
| 939 // Store actual literals. | |
| 940 err = StoreImageToBitMask(bw, width, histogram_bits, &refs, | |
| 941 histogram_symbols, huffman_codes); | |
| 942 *data_size = | |
| 943 (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size); | |
| 944 | |
| 945 Error: | |
| 946 WebPSafeFree(tokens); | |
| 947 WebPSafeFree(huff_tree); | |
| 948 VP8LFreeHistogramSet(histogram_image); | |
| 949 VP8LFreeHistogramSet(tmp_histos); | |
| 950 VP8LBackwardRefsClear(&refs); | |
| 951 if (huffman_codes != NULL) { | |
| 952 WebPSafeFree(huffman_codes->codes); | |
| 953 WebPSafeFree(huffman_codes); | |
| 954 } | |
| 955 WebPSafeFree(histogram_symbols); | |
| 956 return err; | |
| 957 } | |
| 958 | |
| 959 // ----------------------------------------------------------------------------- | |
| 960 // Transforms | |
| 961 | |
| 962 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height, | |
| 963 VP8LBitWriter* const bw) { | |
| 964 VP8LPutBits(bw, TRANSFORM_PRESENT, 1); | |
| 965 VP8LPutBits(bw, SUBTRACT_GREEN, 2); | |
| 966 VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); | |
| 967 } | |
| 968 | |
| 969 static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc, | |
| 970 int width, int height, | |
| 971 int quality, int low_effort, | |
| 972 int used_subtract_green, | |
| 973 VP8LBitWriter* const bw) { | |
| 974 const int pred_bits = enc->transform_bits_; | |
| 975 const int transform_width = VP8LSubSampleSize(width, pred_bits); | |
| 976 const int transform_height = VP8LSubSampleSize(height, pred_bits); | |
| 977 // we disable near-lossless quantization if palette is used. | |
| 978 const int near_lossless_strength = enc->use_palette_ ? 100 | |
| 979 : enc->config_->near_lossless; | |
| 980 | |
| 981 VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_, | |
| 982 enc->argb_scratch_, enc->transform_data_, | |
| 983 near_lossless_strength, enc->config_->exact, | |
| 984 used_subtract_green); | |
| 985 VP8LPutBits(bw, TRANSFORM_PRESENT, 1); | |
| 986 VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); | |
| 987 assert(pred_bits >= 2); | |
| 988 VP8LPutBits(bw, pred_bits - 2, 3); | |
| 989 return EncodeImageNoHuffman(bw, enc->transform_data_, | |
| 990 (VP8LHashChain*)&enc->hash_chain_, | |
| 991 (VP8LBackwardRefs*)enc->refs_, // cast const away | |
| 992 transform_width, transform_height, | |
| 993 quality); | |
| 994 } | |
| 995 | |
| 996 static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc, | |
| 997 int width, int height, | |
| 998 int quality, | |
| 999 VP8LBitWriter* const bw) { | |
| 1000 const int ccolor_transform_bits = enc->transform_bits_; | |
| 1001 const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); | |
| 1002 const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); | |
| 1003 | |
| 1004 VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, | |
| 1005 enc->argb_, enc->transform_data_); | |
| 1006 VP8LPutBits(bw, TRANSFORM_PRESENT, 1); | |
| 1007 VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2); | |
| 1008 assert(ccolor_transform_bits >= 2); | |
| 1009 VP8LPutBits(bw, ccolor_transform_bits - 2, 3); | |
| 1010 return EncodeImageNoHuffman(bw, enc->transform_data_, | |
| 1011 (VP8LHashChain*)&enc->hash_chain_, | |
| 1012 (VP8LBackwardRefs*)enc->refs_, // cast const away | |
| 1013 transform_width, transform_height, | |
| 1014 quality); | |
| 1015 } | |
| 1016 | |
