| OLD | NEW |
| (Empty) |
| 1 // Copyright 2010 Google Inc. All Rights Reserved. | |
| 2 // | |
| 3 // Use of this source code is governed by a BSD-style license | |
| 4 // that can be found in the COPYING file in the root of the source | |
| 5 // tree. An additional intellectual property rights grant can be found | |
| 6 // in the file PATENTS. All contributing project authors may | |
| 7 // be found in the AUTHORS file in the root of the source tree. | |
| 8 // ----------------------------------------------------------------------------- | |
| 9 // | |
| 10 // Frame-reconstruction function. Memory allocation. | |
| 11 // | |
| 12 // Author: Skal (pascal.massimino@gmail.com) | |
| 13 | |
| 14 #include <stdlib.h> | |
| 15 #include "./vp8i.h" | |
| 16 #include "../utils/utils.h" | |
| 17 | |
| 18 //------------------------------------------------------------------------------ | |
| 19 // Main reconstruction function. | |
| 20 | |
| 21 static const int kScan[16] = { | |
| 22 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, | |
| 23 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, | |
| 24 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, | |
| 25 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS | |
| 26 }; | |
| 27 | |
| 28 static int CheckMode(int mb_x, int mb_y, int mode) { | |
| 29 if (mode == B_DC_PRED) { | |
| 30 if (mb_x == 0) { | |
| 31 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; | |
| 32 } else { | |
| 33 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; | |
| 34 } | |
| 35 } | |
| 36 return mode; | |
| 37 } | |
| 38 | |
| 39 static void Copy32b(uint8_t* const dst, const uint8_t* const src) { | |
| 40 memcpy(dst, src, 4); | |
| 41 } | |
| 42 | |
| 43 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, | |
| 44 uint8_t* const dst) { | |
| 45 switch (bits >> 30) { | |
| 46 case 3: | |
| 47 VP8Transform(src, dst, 0); | |
| 48 break; | |
| 49 case 2: | |
| 50 VP8TransformAC3(src, dst); | |
| 51 break; | |
| 52 case 1: | |
| 53 VP8TransformDC(src, dst); | |
| 54 break; | |
| 55 default: | |
| 56 break; | |
| 57 } | |
| 58 } | |
| 59 | |
| 60 static void DoUVTransform(uint32_t bits, const int16_t* const src, | |
| 61 uint8_t* const dst) { | |
| 62 if (bits & 0xff) { // any non-zero coeff at all? | |
| 63 if (bits & 0xaa) { // any non-zero AC coefficient? | |
| 64 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V | |
| 65 } else { | |
| 66 VP8TransformDCUV(src, dst); | |
| 67 } | |
| 68 } | |
| 69 } | |
| 70 | |
| 71 static void ReconstructRow(const VP8Decoder* const dec, | |
| 72 const VP8ThreadContext* ctx) { | |
| 73 int j; | |
| 74 int mb_x; | |
| 75 const int mb_y = ctx->mb_y_; | |
| 76 const int cache_id = ctx->id_; | |
| 77 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; | |
| 78 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; | |
| 79 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; | |
| 80 | |
| 81 // Initialize left-most block. | |
| 82 for (j = 0; j < 16; ++j) { | |
| 83 y_dst[j * BPS - 1] = 129; | |
| 84 } | |
| 85 for (j = 0; j < 8; ++j) { | |
| 86 u_dst[j * BPS - 1] = 129; | |
| 87 v_dst[j * BPS - 1] = 129; | |
| 88 } | |
| 89 | |
| 90 // Init top-left sample on left column too. | |
| 91 if (mb_y > 0) { | |
| 92 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; | |
| 93 } else { | |
| 94 // we only need to do this init once at block (0,0). | |
| 95 // Afterward, it remains valid for the whole topmost row. | |
| 96 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); | |
| 97 memset(u_dst - BPS - 1, 127, 8 + 1); | |
| 98 memset(v_dst - BPS - 1, 127, 8 + 1); | |
| 99 } | |
| 100 | |
| 101 // Reconstruct one row. | |
| 102 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { | |
| 103 const VP8MBData* const block = ctx->mb_data_ + mb_x; | |
