| OLD | NEW |
| (Empty) |
| 1 // Copyright 2014 Google Inc. All Rights Reserved. | |
| 2 // | |
| 3 // Use of this source code is governed by a BSD-style license | |
| 4 // that can be found in the COPYING file in the root of the source | |
| 5 // tree. An additional intellectual property rights grant can be found | |
| 6 // in the file PATENTS. All contributing project authors may | |
| 7 // be found in the AUTHORS file in the root of the source tree. | |
| 8 // ----------------------------------------------------------------------------- | |
| 9 // | |
| 10 // WebPPicture utils for colorspace conversion | |
| 11 // | |
| 12 // Author: Skal (pascal.massimino@gmail.com) | |
| 13 | |
| 14 #include <assert.h> | |
| 15 #include <stdlib.h> | |
| 16 #include <math.h> | |
| 17 | |
| 18 #include "./vp8enci.h" | |
| 19 #include "../utils/random.h" | |
| 20 #include "../utils/utils.h" | |
| 21 #include "../dsp/yuv.h" | |
| 22 | |
| 23 // Uncomment to disable gamma-compression during RGB->U/V averaging | |
| 24 #define USE_GAMMA_COMPRESSION | |
| 25 | |
| 26 // If defined, use table to compute x / alpha. | |
| 27 #define USE_INVERSE_ALPHA_TABLE | |
| 28 | |
| 29 static const union { | |
| 30 uint32_t argb; | |
| 31 uint8_t bytes[4]; | |
| 32 } test_endian = { 0xff000000u }; | |
| 33 #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) | |
| 34 | |
| 35 //------------------------------------------------------------------------------ | |
| 36 // Detection of non-trivial transparency | |
| 37 | |
| 38 // Returns true if alpha[] has non-0xff values. | |
| 39 static int CheckNonOpaque(const uint8_t* alpha, int width, int height, | |
| 40 int x_step, int y_step) { | |
| 41 if (alpha == NULL) return 0; | |
| 42 while (height-- > 0) { | |
| 43 int x; | |
| 44 for (x = 0; x < width * x_step; x += x_step) { | |
| 45 if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. | |
| 46 } | |
| 47 alpha += y_step; | |
| 48 } | |
| 49 return 0; | |
| 50 } | |
| 51 | |
| 52 // Checking for the presence of non-opaque alpha. | |
| 53 int WebPPictureHasTransparency(const WebPPicture* picture) { | |
| 54 if (picture == NULL) return 0; | |
| 55 if (!picture->use_argb) { | |
| 56 return CheckNonOpaque(picture->a, picture->width, picture->height, | |
| 57 1, picture->a_stride); | |
| 58 } else { | |
| 59 int x, y; | |
| 60 const uint32_t* argb = picture->argb; | |
| 61 if (argb == NULL) return 0; | |
| 62 for (y = 0; y < picture->height; ++y) { | |
| 63 for (x = 0; x < picture->width; ++x) { | |
| 64 if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff | |
| 65 } | |
| 66 argb += picture->argb_stride; | |
| 67 } | |
| 68 } | |
| 69 return 0; | |
| 70 } | |
| 71 | |
| 72 //------------------------------------------------------------------------------ | |
| 73 // Code for gamma correction | |
| 74 | |
| 75 #if defined(USE_GAMMA_COMPRESSION) | |
| 76 | |
| 77 // gamma-compensates loss of resolution during chroma subsampling | |
| 78 #define kGamma 0.80 // for now we use a different gamma value than kGammaF | |
| 79 #define kGammaFix 12 // fixed-point precision for linear values | |
| 80 #define kGammaScale ((1 << kGammaFix) - 1) | |
| 81 #define kGammaTabFix 7 // fixed-point fractional bits precision | |
| 82 #define kGammaTabScale (1 << kGammaTabFix) | |
| 83 #define kGammaTabRounder (kGammaTabScale >> 1) | |
| 84 #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) | |
| 85 | |
| 86 static int kLinearToGammaTab[kGammaTabSize + 1]; | |
| 87 static uint16_t kGammaToLinearTab[256]; | |
| 88 static volatile int kGammaTablesOk = 0; | |
| 89 | |
| 90 static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) { | |
| 91 if (!kGammaTablesOk) { | |
| 92 int v; | |
| 93 const double scale = (double)(1 << kGammaTabFix) / kGammaScale; | |
| 94 const double norm = 1. / 255.; | |
| 95 for (v = 0; v <= 255; ++v) { | |
| 96 kGammaToLinearTab[v] = | |
| 97 (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); | |
| 98 } | |
| 99 for (v = 0; v <= kGammaTabSize; ++v) { | |
| 100 kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); | |
| 101 } | |
| 102 kGammaTablesOk = 1; | |
| 103 } | |
| 104 } | |
| 105 | |
| 106 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { | |
| 107 return kGammaToLinearTab[v]; | |
| 108 } | |
| 109 | |
| 110 static WEBP_INLINE int Interpolate(int v) { | |
| 111 const int tab_pos = v >> (kGammaTabFix + 2); // integer part | |
| 112 const int x = v & ((kGammaTabScale << 2) - 1); // fractional part | |
| 113 const int v0 = kLinearToGammaTab[tab_pos]; | |
| 114 const int v1 = kLinearToGammaTab[tab_pos + 1]; | |
| 115 const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate | |
| 116 assert(tab_pos + 1 < kGammaTabSize + 1); | |
| 117 return y; | |
| 118 } | |
| 119 | |
| 120 // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision | |
| 121 // U/V value, suitable for RGBToU/V calls. | |
| 122 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { | |
| 123 const int y = Interpolate(base_value << shift); // final uplifted value | |
| 124 return (y + kGammaTabRounder) >> kGammaTabFix; // descale | |
| 125 } | |
| 126 | |
| 127 #else | |
| 128 | |
| 129 static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTables(void) {} | |
| 130 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } | |
| 131 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { | |
| 132 return (int)(base_value << shift); | |
| 133 } | |
| 134 | |
| 135 #endif // USE_GAMMA_COMPRESSION | |
| 136 | |
| 137 //------------------------------------------------------------------------------ | |
| 138 // RGB -> YUV conversion | |
| 139 | |
| 140 static int RGBToY(int r, int g, int b, VP8Random* const rg) { | |
| 141 return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF) | |
| 142 : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); | |
| 143 } | |
| 144 | |
| 145 static int RGBToU(int r, int g, int b, VP8Random* const rg) { | |
| 146 return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2) | |
| 147 : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); | |
| 148 } | |
| 149 | |
| 150 static int RGBToV(int r, int g, int b, VP8Random* const rg) { | |
| 151 return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2) | |