| 1017 // ----------------------------------------------------------------------------- | |
| 1018 | |
| 1019 static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic, | |
| 1020 size_t riff_size, size_t vp8l_size) { | |
| 1021 uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { | |
| 1022 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', | |
| 1023 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, | |
| 1024 }; | |
| 1025 PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); | |
| 1026 PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); | |
| 1027 if (!pic->writer(riff, sizeof(riff), pic)) { | |
| 1028 return VP8_ENC_ERROR_BAD_WRITE; | |
| 1029 } | |
| 1030 return VP8_ENC_OK; | |
| 1031 } | |
| 1032 | |
| 1033 static int WriteImageSize(const WebPPicture* const pic, | |
| 1034 VP8LBitWriter* const bw) { | |
| 1035 const int width = pic->width - 1; | |
| 1036 const int height = pic->height - 1; | |
| 1037 assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); | |
| 1038 | |
| 1039 VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS); | |
| 1040 VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS); | |
| 1041 return !bw->error_; | |
| 1042 } | |
| 1043 | |
| 1044 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { | |
| 1045 VP8LPutBits(bw, has_alpha, 1); | |
| 1046 VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS); | |
| 1047 return !bw->error_; | |
| 1048 } | |
| 1049 | |
| 1050 static WebPEncodingError WriteImage(const WebPPicture* const pic, | |
| 1051 VP8LBitWriter* const bw, | |
| 1052 size_t* const coded_size) { | |
| 1053 WebPEncodingError err = VP8_ENC_OK; | |
| 1054 const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); | |
| 1055 const size_t webpll_size = VP8LBitWriterNumBytes(bw); | |
| 1056 const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; | |
| 1057 const size_t pad = vp8l_size & 1; | |
| 1058 const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; | |
| 1059 | |
| 1060 err = WriteRiffHeader(pic, riff_size, vp8l_size); | |
| 1061 if (err != VP8_ENC_OK) goto Error; | |
| 1062 | |
| 1063 if (!pic->writer(webpll_data, webpll_size, pic)) { | |
| 1064 err = VP8_ENC_ERROR_BAD_WRITE; | |
| 1065 goto Error; | |
| 1066 } | |
| 1067 | |
| 1068 if (pad) { | |
| 1069 const uint8_t pad_byte[1] = { 0 }; | |
| 1070 if (!pic->writer(pad_byte, 1, pic)) { | |
| 1071 err = VP8_ENC_ERROR_BAD_WRITE; | |
| 1072 goto Error; | |
| 1073 } | |
| 1074 } | |
| 1075 *coded_size = CHUNK_HEADER_SIZE + riff_size; | |
| 1076 return VP8_ENC_OK; | |
| 1077 | |
| 1078 Error: | |
| 1079 return err; | |
| 1080 } | |
| 1081 | |
| 1082 // ----------------------------------------------------------------------------- | |
| 1083 | |
| 1084 static void ClearTransformBuffer(VP8LEncoder* const enc) { | |
| 1085 WebPSafeFree(enc->transform_mem_); | |
| 1086 enc->transform_mem_ = NULL; | |
| 1087 enc->transform_mem_size_ = 0; | |
| 1088 } | |
| 1089 | |
| 1090 // Allocates the memory for argb (W x H) buffer, 2 rows of context for | |
| 1091 // prediction and transform data. | |
| 1092 // Flags influencing the memory allocated: | |
| 1093 // enc->transform_bits_ | |
| 1094 // enc->use_predict_, enc->use_cross_color_ | |
| 1095 static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc, | |
| 1096 int width, int height) { | |
| 1097 WebPEncodingError err = VP8_ENC_OK; | |
| 1098 const uint64_t image_size = width * height; | |
