| OLD | NEW |
| (Empty) | |
| 1 // Copyright 2017 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Utilities for processing transparent channel, NEON version. |
| 11 // |
| 12 // Author: Skal (pascal.massimino@gmail.com) |
| 13 |
| 14 #include "./dsp.h" |
| 15 |
| 16 #if defined(WEBP_USE_NEON) |
| 17 |
| 18 #include "./neon.h" |
| 19 |
| 20 //------------------------------------------------------------------------------ |
| 21 |
| 22 #define MULTIPLIER(a) ((a) * 0x8081) |
| 23 #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) |
| 24 |
| 25 #define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do { \ |
| 26 const uint8x8_t alpha = (V).val[(ALPHA)]; \ |
| 27 const uint16x8_t r1 = vmull_u8((V).val[1], alpha); \ |
| 28 const uint16x8_t g1 = vmull_u8((V).val[2], alpha); \ |
| 29 const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha); \ |
| 30 /* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */ \ |
| 31 const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8); \ |
| 32 const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8); \ |
| 33 const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8); \ |
| 34 const uint16x8_t r3 = vaddq_u16(r2, kOne); \ |
| 35 const uint16x8_t g3 = vaddq_u16(g2, kOne); \ |
| 36 const uint16x8_t b3 = vaddq_u16(b2, kOne); \ |
| 37 (V).val[1] = vshrn_n_u16(r3, 8); \ |
| 38 (V).val[2] = vshrn_n_u16(g3, 8); \ |
| 39 (V).val[(OTHER)] = vshrn_n_u16(b3, 8); \ |
| 40 } while (0) |
| 41 |
| 42 static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first, |
| 43 int w, int h, int stride) { |
| 44 const uint16x8_t kOne = vdupq_n_u16(1u); |
| 45 while (h-- > 0) { |
| 46 uint32_t* const rgbx = (uint32_t*)rgba; |
| 47 int i = 0; |
| 48 if (alpha_first) { |
| 49 for (; i + 8 <= w; i += 8) { |
| 50 // load aaaa...|rrrr...|gggg...|bbbb... |
| 51 uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); |
| 52 MULTIPLY_BY_ALPHA(RGBX, 0, 3); |
| 53 vst4_u8((uint8_t*)(rgbx + i), RGBX); |
| 54 } |
| 55 } else { |
| 56 for (; i + 8 <= w; i += 8) { |
| 57 uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); |
| 58 MULTIPLY_BY_ALPHA(RGBX, 3, 0); |
| 59 vst4_u8((uint8_t*)(rgbx + i), RGBX); |
| 60 } |
| 61 } |
| 62 // Finish with left-overs. |
| 63 for (; i < w; ++i) { |
| 64 uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); |
| 65 const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); |
| 66 const uint32_t a = alpha[4 * i]; |
| 67 if (a != 0xff) { |
| 68 const uint32_t mult = MULTIPLIER(a); |
| 69 rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); |
| 70 rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); |
| 71 rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); |
| 72 } |
| 73 } |
| 74 rgba += stride; |
| 75 } |
| 76 } |
| 77 #undef MULTIPLY_BY_ALPHA |
| 78 #undef MULTIPLIER |
| 79 #undef PREMULTIPLY |
| 80 |
| 81 //------------------------------------------------------------------------------ |
| 82 |
| 83 static int DispatchAlpha_NEON(const uint8_t* alpha, int alpha_stride, |
| 84 int width, int height, |
| 85 uint8_t* dst, int dst_stride) { |
| 86 uint32_t alpha_mask = 0xffffffffu; |
| 87 uint8x8_t mask8 = vdup_n_u8(0xff); |
| 88 uint32_t tmp[2]; |
| 89 int i, j; |
| 90 for (j = 0; j < height; ++j) { |
| 91 // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb |
| 92 // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. |
| 93 // Hence the test with 'width - 1' instead of just 'width'. |
| 94 for (i = 0; i + 8 <= width - 1; i += 8) { |