| 152 : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); | |
| 153 } | |
| 154 | |
| 155 //------------------------------------------------------------------------------ | |
| 156 // Smart RGB->YUV conversion | |
| 157 | |
| 158 static const int kNumIterations = 6; | |
| 159 static const int kMinDimensionIterativeConversion = 4; | |
| 160 | |
| 161 // We could use SFIX=0 and only uint8_t for fixed_y_t, but it produces some | |
| 162 // banding sometimes. Better use extra precision. | |
| 163 #define SFIX 2 // fixed-point precision of RGB and Y/W | |
| 164 typedef int16_t fixed_t; // signed type with extra SFIX precision for UV | |
| 165 typedef uint16_t fixed_y_t; // unsigned type with extra SFIX precision for W | |
| 166 | |
| 167 #define SHALF (1 << SFIX >> 1) | |
| 168 #define MAX_Y_T ((256 << SFIX) - 1) | |
| 169 #define SROUNDER (1 << (YUV_FIX + SFIX - 1)) | |
| 170 | |
| 171 #if defined(USE_GAMMA_COMPRESSION) | |
| 172 | |
| 173 // float variant of gamma-correction | |
| 174 // We use tables of different size and precision, along with a 'real-world' | |
| 175 // Gamma value close to ~2. | |
| 176 #define kGammaF 2.2 | |
| 177 static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX | |
| 178 static float kLinearToGammaTabF[kGammaTabSize + 2]; | |
| 179 static volatile int kGammaTablesFOk = 0; | |
| 180 | |
| 181 static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) { | |
| 182 if (!kGammaTablesFOk) { | |
| 183 int v; | |
| 184 const double norm = 1. / MAX_Y_T; | |
| 185 const double scale = 1. / kGammaTabSize; | |
| 186 for (v = 0; v <= MAX_Y_T; ++v) { | |
| 187 kGammaToLinearTabF[v] = (float)pow(norm * v, kGammaF); | |
| 188 } | |
| 189 for (v = 0; v <= kGammaTabSize; ++v) { | |
| 190 kLinearToGammaTabF[v] = (float)(MAX_Y_T * pow(scale * v, 1. / kGammaF)); | |
| 191 } | |
| 192 // to prevent small rounding errors to cause read-overflow: | |
| 193 kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize]; | |
| 194 kGammaTablesFOk = 1; | |
| 195 } | |
| 196 } | |
| 197 | |
| 198 static WEBP_INLINE float GammaToLinearF(int v) { | |
| 199 return kGammaToLinearTabF[v]; | |
| 200 } | |
| 201 | |
| 202 static WEBP_INLINE int LinearToGammaF(float value) { | |
| 203 const float v = value * kGammaTabSize; | |
| 204 const int tab_pos = (int)v; | |
| 205 const float x = v - (float)tab_pos; // fractional part | |
| 206 const float v0 = kLinearToGammaTabF[tab_pos + 0]; | |
| 207 const float v1 = kLinearToGammaTabF[tab_pos + 1]; | |
| 208 const float y = v1 * x + v0 * (1.f - x); // interpolate | |
| 209 return (int)(y + .5); | |
| 210 } | |
| 211 | |
| 212 #else | |
| 213 | |
| 214 static WEBP_TSAN_IGNORE_FUNCTION void InitGammaTablesF(void) {} | |
| 215 static WEBP_INLINE float GammaToLinearF(int v) { | |
| 216 const float norm = 1.f / MAX_Y_T; | |
| 217 return norm * v; | |
| 218 } | |
| 219 static WEBP_INLINE int LinearToGammaF(float value) { | |
| 220 return (int)(MAX_Y_T * value + .5); | |
| 221 } | |
| 222 | |
| 223 #endif // USE_GAMMA_COMPRESSION | |
| 224 | |
| 225 //------------------------------------------------------------------------------ | |
| 226 | |
| 227 static uint8_t clip_8b(fixed_t v) { | |
| 228 return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; | |
| 229 } | |
| 230 | |
| 231 static fixed_y_t clip_y(int y) { | |
| 232 return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T; | |
| 233 } | |
| 234 | |
| 235 //------------------------------------------------------------------------------ | |
| 236 | |
| 237 static int RGBToGray(int r, int g, int b) { | |
| 238 const int luma = 19595 * r + 38470 * g + 7471 * b + YUV_HALF; | |
| 239 return (luma >> YUV_FIX); | |
| 240 } | |
| 241 | |
| 242 static float RGBToGrayF(float r, float g, float b) { | |
| 243 return 0.299f * r + 0.587f * g + 0.114f * b; | |
| 244 } | |
| 245 | |
| 246 static int ScaleDown(int a, int b, int c, int d) { | |
| 247 const float A = GammaToLinearF(a); | |
| 248 const float B = GammaToLinearF(b); | |
| 249 const float C = GammaToLinearF(c); | |
| 250 const float D = GammaToLinearF(d); | |
| 251 return LinearToGammaF(0.25f * (A + B + C + D)); | |
| 252 } | |
| 253 | |
| 254 static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int len) { | |
| 255 while (len-- > 0) { | |
| 256 const float R = GammaToLinearF(src[0]); | |
| 257 const float G = GammaToLinearF(src[1]); | |
| 258 const float B = GammaToLinearF(src[2]); | |
| 259 const float Y = RGBToGrayF(R, G, B); | |
| 260 *dst++ = (fixed_y_t)LinearToGammaF(Y); | |
| 261 src += 3; | |
| 262 } | |
| 263 } | |
| 264 | |
| 265 static int UpdateChroma(const fixed_y_t* src1, | |
| 266 const fixed_y_t* src2, | |
| 267 fixed_t* dst, fixed_y_t* tmp, int len) { | |
| 268 int diff = 0; | |
| 269 while (len--> 0) { | |
| 270 const int r = ScaleDown(src1[0], src1[3], src2[0], src2[3]); | |
| 271 const int g = ScaleDown(src1[1], src1[4], src2[1], src2[4]); | |
| 272 const int b = ScaleDown(src1[2], src1[5], src2[2], src2[5]); | |
| 273 const int W = RGBToGray(r, g, b); | |
| 274 const int r_avg = (src1[0] + src1[3] + src2[0] + src2[3] + 2) >> 2; | |
| 275 const int g_avg = (src1[1] + src1[4] + src2[1] + src2[4] + 2) >> 2; | |
| 276 const int b_avg = (src1[2] + src1[5] + src2[2] + src2[5] + 2) >> 2; | |
| 277 dst[0] = (fixed_t)(r - W); | |
| 278 dst[1] = (fixed_t)(g - W); | |
| 279 dst[2] = (fixed_t)(b - W); | |
| 280 dst += 3; | |
| 281 src1 += 6; | |
| 282 src2 += 6; | |
| 283 if (tmp != NULL) { | |
| 284 tmp[0] = tmp[1] = clip_y(W); | |
| 285 tmp += 2; | |
| 286 } | |
| 287 diff += abs(RGBToGray(r_avg, g_avg, b_avg) - W); | |
| 288 } | |
| 289 return diff; | |
| 290 } | |
| 291 | |
| 292 //------------------------------------------------------------------------------ | |
| 293 | |
| 294 static WEBP_INLINE int Filter(const fixed_t* const A, const fixed_t* const B, | |
| 295 int rightwise) { | |
| 296 int v; | |
| 297 if (!rightwise) { | |
| 298 v = (A[0] * 9 + A[-3] * 3 + B[0] * 3 + B[-3]); | |
| 299 } else { | |
| 300 v = (A[0] * 9 + A[+3] * 3 + B[0] * 3 + B[+3]); | |
| 301 } | |
| 302 return (v + 8) >> 4; | |
| 303 } | |
| 304 | |
| 305 static WEBP_INLINE int Filter2(int A, int B) { return (A * 3 + B + 2) >> 2; } | |
| 306 | |
| 307 //------------------------------------------------------------------------------ | |