| 1099 // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra | |
| 1100 // pixel in each, plus 2 regular scanlines of bytes. | |
| 1101 // TODO(skal): Clean up by using arithmetic in bytes instead of words. | |
| 1102 const uint64_t argb_scratch_size = | |
| 1103 enc->use_predict_ | |
| 1104 ? (width + 1) * 2 + | |
| 1105 (width * 2 + sizeof(uint32_t) - 1) / sizeof(uint32_t) | |
| 1106 : 0; | |
| 1107 const uint64_t transform_data_size = | |
| 1108 (enc->use_predict_ || enc->use_cross_color_) | |
| 1109 ? VP8LSubSampleSize(width, enc->transform_bits_) * | |
| 1110 VP8LSubSampleSize(height, enc->transform_bits_) | |
| 1111 : 0; | |
| 1112 const uint64_t max_alignment_in_words = | |
| 1113 (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t); | |
| 1114 const uint64_t mem_size = | |
| 1115 image_size + max_alignment_in_words + | |
| 1116 argb_scratch_size + max_alignment_in_words + | |
| 1117 transform_data_size; | |
| 1118 uint32_t* mem = enc->transform_mem_; | |
| 1119 if (mem == NULL || mem_size > enc->transform_mem_size_) { | |
| 1120 ClearTransformBuffer(enc); | |
| 1121 mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem)); | |
| 1122 if (mem == NULL) { | |
| 1123 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1124 goto Error; | |
| 1125 } | |
| 1126 enc->transform_mem_ = mem; | |
| 1127 enc->transform_mem_size_ = (size_t)mem_size; | |
| 1128 } | |
| 1129 enc->argb_ = mem; | |
| 1130 mem = (uint32_t*)WEBP_ALIGN(mem + image_size); | |
| 1131 enc->argb_scratch_ = mem; | |
| 1132 mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size); | |
| 1133 enc->transform_data_ = mem; | |
| 1134 | |
| 1135 enc->current_width_ = width; | |
| 1136 Error: | |
| 1137 return err; | |
| 1138 } | |
| 1139 | |
| 1140 static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) { | |
| 1141 WebPEncodingError err = VP8_ENC_OK; | |
| 1142 const WebPPicture* const picture = enc->pic_; | |
| 1143 const int width = picture->width; | |
| 1144 const int height = picture->height; | |
| 1145 int y; | |
| 1146 err = AllocateTransformBuffer(enc, width, height); | |
| 1147 if (err != VP8_ENC_OK) return err; | |
| 1148 for (y = 0; y < height; ++y) { | |
| 1149 memcpy(enc->argb_ + y * width, | |
| 1150 picture->argb + y * picture->argb_stride, | |
| 1151 width * sizeof(*enc->argb_)); | |
| 1152 } | |
| 1153 assert(enc->current_width_ == width); | |
| 1154 return VP8_ENC_OK; | |
| 1155 } | |
| 1156 | |
| 1157 // ----------------------------------------------------------------------------- | |
| 1158 | |
| 1159 static int SearchColor(const uint32_t sorted[], uint32_t color, int hi) { | |
| 1160 int low = 0; | |
| 1161 if (sorted[low] == color) return low; // loop invariant: sorted[low] != color | |
| 1162 while (1) { | |
| 1163 const int mid = (low + hi) >> 1; | |
| 1164 if (sorted[mid] == color) { | |
| 1165 return mid; | |
| 1166 } else if (sorted[mid] < color) { | |
| 1167 low = mid; | |
| 1168 } else { | |
| 1169 hi = mid; | |
| 1170 } | |
| 1171 } | |
| 1172 } | |
| 1173 | |
| 1174 // Sort palette in increasing order and prepare an inverse mapping array. | |
| 1175 static void PrepareMapToPalette(const uint32_t palette[], int num_colors, | |
| 1176 uint32_t sorted[], int idx_map[]) { | |
| 1177 int i; | |
| 1178 memcpy(sorted, palette, num_colors * sizeof(*sorted)); | |