| 104 | |
| 105 // Rotate in the left samples from previously decoded block. We move four | |
| 106 // pixels at a time for alignment reason, and because of in-loop filter. | |
| 107 if (mb_x > 0) { | |
| 108 for (j = -1; j < 16; ++j) { | |
| 109 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); | |
| 110 } | |
| 111 for (j = -1; j < 8; ++j) { | |
| 112 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); | |
| 113 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); | |
| 114 } | |
| 115 } | |
| 116 { | |
| 117 // bring top samples into the cache | |
| 118 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; | |
| 119 const int16_t* const coeffs = block->coeffs_; | |
| 120 uint32_t bits = block->non_zero_y_; | |
| 121 int n; | |
| 122 | |
| 123 if (mb_y > 0) { | |
| 124 memcpy(y_dst - BPS, top_yuv[0].y, 16); | |
| 125 memcpy(u_dst - BPS, top_yuv[0].u, 8); | |
| 126 memcpy(v_dst - BPS, top_yuv[0].v, 8); | |
| 127 } | |
| 128 | |
| 129 // predict and add residuals | |
| 130 if (block->is_i4x4_) { // 4x4 | |
| 131 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); | |
| 132 | |
| 133 if (mb_y > 0) { | |
| 134 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border | |
| 135 memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); | |
| 136 } else { | |
| 137 memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); | |
| 138 } | |
| 139 } | |
| 140 // replicate the top-right pixels below | |
| 141 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; | |
| 142 | |
| 143 // predict and add residuals for all 4x4 blocks in turn. | |
| 144 for (n = 0; n < 16; ++n, bits <<= 2) { | |
| 145 uint8_t* const dst = y_dst + kScan[n]; | |
| 146 VP8PredLuma4[block->imodes_[n]](dst); | |
| 147 DoTransform(bits, coeffs + n * 16, dst); | |
| 148 } | |
| 149 } else { // 16x16 | |
| 150 const int pred_func = CheckMode(mb_x, mb_y, block->imodes_[0]); | |
| 151 VP8PredLuma16[pred_func](y_dst); | |
| 152 if (bits != 0) { | |
| 153 for (n = 0; n < 16; ++n, bits <<= 2) { | |
| 154 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); | |
| 155 } | |
| 156 } | |
| 157 } | |
| 158 { | |
| 159 // Chroma | |
| 160 const uint32_t bits_uv = block->non_zero_uv_; | |
| 161 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); | |
| 162 VP8PredChroma8[pred_func](u_dst); | |
| 163 VP8PredChroma8[pred_func](v_dst); | |
| 164 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); | |
| 165 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); | |
| 166 } | |
| 167 | |
| 168 // stash away top samples for next block | |
| 169 if (mb_y < dec->mb_h_ - 1) { | |
| 170 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); | |
| 171 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); | |
| 172 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); | |
| 173 } | |
| 174 } | |
| 175 // Transfer reconstructed samples from yuv_b_ cache to final destination. | |
| 176 { | |
| 177 const int y_offset = cache_id * 16 * dec->cache_y_stride_; | |
| 178 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; | |
| 179 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; | |
| 180 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; | |
| 181 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; | |
| 182 for (j = 0; j < 16; ++j) { | |
| 183 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); | |
| 184 } | |
| 185 for (j = 0; j < 8; ++j) { | |
| 186 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); | |
| 187 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); | |
| 188 } | |
| 189 } | |
| 190 } | |
| 191 } | |
| 192 | |
| 193 //------------------------------------------------------------------------------ | |
| 194 // Filtering | |
| 195 | |
| 196 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary | |
| 197 // for caching, given a filtering level. | |