| 308 | |
| 309 static WEBP_INLINE fixed_y_t UpLift(uint8_t a) { // 8bit -> SFIX | |
| 310 return ((fixed_y_t)a << SFIX) | SHALF; | |
| 311 } | |
| 312 | |
| 313 static void ImportOneRow(const uint8_t* const r_ptr, | |
| 314 const uint8_t* const g_ptr, | |
| 315 const uint8_t* const b_ptr, | |
| 316 int step, | |
| 317 int pic_width, | |
| 318 fixed_y_t* const dst) { | |
| 319 int i; | |
| 320 for (i = 0; i < pic_width; ++i) { | |
| 321 const int off = i * step; | |
| 322 dst[3 * i + 0] = UpLift(r_ptr[off]); | |
| 323 dst[3 * i + 1] = UpLift(g_ptr[off]); | |
| 324 dst[3 * i + 2] = UpLift(b_ptr[off]); | |
| 325 } | |
| 326 if (pic_width & 1) { // replicate rightmost pixel | |
| 327 memcpy(dst + 3 * pic_width, dst + 3 * (pic_width - 1), 3 * sizeof(*dst)); | |
| 328 } | |
| 329 } | |
| 330 | |
| 331 static void InterpolateTwoRows(const fixed_y_t* const best_y, | |
| 332 const fixed_t* const prev_uv, | |
| 333 const fixed_t* const cur_uv, | |
| 334 const fixed_t* const next_uv, | |
| 335 int w, | |
| 336 fixed_y_t* const out1, | |
| 337 fixed_y_t* const out2) { | |
| 338 int i, k; | |
| 339 { // special boundary case for i==0 | |
| 340 const int W0 = best_y[0]; | |
| 341 const int W1 = best_y[w]; | |
| 342 for (k = 0; k <= 2; ++k) { | |
| 343 out1[k] = clip_y(Filter2(cur_uv[k], prev_uv[k]) + W0); | |
| 344 out2[k] = clip_y(Filter2(cur_uv[k], next_uv[k]) + W1); | |
| 345 } | |
| 346 } | |
| 347 for (i = 1; i < w - 1; ++i) { | |
| 348 const int W0 = best_y[i + 0]; | |
| 349 const int W1 = best_y[i + w]; | |
| 350 const int off = 3 * (i >> 1); | |
| 351 for (k = 0; k <= 2; ++k) { | |
| 352 const int tmp0 = Filter(cur_uv + off + k, prev_uv + off + k, i & 1); | |
| 353 const int tmp1 = Filter(cur_uv + off + k, next_uv + off + k, i & 1); | |
| 354 out1[3 * i + k] = clip_y(tmp0 + W0); | |
| 355 out2[3 * i + k] = clip_y(tmp1 + W1); | |
| 356 } | |
| 357 } | |
| 358 { // special boundary case for i == w - 1 | |
| 359 const int W0 = best_y[i + 0]; | |
| 360 const int W1 = best_y[i + w]; | |
| 361 const int off = 3 * (i >> 1); | |
| 362 for (k = 0; k <= 2; ++k) { | |
| 363 out1[3 * i + k] = clip_y(Filter2(cur_uv[off + k], prev_uv[off + k]) + W0); | |
| 364 out2[3 * i + k] = clip_y(Filter2(cur_uv[off + k], next_uv[off + k]) + W1); | |
| 365 } | |
| 366 } | |
| 367 } | |
| 368 | |
| 369 static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) { | |
| 370 const int luma = 16839 * r + 33059 * g + 6420 * b + SROUNDER; | |
| 371 return clip_8b(16 + (luma >> (YUV_FIX + SFIX))); | |
| 372 } | |
| 373 | |
| 374 static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) { | |
| 375 const int u = -9719 * r - 19081 * g + 28800 * b + SROUNDER; | |
| 376 return clip_8b(128 + (u >> (YUV_FIX + SFIX))); | |
| 377 } | |
| 378 | |
| 379 static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) { | |
| 380 const int v = +28800 * r - 24116 * g - 4684 * b + SROUNDER; | |
| 381 return clip_8b(128 + (v >> (YUV_FIX + SFIX))); | |
| 382 } | |
| 383 | |
| 384 static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, | |
| 385 WebPPicture* const picture) { | |
| 386 int i, j; | |
| 387 uint8_t* dst_y = picture->y; | |
| 388 uint8_t* dst_u = picture->u; | |
| 389 uint8_t* dst_v = picture->v; | |
| 390 const fixed_t* const best_uv_base = best_uv; | |
| 391 const int w = (picture->width + 1) & ~1; | |
| 392 const int h = (picture->height + 1) & ~1; | |
| 393 const int uv_w = w >> 1; | |
| 394 const int uv_h = h >> 1; | |
| 395 for (best_uv = best_uv_base, j = 0; j < picture->height; ++j) { | |
| 396 for (i = 0; i < picture->width; ++i) { | |
| 397 const int off = 3 * (i >> 1); | |
| 398 const int W = best_y[i]; | |
| 399 const int r = best_uv[off + 0] + W; | |
| 400 const int g = best_uv[off + 1] + W; | |
| 401 const int b = best_uv[off + 2] + W; | |
| 402 dst_y[i] = ConvertRGBToY(r, g, b); | |
| 403 } | |
| 404 best_y += w; | |
| 405 best_uv += (j & 1) * 3 * uv_w; | |
| 406 dst_y += picture->y_stride; | |
| 407 } | |
| 408 for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) { | |
| 409 for (i = 0; i < uv_w; ++i) { | |
| 410 const int off = 3 * i; | |
| 411 const int r = best_uv[off + 0]; | |
| 412 const int g = best_uv[off + 1]; | |
| 413 const int b = best_uv[off + 2]; | |
| 414 dst_u[i] = ConvertRGBToU(r, g, b); | |
| 415 dst_v[i] = ConvertRGBToV(r, g, b); | |
| 416 } | |
| 417 best_uv += 3 * uv_w; | |
| 418 dst_u += picture->uv_stride; | |
| 419 dst_v += picture->uv_stride; | |
| 420 } | |
| 421 return 1; | |
| 422 } | |
| 423 | |
| 424 //------------------------------------------------------------------------------ | |
| 425 // Main function | |
| 426 | |
| 427 #define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T))) | |
| 428 | |
| 429 static int PreprocessARGB(const uint8_t* r_ptr, | |
| 430 const uint8_t* g_ptr, | |
| 431 const uint8_t* b_ptr, | |
| 432 int step, int rgb_stride, | |
| 433 WebPPicture* const picture) { | |
| 434 // we expand the right/bottom border if needed | |
| 435 const int w = (picture->width + 1) & ~1; | |
| 436 const int h = (picture->height + 1) & ~1; | |
| 437 const int uv_w = w >> 1; | |
| 438 const int uv_h = h >> 1; | |
| 439 int i, j, iter; | |
| 440 | |
| 441 // TODO(skal): allocate one big memory chunk. But for now, it's easier | |
| 442 // for valgrind debugging to have several chunks. | |
| 443 fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch | |
| 444 fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); | |
| 445 fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); | |
| 446 fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); | |
| 447 fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); | |
| 448 fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); | |
| 449 fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); | |
| 450 fixed_y_t* best_y = best_y_base; | |
| 451 fixed_y_t* target_y = target_y_base; | |
| 452 fixed_t* best_uv = best_uv_base; | |
| 453 fixed_t* target_uv = target_uv_base; | |
| 454 int ok; | |
| 455 int diff_sum = 0; | |
| 456 const int first_diff_threshold = (int)(2.5 * w * h); | |
| 457 const int min_improvement = 5; // stop if improvement is below this % | |
| 458 const int min_first_improvement = 80; | |
| 459 | |