| 1179 qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort); | |
| 1180 for (i = 0; i < num_colors; ++i) { | |
| 1181 idx_map[SearchColor(sorted, palette[i], num_colors)] = i; | |
| 1182 } | |
| 1183 } | |
| 1184 | |
| 1185 static void MapToPalette(const uint32_t sorted_palette[], int num_colors, | |
| 1186 uint32_t* const last_pix, int* const last_idx, | |
| 1187 const int idx_map[], | |
| 1188 const uint32_t* src, uint8_t* dst, int width) { | |
| 1189 int x; | |
| 1190 int prev_idx = *last_idx; | |
| 1191 uint32_t prev_pix = *last_pix; | |
| 1192 for (x = 0; x < width; ++x) { | |
| 1193 const uint32_t pix = src[x]; | |
| 1194 if (pix != prev_pix) { | |
| 1195 prev_idx = idx_map[SearchColor(sorted_palette, pix, num_colors)]; | |
| 1196 prev_pix = pix; | |
| 1197 } | |
| 1198 dst[x] = prev_idx; | |
| 1199 } | |
| 1200 *last_idx = prev_idx; | |
| 1201 *last_pix = prev_pix; | |
| 1202 } | |
| 1203 | |
| 1204 // Remap argb values in src[] to packed palettes entries in dst[] | |
| 1205 // using 'row' as a temporary buffer of size 'width'. | |
| 1206 // We assume that all src[] values have a corresponding entry in the palette. | |
| 1207 // Note: src[] can be the same as dst[] | |
| 1208 static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride, | |
| 1209 uint32_t* dst, uint32_t dst_stride, | |
| 1210 const uint32_t* palette, int palette_size, | |
| 1211 int width, int height, int xbits) { | |
| 1212 // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be | |
| 1213 // made to work in-place. | |
| 1214 uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row)); | |
| 1215 int i, x, y; | |
| 1216 int use_LUT = 1; | |
| 1217 | |
| 1218 if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1219 for (i = 0; i < palette_size; ++i) { | |
| 1220 if ((palette[i] & 0xffff00ffu) != 0) { | |
| 1221 use_LUT = 0; | |
| 1222 break; | |
| 1223 } | |
| 1224 } | |
| 1225 | |
| 1226 if (use_LUT) { | |
| 1227 uint8_t inv_palette[MAX_PALETTE_SIZE] = { 0 }; | |
| 1228 for (i = 0; i < palette_size; ++i) { | |
| 1229 const int color = (palette[i] >> 8) & 0xff; | |
| 1230 inv_palette[color] = i; | |
| 1231 } | |
| 1232 for (y = 0; y < height; ++y) { | |
| 1233 for (x = 0; x < width; ++x) { | |
| 1234 const int color = (src[x] >> 8) & 0xff; | |
| 1235 tmp_row[x] = inv_palette[color]; | |
| 1236 } | |
| 1237 VP8LBundleColorMap(tmp_row, width, xbits, dst); | |
| 1238 src += src_stride; | |
| 1239 dst += dst_stride; | |
| 1240 } | |
| 1241 } else { | |
| 1242 // Use 1 pixel cache for ARGB pixels. | |
| 1243 uint32_t last_pix; | |
| 1244 int last_idx; | |
| 1245 uint32_t sorted[MAX_PALETTE_SIZE]; | |
| 1246 int idx_map[MAX_PALETTE_SIZE]; | |
| 1247 PrepareMapToPalette(palette, palette_size, sorted, idx_map); | |
| 1248 last_pix = palette[0]; | |
| 1249 last_idx = 0; | |
| 1250 for (y = 0; y < height; ++y) { | |
| 1251 MapToPalette(sorted, palette_size, &last_pix, &last_idx, | |
| 1252 idx_map, src, tmp_row, width); | |
| 1253 VP8LBundleColorMap(tmp_row, width, xbits, dst); | |
| 1254 src += src_stride; | |
| 1255 dst += dst_stride; | |
| 1256 } | |
| 1257 } | |
| 1258 WebPSafeFree(tmp_row); | |
| 1259 return VP8_ENC_OK; | |
| 1260 } | |
| 1261 | |
| 1262 // Note: Expects "enc->palette_" to be set properly. | |
| 1263 static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc, | |
| 1264 int in_place) { | |
| 1265 WebPEncodingError err = VP8_ENC_OK; | |