| 198 // Simple filter: up to 2 luma samples are read and 1 is written. | |
| 199 // Complex filter: up to 4 luma samples are read and 3 are written. Same for | |
| 200 // U/V, so it's 8 samples total (because of the 2x upsampling). | |
| 201 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; | |
| 202 | |
| 203 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { | |
| 204 const VP8ThreadContext* const ctx = &dec->thread_ctx_; | |
| 205 const int cache_id = ctx->id_; | |
| 206 const int y_bps = dec->cache_y_stride_; | |
| 207 const VP8FInfo* const f_info = ctx->f_info_ + mb_x; | |
| 208 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; | |
| 209 const int ilevel = f_info->f_ilevel_; | |
| 210 const int limit = f_info->f_limit_; | |
| 211 if (limit == 0) { | |
| 212 return; | |
| 213 } | |
| 214 assert(limit >= 3); | |
| 215 if (dec->filter_type_ == 1) { // simple | |
| 216 if (mb_x > 0) { | |
| 217 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); | |
| 218 } | |
| 219 if (f_info->f_inner_) { | |
| 220 VP8SimpleHFilter16i(y_dst, y_bps, limit); | |
| 221 } | |
| 222 if (mb_y > 0) { | |
| 223 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); | |
| 224 } | |
| 225 if (f_info->f_inner_) { | |
| 226 VP8SimpleVFilter16i(y_dst, y_bps, limit); | |
| 227 } | |
| 228 } else { // complex | |
| 229 const int uv_bps = dec->cache_uv_stride_; | |
| 230 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; | |
| 231 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; | |
| 232 const int hev_thresh = f_info->hev_thresh_; | |
| 233 if (mb_x > 0) { | |
| 234 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); | |
| 235 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); | |
| 236 } | |
| 237 if (f_info->f_inner_) { | |
| 238 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); | |
| 239 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); | |
| 240 } | |
| 241 if (mb_y > 0) { | |
| 242 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); | |
| 243 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); | |
| 244 } | |
| 245 if (f_info->f_inner_) { | |
| 246 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); | |
| 247 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); | |
| 248 } | |
| 249 } | |
| 250 } | |
| 251 | |
| 252 // Filter the decoded macroblock row (if needed) | |
| 253 static void FilterRow(const VP8Decoder* const dec) { | |
| 254 int mb_x; | |
| 255 const int mb_y = dec->thread_ctx_.mb_y_; | |
| 256 assert(dec->thread_ctx_.filter_row_); | |
| 257 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { | |
| 258 DoFilter(dec, mb_x, mb_y); | |
| 259 } | |
| 260 } | |
| 261 | |
| 262 //------------------------------------------------------------------------------ | |
| 263 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. | |
| 264 | |
| 265 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { | |
| 266 if (dec->filter_type_ > 0) { | |
| 267 int s; | |
| 268 const VP8FilterHeader* const hdr = &dec->filter_hdr_; | |
| 269 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { | |
| 270 int i4x4; | |
| 271 // First, compute the initial level | |
| 272 int base_level; | |
| 273 if (dec->segment_hdr_.use_segment_) { | |
| 274 base_level = dec->segment_hdr_.filter_strength_[s]; | |
| 275 if (!dec->segment_hdr_.absolute_delta_) { | |
| 276 base_level += hdr->level_; | |
| 277 } | |
| 278 } else { | |
| 279 base_level = hdr->level_; | |
| 280 } | |
| 281 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { | |
| 282 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; | |
| 283 int level = base_level; | |
| 284 if (hdr->use_lf_delta_) { | |
| 285 level += hdr->ref_lf_delta_[0]; | |
| 286 if (i4x4) { | |
| 287 level += hdr->mode_lf_delta_[0]; | |
| 288 } | |