| 460 if (best_y_base == NULL || best_uv_base == NULL || | |
| 461 target_y_base == NULL || target_uv_base == NULL || | |
| 462 best_rgb_y == NULL || best_rgb_uv == NULL || | |
| 463 tmp_buffer == NULL) { | |
| 464 ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); | |
| 465 goto End; | |
| 466 } | |
| 467 assert(picture->width >= kMinDimensionIterativeConversion); | |
| 468 assert(picture->height >= kMinDimensionIterativeConversion); | |
| 469 | |
| 470 // Import RGB samples to W/RGB representation. | |
| 471 for (j = 0; j < picture->height; j += 2) { | |
| 472 const int is_last_row = (j == picture->height - 1); | |
| 473 fixed_y_t* const src1 = tmp_buffer; | |
| 474 fixed_y_t* const src2 = tmp_buffer + 3 * w; | |
| 475 | |
| 476 // prepare two rows of input | |
| 477 ImportOneRow(r_ptr, g_ptr, b_ptr, step, picture->width, src1); | |
| 478 if (!is_last_row) { | |
| 479 ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride, | |
| 480 step, picture->width, src2); | |
| 481 } else { | |
| 482 memcpy(src2, src1, 3 * w * sizeof(*src2)); | |
| 483 } | |
| 484 UpdateW(src1, target_y, w); | |
| 485 UpdateW(src2, target_y + w, w); | |
| 486 diff_sum += UpdateChroma(src1, src2, target_uv, best_y, uv_w); | |
| 487 memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv)); | |
| 488 memcpy(best_y + w, best_y, w * sizeof(*best_y)); | |
| 489 best_y += 2 * w; | |
| 490 best_uv += 3 * uv_w; | |
| 491 target_y += 2 * w; | |
| 492 target_uv += 3 * uv_w; | |
| 493 r_ptr += 2 * rgb_stride; | |
| 494 g_ptr += 2 * rgb_stride; | |
| 495 b_ptr += 2 * rgb_stride; | |
| 496 } | |
| 497 | |
| 498 // Iterate and resolve clipping conflicts. | |
| 499 for (iter = 0; iter < kNumIterations; ++iter) { | |
| 500 int k; | |
| 501 const fixed_t* cur_uv = best_uv_base; | |
| 502 const fixed_t* prev_uv = best_uv_base; | |
| 503 const int old_diff_sum = diff_sum; | |
| 504 diff_sum = 0; | |
| 505 | |
| 506 best_y = best_y_base; | |
| 507 best_uv = best_uv_base; | |
| 508 target_y = target_y_base; | |
| 509 target_uv = target_uv_base; | |
| 510 for (j = 0; j < h; j += 2) { | |
| 511 fixed_y_t* const src1 = tmp_buffer; | |
| 512 fixed_y_t* const src2 = tmp_buffer + 3 * w; | |
| 513 { | |
| 514 const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); | |
| 515 InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, src1, src2); | |
| 516 prev_uv = cur_uv; | |
| 517 cur_uv = next_uv; | |
| 518 } | |
| 519 | |
| 520 UpdateW(src1, best_rgb_y + 0 * w, w); | |
| 521 UpdateW(src2, best_rgb_y + 1 * w, w); | |
| 522 diff_sum += UpdateChroma(src1, src2, best_rgb_uv, NULL, uv_w); | |
| 523 | |
| 524 // update two rows of Y and one row of RGB | |
| 525 for (i = 0; i < 2 * w; ++i) { | |
| 526 const int diff_y = target_y[i] - best_rgb_y[i]; | |
| 527 const int new_y = (int)best_y[i] + diff_y; | |
| 528 best_y[i] = clip_y(new_y); | |
| 529 } | |
| 530 for (i = 0; i < uv_w; ++i) { | |
| 531 const int off = 3 * i; | |
| 532 int W; | |
| 533 for (k = 0; k <= 2; ++k) { | |
| 534 const int diff_uv = (int)target_uv[off + k] - best_rgb_uv[off + k]; | |
| 535 best_uv[off + k] += diff_uv; | |
| 536 } | |
| 537 W = RGBToGray(best_uv[off + 0], best_uv[off + 1], best_uv[off + 2]); | |
| 538 for (k = 0; k <= 2; ++k) { | |
| 539 best_uv[off + k] -= W; | |
| 540 } | |
| 541 } | |
| 542 best_y += 2 * w; | |
| 543 best_uv += 3 * uv_w; | |
| 544 target_y += 2 * w; | |
| 545 target_uv += 3 * uv_w; | |
| 546 } | |
| 547 // test exit condition | |
| 548 if (diff_sum > 0) { | |
| 549 const int improvement = 100 * abs(diff_sum - old_diff_sum) / diff_sum; | |
| 550 // Check if first iteration gave good result already, without a large | |
| 551 // jump of improvement (otherwise it means we need to try few extra | |
| 552 // iterations, just to be sure). | |
| 553 if (iter == 0 && diff_sum < first_diff_threshold && | |
| 554 improvement < min_first_improvement) { | |
| 555 break; | |
| 556 } | |
| 557 // then, check if improvement is stalling. | |
| 558 if (improvement < min_improvement) { | |
| 559 break; | |
| 560 } | |
| 561 } else { | |
| 562 break; | |
| 563 } | |
| 564 } | |
| 565 | |
| 566 // final reconstruction | |
| 567 ok = ConvertWRGBToYUV(best_y_base, best_uv_base, picture); | |
| 568 | |
| 569 End: | |
| 570 WebPSafeFree(best_y_base); | |
| 571 WebPSafeFree(best_uv_base); | |
| 572 WebPSafeFree(target_y_base); | |
| 573 WebPSafeFree(target_uv_base); | |
| 574 WebPSafeFree(best_rgb_y); | |
| 575 WebPSafeFree(best_rgb_uv); | |
| 576 WebPSafeFree(tmp_buffer); | |
| 577 return ok; | |
| 578 } | |
| 579 #undef SAFE_ALLOC | |
| 580 | |
| 581 //------------------------------------------------------------------------------ | |
| 582 // "Fast" regular RGB->YUV | |
| 583 | |
| 584 #define SUM4(ptr, step) LinearToGamma( \ | |
| 585 GammaToLinear((ptr)[0]) + \ | |
| 586 GammaToLinear((ptr)[(step)]) + \ | |
| 587 GammaToLinear((ptr)[rgb_stride]) + \ | |
| 588 GammaToLinear((ptr)[rgb_stride + (step)]), 0) \ | |
| 589 | |
| 590 #define SUM2(ptr) \ | |
| 591 LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) | |
| 592 | |
| 593 #define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride]) | |
| 594 #define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4)) | |
| 595 | |
| 596 #if defined(USE_INVERSE_ALPHA_TABLE) | |
| 597 | |
| 598 static const int kAlphaFix = 19; | |
| 599 // Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix | |
| 600 // formula is then equal to v / a in most (99.6%) cases. Note that this table | |
| 601 // and constant are adjusted very tightly to fit 32b arithmetic. | |
| 602 // In particular, they use the fact that the operands for 'v / a' are actually | |
| 603 // derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 | |
| 604 // with ai in [0..255] and pi in [0..1<<kGammaFix). The constraint to avoid | |
| 605 // overflow is: kGammaFix + kAlphaFix <= 31. | |
| 606 static const uint32_t kInvAlpha[4 * 0xff + 1] = { | |
| 607 0, /* alpha = 0 */ | |
| 608 524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536, | |
| 609 58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768, | |
| 610 30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845, | |
| 611 20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384, | |