| 1266 const WebPPicture* const pic = enc->pic_; | |
| 1267 const int width = pic->width; | |
| 1268 const int height = pic->height; | |
| 1269 const uint32_t* const palette = enc->palette_; | |
| 1270 const uint32_t* src = in_place ? enc->argb_ : pic->argb; | |
| 1271 const int src_stride = in_place ? enc->current_width_ : pic->argb_stride; | |
| 1272 const int palette_size = enc->palette_size_; | |
| 1273 int xbits; | |
| 1274 | |
| 1275 // Replace each input pixel by corresponding palette index. | |
| 1276 // This is done line by line. | |
| 1277 if (palette_size <= 4) { | |
| 1278 xbits = (palette_size <= 2) ? 3 : 2; | |
| 1279 } else { | |
| 1280 xbits = (palette_size <= 16) ? 1 : 0; | |
| 1281 } | |
| 1282 | |
| 1283 err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height); | |
| 1284 if (err != VP8_ENC_OK) return err; | |
| 1285 | |
| 1286 err = ApplyPalette(src, src_stride, | |
| 1287 enc->argb_, enc->current_width_, | |
| 1288 palette, palette_size, width, height, xbits); | |
| 1289 return err; | |
| 1290 } | |
| 1291 | |
| 1292 // Save palette_[] to bitstream. | |
| 1293 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, | |
| 1294 VP8LEncoder* const enc) { | |
| 1295 int i; | |
| 1296 uint32_t tmp_palette[MAX_PALETTE_SIZE]; | |
| 1297 const int palette_size = enc->palette_size_; | |
| 1298 const uint32_t* const palette = enc->palette_; | |
| 1299 VP8LPutBits(bw, TRANSFORM_PRESENT, 1); | |
| 1300 VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2); | |
| 1301 assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE); | |
| 1302 VP8LPutBits(bw, palette_size - 1, 8); | |
| 1303 for (i = palette_size - 1; i >= 1; --i) { | |
| 1304 tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); | |
| 1305 } | |
| 1306 tmp_palette[0] = palette[0]; | |
| 1307 return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_, enc->refs_, | |
| 1308 palette_size, 1, 20 /* quality */); | |
| 1309 } | |
| 1310 | |
| 1311 #ifdef WEBP_EXPERIMENTAL_FEATURES | |
| 1312 | |
| 1313 static WebPEncodingError EncodeDeltaPalettePredictorImage( | |
| 1314 VP8LBitWriter* const bw, VP8LEncoder* const enc, int quality) { | |
| 1315 const WebPPicture* const pic = enc->pic_; | |
| 1316 const int width = pic->width; | |
| 1317 const int height = pic->height; | |
| 1318 | |
| 1319 const int pred_bits = 5; | |
| 1320 const int transform_width = VP8LSubSampleSize(width, pred_bits); | |
| 1321 const int transform_height = VP8LSubSampleSize(height, pred_bits); | |
| 1322 const int pred = 7; // default is Predictor7 (Top/Left Average) | |
| 1323 const int tiles_per_row = VP8LSubSampleSize(width, pred_bits); | |
| 1324 const int tiles_per_col = VP8LSubSampleSize(height, pred_bits); | |
| 1325 uint32_t* predictors; | |
| 1326 int tile_x, tile_y; | |
| 1327 WebPEncodingError err = VP8_ENC_OK; | |
| 1328 | |
| 1329 predictors = (uint32_t*)WebPSafeMalloc(tiles_per_col * tiles_per_row, | |
| 1330 sizeof(*predictors)); | |
| 1331 if (predictors == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1332 | |
| 1333 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { | |
| 1334 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { | |
| 1335 predictors[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); | |
| 1336 } | |
| 1337 } | |
| 1338 | |
| 1339 VP8LPutBits(bw, TRANSFORM_PRESENT, 1); | |
| 1340 VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2); | |