| 289 } | |
| 290 level = (level < 0) ? 0 : (level > 63) ? 63 : level; | |
| 291 if (level > 0) { | |
| 292 int ilevel = level; | |
| 293 if (hdr->sharpness_ > 0) { | |
| 294 if (hdr->sharpness_ > 4) { | |
| 295 ilevel >>= 2; | |
| 296 } else { | |
| 297 ilevel >>= 1; | |
| 298 } | |
| 299 if (ilevel > 9 - hdr->sharpness_) { | |
| 300 ilevel = 9 - hdr->sharpness_; | |
| 301 } | |
| 302 } | |
| 303 if (ilevel < 1) ilevel = 1; | |
| 304 info->f_ilevel_ = ilevel; | |
| 305 info->f_limit_ = 2 * level + ilevel; | |
| 306 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; | |
| 307 } else { | |
| 308 info->f_limit_ = 0; // no filtering | |
| 309 } | |
| 310 info->f_inner_ = i4x4; | |
| 311 } | |
| 312 } | |
| 313 } | |
| 314 } | |
| 315 | |
| 316 //------------------------------------------------------------------------------ | |
| 317 // Dithering | |
| 318 | |
| 319 // minimal amp that will provide a non-zero dithering effect | |
| 320 #define MIN_DITHER_AMP 4 | |
| 321 | |
| 322 #define DITHER_AMP_TAB_SIZE 12 | |
| 323 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { | |
| 324 // roughly, it's dqm->uv_mat_[1] | |
| 325 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 | |
| 326 }; | |
| 327 | |
| 328 void VP8InitDithering(const WebPDecoderOptions* const options, | |
| 329 VP8Decoder* const dec) { | |
| 330 assert(dec != NULL); | |
| 331 if (options != NULL) { | |
| 332 const int d = options->dithering_strength; | |
| 333 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; | |
| 334 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); | |
| 335 if (f > 0) { | |
| 336 int s; | |
| 337 int all_amp = 0; | |
| 338 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { | |
| 339 VP8QuantMatrix* const dqm = &dec->dqm_[s]; | |
| 340 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { | |
| 341 // TODO(skal): should we specially dither more for uv_quant_ < 0? | |
| 342 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; | |
| 343 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; | |
| 344 } | |
| 345 all_amp |= dqm->dither_; | |
| 346 } | |
| 347 if (all_amp != 0) { | |
| 348 VP8InitRandom(&dec->dithering_rg_, 1.0f); | |
| 349 dec->dither_ = 1; | |
| 350 } | |
| 351 } | |
| 352 // potentially allow alpha dithering | |
| 353 dec->alpha_dithering_ = options->alpha_dithering_strength; | |
| 354 if (dec->alpha_dithering_ > 100) { | |
| 355 dec->alpha_dithering_ = 100; | |
| 356 } else if (dec->alpha_dithering_ < 0) { | |
| 357 dec->alpha_dithering_ = 0; | |
| 358 } | |
| 359 } | |
| 360 } | |
| 361 | |
| 362 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 | |
| 363 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { | |
| 364 uint8_t dither[64]; | |
| 365 int i; | |
| 366 for (i = 0; i < 8 * 8; ++i) { | |
| 367 dither[i] = VP8RandomBits2(rg, VP8_DITHER_AMP_BITS + 1, amp); | |
| 368 } | |
| 369 VP8DitherCombine8x8(dither, dst, bps); | |
| 370 } | |
| 371 | |
| 372 static void DitherRow(VP8Decoder* const dec) { | |
| 373 int mb_x; | |
| 374 assert(dec->dither_); | |
| 375 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { | |
| 376 const VP8ThreadContext* const ctx = &dec->thread_ctx_; | |
| 377 const VP8MBData* const data = ctx->mb_data_ + mb_x; | |
| 378 const int cache_id = ctx->id_; | |
| 379 const int uv_bps = dec->cache_uv_stride_; | |
| 380 if (data->dither_ >= MIN_DITHER_AMP) { | |
| 381 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; | |
| 382 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; | |
| 383 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); | |
| 384 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); | |
| 385 } | |
| 386 } | |
| 387 } | |
| 388 | |
| 389 //------------------------------------------------------------------------------ | |