| 612 15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107, | |
| 613 12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922, | |
| 614 10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362, | |
| 615 9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192, | |
| 616 8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281, | |
| 617 7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553, | |
| 618 6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957, | |
| 619 5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461, | |
| 620 5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041, | |
| 621 4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681, | |
| 622 4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369, | |
| 623 4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096, | |
| 624 4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855, | |
| 625 3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640, | |
| 626 3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449, | |
| 627 3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276, | |
| 628 3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120, | |
| 629 3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978, | |
| 630 2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849, | |
| 631 2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730, | |
| 632 2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621, | |
| 633 2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520, | |
| 634 2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427, | |
| 635 2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340, | |
| 636 2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259, | |
| 637 2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184, | |
| 638 2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114, | |
| 639 2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048, | |
| 640 2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985, | |
| 641 1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927, | |
| 642 1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872, | |
| 643 1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820, | |
| 644 1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771, | |
| 645 1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724, | |
| 646 1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680, | |
| 647 1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638, | |
| 648 1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598, | |
| 649 1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560, | |
| 650 1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524, | |
| 651 1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489, | |
| 652 1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456, | |
| 653 1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424, | |
| 654 1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394, | |
| 655 1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365, | |
| 656 1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337, | |
| 657 1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310, | |
| 658 1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285, | |
| 659 1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260, | |
| 660 1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236, | |
| 661 1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213, | |
| 662 1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191, | |
| 663 1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170, | |
| 664 1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149, | |
| 665 1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129, | |
| 666 1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110, | |
| 667 1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092, | |
| 668 1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074, | |
| 669 1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057, | |
| 670 1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040, | |
| 671 1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024, | |
| 672 1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008, | |
| 673 1006, 1004, 1002, 1000, 998, 996, 994, 992, | |
| 674 991, 989, 987, 985, 983, 981, 979, 978, | |
| 675 976, 974, 972, 970, 969, 967, 965, 963, | |
| 676 961, 960, 958, 956, 954, 953, 951, 949, | |
| 677 948, 946, 944, 942, 941, 939, 937, 936, | |
| 678 934, 932, 931, 929, 927, 926, 924, 923, | |
| 679 921, 919, 918, 916, 914, 913, 911, 910, | |
| 680 908, 907, 905, 903, 902, 900, 899, 897, | |
| 681 896, 894, 893, 891, 890, 888, 887, 885, | |
| 682 884, 882, 881, 879, 878, 876, 875, 873, | |
| 683 872, 870, 869, 868, 866, 865, 863, 862, | |
| 684 860, 859, 858, 856, 855, 853, 852, 851, | |
| 685 849, 848, 846, 845, 844, 842, 841, 840, | |
| 686 838, 837, 836, 834, 833, 832, 830, 829, | |
| 687 828, 826, 825, 824, 823, 821, 820, 819, | |
| 688 817, 816, 815, 814, 812, 811, 810, 809, | |
| 689 807, 806, 805, 804, 802, 801, 800, 799, | |
| 690 798, 796, 795, 794, 793, 791, 790, 789, | |
| 691 788, 787, 786, 784, 783, 782, 781, 780, | |
| 692 779, 777, 776, 775, 774, 773, 772, 771, | |
| 693 769, 768, 767, 766, 765, 764, 763, 762, | |
| 694 760, 759, 758, 757, 756, 755, 754, 753, | |
| 695 752, 751, 750, 748, 747, 746, 745, 744, | |
| 696 743, 742, 741, 740, 739, 738, 737, 736, | |
| 697 735, 734, 733, 732, 731, 730, 729, 728, | |
| 698 727, 726, 725, 724, 723, 722, 721, 720, | |
| 699 719, 718, 717, 716, 715, 714, 713, 712, | |
| 700 711, 710, 709, 708, 707, 706, 705, 704, | |
| 701 703, 702, 701, 700, 699, 699, 698, 697, | |
| 702 696, 695, 694, 693, 692, 691, 690, 689, | |
| 703 688, 688, 687, 686, 685, 684, 683, 682, | |
| 704 681, 680, 680, 679, 678, 677, 676, 675, | |
| 705 674, 673, 673, 672, 671, 670, 669, 668, | |
| 706 667, 667, 666, 665, 664, 663, 662, 661, | |
| 707 661, 660, 659, 658, 657, 657, 656, 655, | |
| 708 654, 653, 652, 652, 651, 650, 649, 648, | |
| 709 648, 647, 646, 645, 644, 644, 643, 642, | |
| 710 641, 640, 640, 639, 638, 637, 637, 636, | |
| 711 635, 634, 633, 633, 632, 631, 630, 630, | |
| 712 629, 628, 627, 627, 626, 625, 624, 624, | |
| 713 623, 622, 621, 621, 620, 619, 618, 618, | |