| 1341 VP8LPutBits(bw, pred_bits - 2, 3); | |
| 1342 err = EncodeImageNoHuffman(bw, predictors, &enc->hash_chain_, | |
| 1343 (VP8LBackwardRefs*)enc->refs_, // cast const away | |
| 1344 transform_width, transform_height, | |
| 1345 quality); | |
| 1346 WebPSafeFree(predictors); | |
| 1347 return err; | |
| 1348 } | |
| 1349 | |
| 1350 #endif // WEBP_EXPERIMENTAL_FEATURES | |
| 1351 | |
| 1352 // ----------------------------------------------------------------------------- | |
| 1353 // VP8LEncoder | |
| 1354 | |
| 1355 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, | |
| 1356 const WebPPicture* const picture) { | |
| 1357 VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); | |
| 1358 if (enc == NULL) { | |
| 1359 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); | |
| 1360 return NULL; | |
| 1361 } | |
| 1362 enc->config_ = config; | |
| 1363 enc->pic_ = picture; | |
| 1364 | |
| 1365 VP8LEncDspInit(); | |
| 1366 | |
| 1367 return enc; | |
| 1368 } | |
| 1369 | |
| 1370 static void VP8LEncoderDelete(VP8LEncoder* enc) { | |
| 1371 if (enc != NULL) { | |
| 1372 VP8LHashChainClear(&enc->hash_chain_); | |
| 1373 VP8LBackwardRefsClear(&enc->refs_[0]); | |
| 1374 VP8LBackwardRefsClear(&enc->refs_[1]); | |
| 1375 ClearTransformBuffer(enc); | |
| 1376 WebPSafeFree(enc); | |
| 1377 } | |
| 1378 } | |
| 1379 | |
| 1380 // ----------------------------------------------------------------------------- | |
| 1381 // Main call | |
| 1382 | |
| 1383 WebPEncodingError VP8LEncodeStream(const WebPConfig* const config, | |
| 1384 const WebPPicture* const picture, | |
| 1385 VP8LBitWriter* const bw, int use_cache) { | |
| 1386 WebPEncodingError err = VP8_ENC_OK; | |
| 1387 const int quality = (int)config->quality; | |
| 1388 const int low_effort = (config->method == 0); | |
| 1389 const int width = picture->width; | |
| 1390 const int height = picture->height; | |
| 1391 VP8LEncoder* const enc = VP8LEncoderNew(config, picture); | |
| 1392 const size_t byte_position = VP8LBitWriterNumBytes(bw); | |
| 1393 int use_near_lossless = 0; | |
| 1394 int hdr_size = 0; | |
| 1395 int data_size = 0; | |
| 1396 int use_delta_palettization = 0; | |
| 1397 | |
| 1398 if (enc == NULL) { | |
| 1399 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1400 goto Error; | |
| 1401 } | |
| 1402 | |
| 1403 // --------------------------------------------------------------------------- | |
| 1404 // Analyze image (entropy, num_palettes etc) | |
| 1405 | |
| 1406 if (!AnalyzeAndInit(enc)) { | |
| 1407 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1408 goto Error; | |
| 1409 } | |
| 1410 | |
| 1411 // Apply near-lossless preprocessing. | |
| 1412 use_near_lossless = | |
| 1413 (config->near_lossless < 100) && !enc->use_palette_ && !enc->use_predict_; | |
| 1414 if (use_near_lossless) { | |
| 1415 if (!VP8ApplyNearLossless(width, height, picture->argb, | |
| 1416 config->near_lossless)) { | |
| 1417 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1418 goto Error; | |
| 1419 } | |
| 1420 } | |
| 1421 | |
| 1422 #ifdef WEBP_EXPERIMENTAL_FEATURES | |
| 1423 if (config->delta_palettization) { | |
| 1424 enc->use_predict_ = 1; | |
| 1425 enc->use_cross_color_ = 0; | |
| 1426 enc->use_subtract_green_ = 0; | |
| 1427 enc->use_palette_ = 1; | |
| 1428 err = MakeInputImageCopy(enc); | |
| 1429 if (err != VP8_ENC_OK) goto Error; | |