| 95 uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i)); |
| 96 const uint8x8_t alphas = vld1_u8(alpha + i); |
| 97 rgbX.val[0] = alphas; |
| 98 vst4_u8((uint8_t*)(dst + 4 * i), rgbX); |
| 99 mask8 = vand_u8(mask8, alphas); |
| 100 } |
| 101 for (; i < width; ++i) { |
| 102 const uint32_t alpha_value = alpha[i]; |
| 103 dst[4 * i] = alpha_value; |
| 104 alpha_mask &= alpha_value; |
| 105 } |
| 106 alpha += alpha_stride; |
| 107 dst += dst_stride; |
| 108 } |
| 109 vst1_u8((uint8_t*)tmp, mask8); |
| 110 alpha_mask &= tmp[0]; |
| 111 alpha_mask &= tmp[1]; |
| 112 return (alpha_mask != 0xffffffffu); |
| 113 } |
| 114 |
| 115 static void DispatchAlphaToGreen_NEON(const uint8_t* alpha, int alpha_stride, |
| 116 int width, int height, |
| 117 uint32_t* dst, int dst_stride) { |
| 118 int i, j; |
| 119 uint8x8x4_t greens; // leave A/R/B channels zero'd. |
| 120 greens.val[0] = vdup_n_u8(0); |
| 121 greens.val[2] = vdup_n_u8(0); |
| 122 greens.val[3] = vdup_n_u8(0); |
| 123 for (j = 0; j < height; ++j) { |
| 124 for (i = 0; i + 8 <= width; i += 8) { |
| 125 greens.val[1] = vld1_u8(alpha + i); |
| 126 vst4_u8((uint8_t*)(dst + i), greens); |
| 127 } |
| 128 for (; i < width; ++i) dst[i] = alpha[i] << 8; |
| 129 alpha += alpha_stride; |
| 130 dst += dst_stride; |
| 131 } |
| 132 } |
| 133 |
| 134 static int ExtractAlpha_NEON(const uint8_t* argb, int argb_stride, |
| 135 int width, int height, |
| 136 uint8_t* alpha, int alpha_stride) { |
| 137 uint32_t alpha_mask = 0xffffffffu; |
| 138 uint8x8_t mask8 = vdup_n_u8(0xff); |
| 139 uint32_t tmp[2]; |
| 140 int i, j; |
| 141 for (j = 0; j < height; ++j) { |
| 142 // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb |
| 143 // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. |
| 144 // Hence the test with 'width - 1' instead of just 'width'. |
| 145 for (i = 0; i + 8 <= width - 1; i += 8) { |
| 146 const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i)); |
| 147 const uint8x8_t alphas = rgbX.val[0]; |
| 148 vst1_u8((uint8_t*)(alpha + i), alphas); |
| 149 mask8 = vand_u8(mask8, alphas); |
| 150 } |
| 151 for (; i < width; ++i) { |
| 152 alpha[i] = argb[4 * i]; |
| 153 alpha_mask &= alpha[i]; |
| 154 } |
| 155 argb += argb_stride; |
| 156 alpha += alpha_stride; |
| 157 } |
| 158 vst1_u8((uint8_t*)tmp, mask8); |
| 159 alpha_mask &= tmp[0]; |
| 160 alpha_mask &= tmp[1]; |
| 161 return (alpha_mask == 0xffffffffu); |
| 162 } |
| 163 |
| 164 static void ExtractGreen_NEON(const uint32_t* argb, |
| 165 uint8_t* alpha, int size) { |
| 166 int i; |
| 167 for (i = 0; i + 16 <= size; i += 16) { |
| 168 const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i)); |
| 169 const uint8x16_t greens = rgbX.val[1]; |
| 170 vst1q_u8(alpha + i, greens); |
| 171 } |
| 172 for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff; |
| 173 } |
| 174 |
| 175 //------------------------------------------------------------------------------ |
| 176 |
| 177 extern void WebPInitAlphaProcessingNEON(void); |
| 178 |
| 179 WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) { |
| 180 WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON; |
| 181 WebPDispatchAlpha = DispatchAlpha_NEON; |
| 182 WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON; |
| 183 WebPExtractAlpha = ExtractAlpha_NEON; |
| 184 WebPExtractGreen = ExtractGreen_NEON; |
| 185 } |
| 186 |
| 187 #else // !WEBP_USE_NEON |
| 188 |
| 189 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON) |
| 190 |
| 191 #endif // WEBP_USE_NEON |
| OLD | NEW |