| 714 617, 616, 616, 615, 614, 613, 613, 612, | |
| 715 611, 611, 610, 609, 608, 608, 607, 606, | |
| 716 606, 605, 604, 604, 603, 602, 601, 601, | |
| 717 600, 599, 599, 598, 597, 597, 596, 595, | |
| 718 595, 594, 593, 593, 592, 591, 591, 590, | |
| 719 589, 589, 588, 587, 587, 586, 585, 585, | |
| 720 584, 583, 583, 582, 581, 581, 580, 579, | |
| 721 579, 578, 578, 577, 576, 576, 575, 574, | |
| 722 574, 573, 572, 572, 571, 571, 570, 569, | |
| 723 569, 568, 568, 567, 566, 566, 565, 564, | |
| 724 564, 563, 563, 562, 561, 561, 560, 560, | |
| 725 559, 558, 558, 557, 557, 556, 555, 555, | |
| 726 554, 554, 553, 553, 552, 551, 551, 550, | |
| 727 550, 549, 548, 548, 547, 547, 546, 546, | |
| 728 545, 544, 544, 543, 543, 542, 542, 541, | |
| 729 541, 540, 539, 539, 538, 538, 537, 537, | |
| 730 536, 536, 535, 534, 534, 533, 533, 532, | |
| 731 532, 531, 531, 530, 530, 529, 529, 528, | |
| 732 527, 527, 526, 526, 525, 525, 524, 524, | |
| 733 523, 523, 522, 522, 521, 521, 520, 520, | |
| 734 519, 519, 518, 518, 517, 517, 516, 516, | |
| 735 515, 515, 514, 514 | |
| 736 }; | |
| 737 | |
| 738 // Note that LinearToGamma() expects the values to be premultiplied by 4, | |
| 739 // so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly. | |
| 740 #define DIVIDE_BY_ALPHA(sum, a) (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2)) | |
| 741 | |
| 742 #else | |
| 743 | |
| 744 #define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a)) | |
| 745 | |
| 746 #endif // USE_INVERSE_ALPHA_TABLE | |
| 747 | |
| 748 static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src, | |
| 749 const uint8_t* a_ptr, | |
| 750 uint32_t total_a, int step, | |
| 751 int rgb_stride) { | |
| 752 const uint32_t sum = | |
| 753 a_ptr[0] * GammaToLinear(src[0]) + | |
| 754 a_ptr[step] * GammaToLinear(src[step]) + | |
| 755 a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) + | |
| 756 a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]); | |
| 757 assert(total_a > 0 && total_a <= 4 * 0xff); | |
| 758 #if defined(USE_INVERSE_ALPHA_TABLE) | |
| 759 assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32)); | |
| 760 #endif | |
| 761 return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0); | |
| 762 } | |
| 763 | |
| 764 static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr, | |
| 765 const uint8_t* const g_ptr, | |
| 766 const uint8_t* const b_ptr, | |
| 767 int step, | |
| 768 uint8_t* const dst_y, | |
| 769 int width, | |
| 770 VP8Random* const rg) { | |
| 771 int i, j; | |
| 772 for (i = 0, j = 0; i < width; i += 1, j += step) { | |
| 773 dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg); | |
| 774 } | |
| 775 } | |
| 776 | |
| 777 static WEBP_INLINE void AccumulateRGBA(const uint8_t* const r_ptr, | |
| 778 const uint8_t* const g_ptr, | |
| 779 const uint8_t* const b_ptr, | |
| 780 const uint8_t* const a_ptr, | |
| 781 int rgb_stride, | |
| 782 uint16_t* dst, int width) { | |
| 783 int i, j; | |
| 784 // we loop over 2x2 blocks and produce one R/G/B/A value for each. | |
| 785 for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * 4, dst += 4) { | |
| 786 const uint32_t a = SUM4ALPHA(a_ptr + j); | |
| 787 int r, g, b; | |
| 788 if (a == 4 * 0xff || a == 0) { | |
| 789 r = SUM4(r_ptr + j, 4); | |
| 790 g = SUM4(g_ptr + j, 4); | |
| 791 b = SUM4(b_ptr + j, 4); | |
| 792 } else { | |
| 793 r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride); | |
| 794 g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride); | |
| 795 b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride); | |
| 796 } | |
| 797 dst[0] = r; | |
| 798 dst[1] = g; | |
| 799 dst[2] = b; | |
| 800 dst[3] = a; | |
| 801 } | |
| 802 if (width & 1) { | |
| 803 const uint32_t a = 2u * SUM2ALPHA(a_ptr + j); | |
| 804 int r, g, b; | |
| 805 if (a == 4 * 0xff || a == 0) { | |
| 806 r = SUM2(r_ptr + j); | |
| 807 g = SUM2(g_ptr + j); | |
| 808 b = SUM2(b_ptr + j); | |
| 809 } else { | |
| 810 r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride); | |
| 811 g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride); | |
| 812 b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride); | |
| 813 } | |
| 814 dst[0] = r; | |
| 815 dst[1] = g; | |
| 816 dst[2] = b; | |
| 817 dst[3] = a; | |
| 818 } | |
| 819 } | |
| 820 | |
| 821 static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr, | |
| 822 const uint8_t* const g_ptr, | |
| 823 const uint8_t* const b_ptr, | |
| 824 int step, int rgb_stride, | |
| 825 uint16_t* dst, int width) { | |
| 826 int i, j; | |
| 827 for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * step, dst += 4) { | |
| 828 dst[0] = SUM4(r_ptr + j, step); | |
| 829 dst[1] = SUM4(g_ptr + j, step); | |
| 830 dst[2] = SUM4(b_ptr + j, step); | |
| 831 } | |
| 832 if (width & 1) { | |
| 833 dst[0] = SUM2(r_ptr + j); | |
| 834 dst[1] = SUM2(g_ptr + j); | |
| 835 dst[2] = SUM2(b_ptr + j); | |
| 836 } | |
| 837 } | |
| 838 | |
| 839 static WEBP_INLINE void ConvertRowsToUV(const uint16_t* rgb, | |
| 840 uint8_t* const dst_u, | |
| 841 uint8_t* const dst_v, | |
| 842 int width, | |
| 843 VP8Random* const rg) { | |
| 844 int i; | |
| 845 for (i = 0; i < width; i += 1, rgb += 4) { | |
| 846 const int r = rgb[0], g = rgb[1], b = rgb[2]; | |
| 847 dst_u[i] = RGBToU(r, g, b, rg); | |
| 848 dst_v[i] = RGBToV(r, g, b, rg); | |
| 849 } | |
| 850 } | |
| 851 | |
| 852 static int ImportYUVAFromRGBA(const uint8_t* r_ptr, | |
| 853 const uint8_t* g_ptr, | |
| 854 const uint8_t* b_ptr, | |
| 855 const uint8_t* a_ptr, | |
| 856 int step, // bytes per pixel | |
| 857 int rgb_stride, // bytes per scanline | |
| 858 float dithering, | |
| 859 int use_iterative_conversion, | |
| 860 WebPPicture* const picture) { | |
| 861 int y; | |
| 862 const int width = picture->width; | |
| 863 const int height = picture->height; | |
| 864 const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); | |
| 865 const int is_rgb = (r_ptr < b_ptr); // otherwise it's bgr | |
| 866 | |
| 867 picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420; | |
| 868 picture->use_argb = 0; | |
| 869 | |
| 870 // disable smart conversion if source is too small (overkill). | |
| 871 if (width < kMinDimensionIterativeConversion || | |