| 1430 err = WebPSearchOptimalDeltaPalette(enc); | |
| 1431 if (err != VP8_ENC_OK) goto Error; | |
| 1432 if (enc->use_palette_) { | |
| 1433 err = AllocateTransformBuffer(enc, width, height); | |
| 1434 if (err != VP8_ENC_OK) goto Error; | |
| 1435 err = EncodeDeltaPalettePredictorImage(bw, enc, quality); | |
| 1436 if (err != VP8_ENC_OK) goto Error; | |
| 1437 use_delta_palettization = 1; | |
| 1438 } | |
| 1439 } | |
| 1440 #endif // WEBP_EXPERIMENTAL_FEATURES | |
| 1441 | |
| 1442 // Encode palette | |
| 1443 if (enc->use_palette_) { | |
| 1444 err = EncodePalette(bw, enc); | |
| 1445 if (err != VP8_ENC_OK) goto Error; | |
| 1446 err = MapImageFromPalette(enc, use_delta_palettization); | |
| 1447 if (err != VP8_ENC_OK) goto Error; | |
| 1448 } | |
| 1449 if (!use_delta_palettization) { | |
| 1450 // In case image is not packed. | |
| 1451 if (enc->argb_ == NULL) { | |
| 1452 err = MakeInputImageCopy(enc); | |
| 1453 if (err != VP8_ENC_OK) goto Error; | |
| 1454 } | |
| 1455 | |
| 1456 // ------------------------------------------------------------------------- | |
| 1457 // Apply transforms and write transform data. | |
| 1458 | |
| 1459 if (enc->use_subtract_green_) { | |
| 1460 ApplySubtractGreen(enc, enc->current_width_, height, bw); | |
| 1461 } | |
| 1462 | |
| 1463 if (enc->use_predict_) { | |
| 1464 err = ApplyPredictFilter(enc, enc->current_width_, height, quality, | |
| 1465 low_effort, enc->use_subtract_green_, bw); | |
| 1466 if (err != VP8_ENC_OK) goto Error; | |
| 1467 } | |
| 1468 | |
| 1469 if (enc->use_cross_color_) { | |
| 1470 err = ApplyCrossColorFilter(enc, enc->current_width_, | |
| 1471 height, quality, bw); | |
| 1472 if (err != VP8_ENC_OK) goto Error; | |
| 1473 } | |
| 1474 } | |
| 1475 | |
| 1476 VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms. | |
| 1477 | |
| 1478 // --------------------------------------------------------------------------- | |
| 1479 // Encode and write the transformed image. | |
| 1480 err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_, | |
| 1481 enc->current_width_, height, quality, low_effort, | |
| 1482 use_cache, &enc->cache_bits_, enc->histo_bits_, | |
| 1483 byte_position, &hdr_size, &data_size); | |
| 1484 if (err != VP8_ENC_OK) goto Error; | |
| 1485 | |
| 1486 if (picture->stats != NULL) { | |
| 1487 WebPAuxStats* const stats = picture->stats; | |
| 1488 stats->lossless_features = 0; | |
| 1489 if (enc->use_predict_) stats->lossless_features |= 1; | |
| 1490 if (enc->use_cross_color_) stats->lossless_features |= 2; | |
| 1491 if (enc->use_subtract_green_) stats->lossless_features |= 4; | |
| 1492 if (enc->use_palette_) stats->lossless_features |= 8; | |
| 1493 stats->histogram_bits = enc->histo_bits_; | |
| 1494 stats->transform_bits = enc->transform_bits_; | |
| 1495 stats->cache_bits = enc->cache_bits_; | |
| 1496 stats->palette_size = enc->palette_size_; | |
| 1497 stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position); | |
| 1498 stats->lossless_hdr_size = hdr_size; | |
| 1499 stats->lossless_data_size = data_size; | |
| 1500 } | |
| 1501 | |
| 1502 Error: | |
| 1503 VP8LEncoderDelete(enc); | |
| 1504 return err; | |
| 1505 } | |
| 1506 | |
| 1507 int VP8LEncodeImage(const WebPConfig* const config, | |
| 1508 const WebPPicture* const picture) { | |
| 1509 int width, height; | |
| 1510 int has_alpha; | |
| 1511 size_t coded_size; | |