| 390 // This function is called after a row of macroblocks is finished decoding. | |
| 391 // It also takes into account the following restrictions: | |
| 392 // * In case of in-loop filtering, we must hold off sending some of the bottom | |
| 393 // pixels as they are yet unfiltered. They will be when the next macroblock | |
| 394 // row is decoded. Meanwhile, we must preserve them by rotating them in the | |
| 395 // cache area. This doesn't hold for the very bottom row of the uncropped | |
| 396 // picture of course. | |
| 397 // * we must clip the remaining pixels against the cropping area. The VP8Io | |
| 398 // struct must have the following fields set correctly before calling put(): | |
| 399 | |
| 400 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB | |
| 401 | |
| 402 // Finalize and transmit a complete row. Return false in case of user-abort. | |
| 403 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { | |
| 404 int ok = 1; | |
| 405 const VP8ThreadContext* const ctx = &dec->thread_ctx_; | |
| 406 const int cache_id = ctx->id_; | |
| 407 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; | |
| 408 const int ysize = extra_y_rows * dec->cache_y_stride_; | |
| 409 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; | |
| 410 const int y_offset = cache_id * 16 * dec->cache_y_stride_; | |
| 411 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; | |
| 412 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; | |
| 413 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; | |
| 414 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; | |
| 415 const int mb_y = ctx->mb_y_; | |
| 416 const int is_first_row = (mb_y == 0); | |
| 417 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); | |
| 418 | |
| 419 if (dec->mt_method_ == 2) { | |
| 420 ReconstructRow(dec, ctx); | |
| 421 } | |
| 422 | |
| 423 if (ctx->filter_row_) { | |
| 424 FilterRow(dec); | |
| 425 } | |
| 426 | |
| 427 if (dec->dither_) { | |
| 428 DitherRow(dec); | |
| 429 } | |
| 430 | |
| 431 if (io->put != NULL) { | |
| 432 int y_start = MACROBLOCK_VPOS(mb_y); | |
| 433 int y_end = MACROBLOCK_VPOS(mb_y + 1); | |
| 434 if (!is_first_row) { | |
| 435 y_start -= extra_y_rows; | |
| 436 io->y = ydst; | |
| 437 io->u = udst; | |
| 438 io->v = vdst; | |
| 439 } else { | |
| 440 io->y = dec->cache_y_ + y_offset; | |
| 441 io->u = dec->cache_u_ + uv_offset; | |
| 442 io->v = dec->cache_v_ + uv_offset; | |
| 443 } | |
| 444 | |
| 445 if (!is_last_row) { | |
| 446 y_end -= extra_y_rows; | |
| 447 } | |
| 448 if (y_end > io->crop_bottom) { | |
| 449 y_end = io->crop_bottom; // make sure we don't overflow on last row. | |
| 450 } | |
| 451 io->a = NULL; | |
| 452 if (dec->alpha_data_ != NULL && y_start < y_end) { | |
| 453 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a | |
| 454 // good idea. | |
| 455 io->a = VP8DecompressAlphaRows(dec, io, y_start, y_end - y_start); | |
| 456 if (io->a == NULL) { | |
| 457 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, | |
| 458 "Could not decode alpha data."); | |
| 459 } | |
| 460 } | |
| 461 if (y_start < io->crop_top) { | |
| 462 const int delta_y = io->crop_top - y_start; | |
| 463 y_start = io->crop_top; | |
| 464 assert(!(delta_y & 1)); | |
| 465 io->y += dec->cache_y_stride_ * delta_y; | |
| 466 io->u += dec->cache_uv_stride_ * (delta_y >> 1); | |
| 467 io->v += dec->cache_uv_stride_ * (delta_y >> 1); | |
| 468 if (io->a != NULL) { | |
| 469 io->a += io->width * delta_y; | |
| 470 } | |
| 471 } | |
| 472 if (y_start < y_end) { | |
| 473 io->y += io->crop_left; | |
| 474 io->u += io->crop_left >> 1; | |
| 475 io->v += io->crop_left >> 1; | |
| 476 if (io->a != NULL) { | |
| 477 io->a += io->crop_left; | |
| 478 } | |
| 479 io->mb_y = y_start - io->crop_top; | |
| 480 io->mb_w = io->crop_right - io->crop_left; | |