| 872 height < kMinDimensionIterativeConversion) { | |
| 873 use_iterative_conversion = 0; | |
| 874 } | |
| 875 | |
| 876 if (!WebPPictureAllocYUVA(picture, width, height)) { | |
| 877 return 0; | |
| 878 } | |
| 879 if (has_alpha) { | |
| 880 WebPInitAlphaProcessing(); | |
| 881 assert(step == 4); | |
| 882 #if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE) | |
| 883 assert(kAlphaFix + kGammaFix <= 31); | |
| 884 #endif | |
| 885 } | |
| 886 | |
| 887 if (use_iterative_conversion) { | |
| 888 InitGammaTablesF(); | |
| 889 if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { | |
| 890 return 0; | |
| 891 } | |
| 892 if (has_alpha) { | |
| 893 WebPExtractAlpha(a_ptr, rgb_stride, width, height, | |
| 894 picture->a, picture->a_stride); | |
| 895 } | |
| 896 } else { | |
| 897 const int uv_width = (width + 1) >> 1; | |
| 898 int use_dsp = (step == 3); // use special function in this case | |
| 899 // temporary storage for accumulated R/G/B values during conversion to U/V | |
| 900 uint16_t* const tmp_rgb = | |
| 901 (uint16_t*)WebPSafeMalloc(4 * uv_width, sizeof(*tmp_rgb)); | |
| 902 uint8_t* dst_y = picture->y; | |
| 903 uint8_t* dst_u = picture->u; | |
| 904 uint8_t* dst_v = picture->v; | |
| 905 uint8_t* dst_a = picture->a; | |
| 906 | |
| 907 VP8Random base_rg; | |
| 908 VP8Random* rg = NULL; | |
| 909 if (dithering > 0.) { | |
| 910 VP8InitRandom(&base_rg, dithering); | |
| 911 rg = &base_rg; | |
| 912 use_dsp = 0; // can't use dsp in this case | |
| 913 } | |
| 914 WebPInitConvertARGBToYUV(); | |
| 915 InitGammaTables(); | |
| 916 | |
| 917 if (tmp_rgb == NULL) return 0; // malloc error | |
| 918 | |
| 919 // Downsample Y/U/V planes, two rows at a time | |
| 920 for (y = 0; y < (height >> 1); ++y) { | |
| 921 int rows_have_alpha = has_alpha; | |
| 922 if (use_dsp) { | |
| 923 if (is_rgb) { | |
| 924 WebPConvertRGB24ToY(r_ptr, dst_y, width); | |
| 925 WebPConvertRGB24ToY(r_ptr + rgb_stride, | |
| 926 dst_y + picture->y_stride, width); | |
| 927 } else { | |
| 928 WebPConvertBGR24ToY(b_ptr, dst_y, width); | |
| 929 WebPConvertBGR24ToY(b_ptr + rgb_stride, | |
| 930 dst_y + picture->y_stride, width); | |
| 931 } | |
| 932 } else { | |
| 933 ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg); | |
| 934 ConvertRowToY(r_ptr + rgb_stride, | |
| 935 g_ptr + rgb_stride, | |
| 936 b_ptr + rgb_stride, step, | |
| 937 dst_y + picture->y_stride, width, rg); | |
| 938 } | |
| 939 dst_y += 2 * picture->y_stride; | |
| 940 if (has_alpha) { | |
| 941 rows_have_alpha &= !WebPExtractAlpha(a_ptr, rgb_stride, width, 2, | |
| 942 dst_a, picture->a_stride); | |
| 943 dst_a += 2 * picture->a_stride; | |
| 944 } | |
| 945 // Collect averaged R/G/B(/A) | |
| 946 if (!rows_have_alpha) { | |
| 947 AccumulateRGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, tmp_rgb, width); | |
| 948 } else { | |
| 949 AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, rgb_stride, tmp_rgb, width); | |
| 950 } | |
| 951 // Convert to U/V | |
| 952 if (rg == NULL) { | |
| 953 WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); | |
| 954 } else { | |
| 955 ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); | |
| 956 } | |
| 957 dst_u += picture->uv_stride; | |
| 958 dst_v += picture->uv_stride; | |
| 959 r_ptr += 2 * rgb_stride; | |
| 960 b_ptr += 2 * rgb_stride; | |
| 961 g_ptr += 2 * rgb_stride; | |
| 962 if (has_alpha) a_ptr += 2 * rgb_stride; | |
| 963 } | |
| 964 if (height & 1) { // extra last row | |
| 965 int row_has_alpha = has_alpha; | |
| 966 if (use_dsp) { | |
| 967 if (r_ptr < b_ptr) { | |
| 968 WebPConvertRGB24ToY(r_ptr, dst_y, width); | |
| 969 } else { | |
| 970 WebPConvertBGR24ToY(b_ptr, dst_y, width); | |
| 971 } | |
| 972 } else { | |
| 973 ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg); | |
| 974 } | |
| 975 if (row_has_alpha) { | |
| 976 row_has_alpha &= !WebPExtractAlpha(a_ptr, 0, width, 1, dst_a, 0); | |
| 977 } | |
| 978 // Collect averaged R/G/B(/A) | |
| 979 if (!row_has_alpha) { | |
| 980 // Collect averaged R/G/B | |
| 981 AccumulateRGB(r_ptr, g_ptr, b_ptr, step, /* rgb_stride = */ 0, | |
| 982 tmp_rgb, width); | |
| 983 } else { | |
| 984 AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, /* rgb_stride = */ 0, | |
| 985 tmp_rgb, width); | |
| 986 } | |
| 987 if (rg == NULL) { | |
| 988 WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); | |
| 989 } else { | |
| 990 ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); | |
| 991 } | |
| 992 } | |
| 993 WebPSafeFree(tmp_rgb); | |
| 994 } | |
| 995 return 1; | |
| 996 } | |
| 997 | |
| 998 #undef SUM4 | |
| 999 #undef SUM2 | |
| 1000 #undef SUM4ALPHA | |
| 1001 #undef SUM2ALPHA | |
| 1002 | |
| 1003 //------------------------------------------------------------------------------ | |
| 1004 // call for ARGB->YUVA conversion | |
| 1005 | |
| 1006 static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace, | |
| 1007 float dithering, int use_iterative_conversion) { | |
| 1008 if (picture == NULL) return 0; | |
| 1009 if (picture->argb == NULL) { | |
| 1010 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); | |
| 1011 } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { | |
| 1012 return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); | |
| 1013 } else { | |
| 1014 const uint8_t* const argb = (const uint8_t*)picture->argb; | |
| 1015 const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; | |
| 1016 const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; | |
| 1017 const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; | |
| 1018 const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; | |
| 1019 | |
| 1020 picture->colorspace = WEBP_YUV420; | |
| 1021 return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, | |
| 1022 dithering, use_iterative_conversion, picture); | |
| 1023 } | |
| 1024 } | |
| 1025 | |
| 1026 int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, | |
| 1027 float dithering) { | |
| 1028 return PictureARGBToYUVA(picture, colorspace, dithering, 0); | |
| 1029 } | |
| 1030 | |
| 1031 int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { | |
| 1032 return PictureARGBToYUVA(picture, colorspace, 0.f, 0); | |
| 1033 } | |
| 1034 | |
| 1035 int WebPPictureSmartARGBToYUVA(WebPPicture* picture) { | |