| 1512 int percent = 0; | |
| 1513 int initial_size; | |
| 1514 WebPEncodingError err = VP8_ENC_OK; | |
| 1515 VP8LBitWriter bw; | |
| 1516 | |
| 1517 if (picture == NULL) return 0; | |
| 1518 | |
| 1519 if (config == NULL || picture->argb == NULL) { | |
| 1520 err = VP8_ENC_ERROR_NULL_PARAMETER; | |
| 1521 WebPEncodingSetError(picture, err); | |
| 1522 return 0; | |
| 1523 } | |
| 1524 | |
| 1525 width = picture->width; | |
| 1526 height = picture->height; | |
| 1527 // Initialize BitWriter with size corresponding to 16 bpp to photo images and | |
| 1528 // 8 bpp for graphical images. | |
| 1529 initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? | |
| 1530 width * height : width * height * 2; | |
| 1531 if (!VP8LBitWriterInit(&bw, initial_size)) { | |
| 1532 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1533 goto Error; | |
| 1534 } | |
| 1535 | |
| 1536 if (!WebPReportProgress(picture, 1, &percent)) { | |
| 1537 UserAbort: | |
| 1538 err = VP8_ENC_ERROR_USER_ABORT; | |
| 1539 goto Error; | |
| 1540 } | |
| 1541 // Reset stats (for pure lossless coding) | |
| 1542 if (picture->stats != NULL) { | |
| 1543 WebPAuxStats* const stats = picture->stats; | |
| 1544 memset(stats, 0, sizeof(*stats)); | |
| 1545 stats->PSNR[0] = 99.f; | |
| 1546 stats->PSNR[1] = 99.f; | |
| 1547 stats->PSNR[2] = 99.f; | |
| 1548 stats->PSNR[3] = 99.f; | |
| 1549 stats->PSNR[4] = 99.f; | |
| 1550 } | |
| 1551 | |
| 1552 // Write image size. | |
| 1553 if (!WriteImageSize(picture, &bw)) { | |
| 1554 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1555 goto Error; | |
| 1556 } | |
| 1557 | |
| 1558 has_alpha = WebPPictureHasTransparency(picture); | |
| 1559 // Write the non-trivial Alpha flag and lossless version. | |
| 1560 if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { | |
| 1561 err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1562 goto Error; | |
| 1563 } | |
| 1564 | |
| 1565 if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort; | |
| 1566 | |
| 1567 // Encode main image stream. | |
| 1568 err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/); | |
| 1569 if (err != VP8_ENC_OK) goto Error; | |
| 1570 | |
| 1571 // TODO(skal): have a fine-grained progress report in VP8LEncodeStream(). | |
| 1572 if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort; | |
| 1573 | |
| 1574 // Finish the RIFF chunk. | |
| 1575 err = WriteImage(picture, &bw, &coded_size); | |
| 1576 if (err != VP8_ENC_OK) goto Error; | |
| 1577 | |
| 1578 if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; | |
| 1579 | |
| 1580 // Save size. | |
| 1581 if (picture->stats != NULL) { | |
| 1582 picture->stats->coded_size += (int)coded_size; | |
| 1583 picture->stats->lossless_size = (int)coded_size; | |
| 1584 } | |
| 1585 | |
| 1586 if (picture->extra_info != NULL) { | |
| 1587 const int mb_w = (width + 15) >> 4; | |
| 1588 const int mb_h = (height + 15) >> 4; | |
| 1589 memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); | |
| 1590 } | |
| 1591 | |
| 1592 Error: | |
| 1593 if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY; | |
| 1594 VP8LBitWriterWipeOut(&bw); | |
| 1595 if (err != VP8_ENC_OK) { | |
| 1596 WebPEncodingSetError(picture, err); | |
| 1597 return 0; | |
| 1598 } | |
| 1599 return 1; | |
| 1600 } | |
| 1601 | |
| 1602 //------------------------------------------------------------------------------ | |
| OLD | NEW |