| 481 io->mb_h = y_end - y_start; | |
| 482 ok = io->put(io); | |
| 483 } | |
| 484 } | |
| 485 // rotate top samples if needed | |
| 486 if (cache_id + 1 == dec->num_caches_) { | |
| 487 if (!is_last_row) { | |
| 488 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); | |
| 489 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); | |
| 490 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); | |
| 491 } | |
| 492 } | |
| 493 | |
| 494 return ok; | |
| 495 } | |
| 496 | |
| 497 #undef MACROBLOCK_VPOS | |
| 498 | |
| 499 //------------------------------------------------------------------------------ | |
| 500 | |
| 501 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { | |
| 502 int ok = 1; | |
| 503 VP8ThreadContext* const ctx = &dec->thread_ctx_; | |
| 504 const int filter_row = | |
| 505 (dec->filter_type_ > 0) && | |
| 506 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); | |
| 507 if (dec->mt_method_ == 0) { | |
| 508 // ctx->id_ and ctx->f_info_ are already set | |
| 509 ctx->mb_y_ = dec->mb_y_; | |
| 510 ctx->filter_row_ = filter_row; | |
| 511 ReconstructRow(dec, ctx); | |
| 512 ok = FinishRow(dec, io); | |
| 513 } else { | |
| 514 WebPWorker* const worker = &dec->worker_; | |
| 515 // Finish previous job *before* updating context | |
| 516 ok &= WebPGetWorkerInterface()->Sync(worker); | |
| 517 assert(worker->status_ == OK); | |
| 518 if (ok) { // spawn a new deblocking/output job | |
| 519 ctx->io_ = *io; | |
| 520 ctx->id_ = dec->cache_id_; | |
| 521 ctx->mb_y_ = dec->mb_y_; | |
| 522 ctx->filter_row_ = filter_row; | |
| 523 if (dec->mt_method_ == 2) { // swap macroblock data | |
| 524 VP8MBData* const tmp = ctx->mb_data_; | |
| 525 ctx->mb_data_ = dec->mb_data_; | |
| 526 dec->mb_data_ = tmp; | |
| 527 } else { | |
| 528 // perform reconstruction directly in main thread | |
| 529 ReconstructRow(dec, ctx); | |
| 530 } | |
| 531 if (filter_row) { // swap filter info | |
| 532 VP8FInfo* const tmp = ctx->f_info_; | |
| 533 ctx->f_info_ = dec->f_info_; | |
| 534 dec->f_info_ = tmp; | |
| 535 } | |
| 536 // (reconstruct)+filter in parallel | |
| 537 WebPGetWorkerInterface()->Launch(worker); | |
| 538 if (++dec->cache_id_ == dec->num_caches_) { | |
| 539 dec->cache_id_ = 0; | |
| 540 } | |
| 541 } | |
| 542 } | |
| 543 return ok; | |
| 544 } | |
| 545 | |
| 546 //------------------------------------------------------------------------------ | |
| 547 // Finish setting up the decoding parameter once user's setup() is called. | |
| 548 | |
| 549 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { | |
| 550 // Call setup() first. This may trigger additional decoding features on 'io'. | |
| 551 // Note: Afterward, we must call teardown() no matter what. | |
| 552 if (io->setup != NULL && !io->setup(io)) { | |
| 553 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); | |
| 554 return dec->status_; | |
| 555 } | |
| 556 | |
| 557 // Disable filtering per user request | |
| 558 if (io->bypass_filtering) { | |
| 559 dec->filter_type_ = 0; | |
| 560 } | |
| 561 // TODO(skal): filter type / strength / sharpness forcing | |
| 562 | |
| 563 // Define the area where we can skip in-loop filtering, in case of cropping. | |
| 564 // | |
| 565 // 'Simple' filter reads two luma samples outside of the macroblock | |
| 566 // and filters one. It doesn't filter the chroma samples. Hence, we can | |
| 567 // avoid doing the in-loop filtering before crop_top/crop_left position. | |
| 568 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. | |
| 569 // Means: there's a dependency chain that goes all the way up to the | |
| 570 // top-left corner of the picture (MB #0). We must filter all the previous | |
| 571 // macroblocks. | |
| 572 // TODO(skal): add an 'approximate_decoding' option, that won't produce | |