| 1036 return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1); | |
| 1037 } | |
| 1038 | |
| 1039 //------------------------------------------------------------------------------ | |
| 1040 // call for YUVA -> ARGB conversion | |
| 1041 | |
| 1042 int WebPPictureYUVAToARGB(WebPPicture* picture) { | |
| 1043 if (picture == NULL) return 0; | |
| 1044 if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { | |
| 1045 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); | |
| 1046 } | |
| 1047 if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { | |
| 1048 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); | |
| 1049 } | |
| 1050 if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { | |
| 1051 return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); | |
| 1052 } | |
| 1053 // Allocate a new argb buffer (discarding the previous one). | |
| 1054 if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; | |
| 1055 picture->use_argb = 1; | |
| 1056 | |
| 1057 // Convert | |
| 1058 { | |
| 1059 int y; | |
| 1060 const int width = picture->width; | |
| 1061 const int height = picture->height; | |
| 1062 const int argb_stride = 4 * picture->argb_stride; | |
| 1063 uint8_t* dst = (uint8_t*)picture->argb; | |
| 1064 const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; | |
| 1065 WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); | |
| 1066 | |
| 1067 // First row, with replicated top samples. | |
| 1068 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); | |
| 1069 cur_y += picture->y_stride; | |
| 1070 dst += argb_stride; | |
| 1071 // Center rows. | |
| 1072 for (y = 1; y + 1 < height; y += 2) { | |
| 1073 const uint8_t* const top_u = cur_u; | |
| 1074 const uint8_t* const top_v = cur_v; | |
| 1075 cur_u += picture->uv_stride; | |
| 1076 cur_v += picture->uv_stride; | |
| 1077 upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, | |
| 1078 dst, dst + argb_stride, width); | |
| 1079 cur_y += 2 * picture->y_stride; | |
| 1080 dst += 2 * argb_stride; | |
| 1081 } | |
| 1082 // Last row (if needed), with replicated bottom samples. | |
| 1083 if (height > 1 && !(height & 1)) { | |
| 1084 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); | |
| 1085 } | |
| 1086 // Insert alpha values if needed, in replacement for the default 0xff ones. | |
| 1087 if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { | |
| 1088 for (y = 0; y < height; ++y) { | |
| 1089 uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; | |
| 1090 const uint8_t* const src = picture->a + y * picture->a_stride; | |
| 1091 int x; | |
| 1092 for (x = 0; x < width; ++x) { | |
| 1093 argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); | |
| 1094 } | |
| 1095 } | |
| 1096 } | |
| 1097 } | |
| 1098 return 1; | |
| 1099 } | |
| 1100 | |
| 1101 //------------------------------------------------------------------------------ | |
| 1102 // automatic import / conversion | |
| 1103 | |
| 1104 static int Import(WebPPicture* const picture, | |
| 1105 const uint8_t* const rgb, int rgb_stride, | |
| 1106 int step, int swap_rb, int import_alpha) { | |
| 1107 int y; | |
| 1108 const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0); | |
| 1109 const uint8_t* g_ptr = rgb + 1; | |
| 1110 const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2); | |
| 1111 const uint8_t* a_ptr = import_alpha ? rgb + 3 : NULL; | |
| 1112 const int width = picture->width; | |
| 1113 const int height = picture->height; | |
| 1114 | |
| 1115 if (!picture->use_argb) { | |
| 1116 return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, | |
| 1117 0.f /* no dithering */, 0, picture); | |
| 1118 } | |
| 1119 if (!WebPPictureAlloc(picture)) return 0; | |
| 1120 | |
| 1121 VP8EncDspARGBInit(); | |
| 1122 | |
| 1123 if (import_alpha) { | |
| 1124 uint32_t* dst = picture->argb; | |
| 1125 assert(step == 4); | |
| 1126 for (y = 0; y < height; ++y) { | |
| 1127 VP8PackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst); | |
| 1128 a_ptr += rgb_stride; | |
| 1129 r_ptr += rgb_stride; | |
| 1130 g_ptr += rgb_stride; | |
| 1131 b_ptr += rgb_stride; | |
| 1132 dst += picture->argb_stride; | |
| 1133 } | |
| 1134 } else { | |
| 1135 uint32_t* dst = picture->argb; | |
| 1136 assert(step >= 3); | |
| 1137 for (y = 0; y < height; ++y) { | |
| 1138 VP8PackRGB(r_ptr, g_ptr, b_ptr, width, step, dst); | |
| 1139 r_ptr += rgb_stride; | |
| 1140 g_ptr += rgb_stride; | |
| 1141 b_ptr += rgb_stride; | |
| 1142 dst += picture->argb_stride; | |
| 1143 } | |
| 1144 } | |
| 1145 return 1; | |
| 1146 } | |
| 1147 | |
| 1148 // Public API | |
| 1149 | |
| 1150 int WebPPictureImportRGB(WebPPicture* picture, | |
| 1151 const uint8_t* rgb, int rgb_stride) { | |
| 1152 return (picture != NULL && rgb != NULL) | |
| 1153 ? Import(picture, rgb, rgb_stride, 3, 0, 0) | |
| 1154 : 0; | |
| 1155 } | |
| 1156 | |
| 1157 int WebPPictureImportBGR(WebPPicture* picture, | |
| 1158 const uint8_t* rgb, int rgb_stride) { | |
| 1159 return (picture != NULL && rgb != NULL) | |
| 1160 ? Import(picture, rgb, rgb_stride, 3, 1, 0) | |
| 1161 : 0; | |
| 1162 } | |
| 1163 | |
| 1164 int WebPPictureImportRGBA(WebPPicture* picture, | |
| 1165 const uint8_t* rgba, int rgba_stride) { | |
| 1166 return (picture != NULL && rgba != NULL) | |
| 1167 ? Import(picture, rgba, rgba_stride, 4, 0, 1) | |
| 1168 : 0; | |
| 1169 } | |
| 1170 | |
| 1171 int WebPPictureImportBGRA(WebPPicture* picture, | |
| 1172 const uint8_t* rgba, int rgba_stride) { | |
| 1173 return (picture != NULL && rgba != NULL) | |
| 1174 ? Import(picture, rgba, rgba_stride, 4, 1, 1) | |
| 1175 : 0; | |
| 1176 } | |
| 1177 | |
| 1178 int WebPPictureImportRGBX(WebPPicture* picture, | |
| 1179 const uint8_t* rgba, int rgba_stride) { | |
| 1180 return (picture != NULL && rgba != NULL) | |
| 1181 ? Import(picture, rgba, rgba_stride, 4, 0, 0) | |
| 1182 : 0; | |
| 1183 } | |
| 1184 | |
| 1185 int WebPPictureImportBGRX(WebPPicture* picture, | |
| 1186 const uint8_t* rgba, int rgba_stride) { | |
| 1187 return (picture != NULL && rgba != NULL) | |
| 1188 ? Import(picture, rgba, rgba_stride, 4, 1, 0) | |
| 1189 : 0; | |
| 1190 } | |
| 1191 | |
| 1192 //------------------------------------------------------------------------------ | |
| OLD | NEW |