| 573 // a 1:1 bit-exactness for complex filtering? | |
| 574 { | |
| 575 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; | |
| 576 if (dec->filter_type_ == 2) { | |
| 577 // For complex filter, we need to preserve the dependency chain. | |
| 578 dec->tl_mb_x_ = 0; | |
| 579 dec->tl_mb_y_ = 0; | |
| 580 } else { | |
| 581 // For simple filter, we can filter only the cropped region. | |
| 582 // We include 'extra_pixels' on the other side of the boundary, since | |
| 583 // vertical or horizontal filtering of the previous macroblock can | |
| 584 // modify some abutting pixels. | |
| 585 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; | |
| 586 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; | |
| 587 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; | |
| 588 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; | |
| 589 } | |
| 590 // We need some 'extra' pixels on the right/bottom. | |
| 591 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; | |
| 592 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; | |
| 593 if (dec->br_mb_x_ > dec->mb_w_) { | |
| 594 dec->br_mb_x_ = dec->mb_w_; | |
| 595 } | |
| 596 if (dec->br_mb_y_ > dec->mb_h_) { | |
| 597 dec->br_mb_y_ = dec->mb_h_; | |
| 598 } | |
| 599 } | |
| 600 PrecomputeFilterStrengths(dec); | |
| 601 return VP8_STATUS_OK; | |
| 602 } | |
| 603 | |
| 604 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { | |
| 605 int ok = 1; | |
| 606 if (dec->mt_method_ > 0) { | |
| 607 ok = WebPGetWorkerInterface()->Sync(&dec->worker_); | |
| 608 } | |
| 609 | |
| 610 if (io->teardown != NULL) { | |
| 611 io->teardown(io); | |
| 612 } | |
| 613 return ok; | |
| 614 } | |
| 615 | |
| 616 //------------------------------------------------------------------------------ | |
| 617 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. | |
| 618 // | |
| 619 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges | |
| 620 // immediately, and needs to wait for first few rows of the next macroblock to | |
| 621 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending | |
| 622 // on strength). | |
| 623 // With two threads, the vertical positions of the rows being decoded are: | |
| 624 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... | |
| 625 // Deblock: [ 0..11][12..27][28..43][44..59][... | |
| 626 // If we use two threads and two caches of 16 pixels, the sequence would be: | |
| 627 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... | |
| 628 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... | |
| 629 // The problem occurs during row [12..15!!] that both the decoding and | |
| 630 // deblocking threads are writing simultaneously. | |
| 631 // With 3 cache lines, one get a safe write pattern: | |
| 632 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. | |
| 633 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... | |
| 634 // Note that multi-threaded output _without_ deblocking can make use of two | |
| 635 // cache lines of 16 pixels only, since there's no lagging behind. The decoding | |
| 636 // and output process have non-concurrent writing: | |
| 637 // Decode: [ 0..15][16..31][ 0..15][16..31][... | |
| 638 // io->put: [ 0..15][16..31][ 0..15][... | |
| 639 | |
| 640 #define MT_CACHE_LINES 3 | |
| 641 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case | |
| 642 | |
| 643 // Initialize multi/single-thread worker | |
| 644 static int InitThreadContext(VP8Decoder* const dec) { | |
| 645 dec->cache_id_ = 0; | |
| 646 if (dec->mt_method_ > 0) { | |
| 647 WebPWorker* const worker = &dec->worker_; | |
| 648 if (!WebPGetWorkerInterface()->Reset(worker)) { | |
| 649 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, | |
| 650 "thread initialization failed."); | |
| 651 } | |
| 652 worker->data1 = dec; | |
| 653 worker->data2 = (void*)&dec->thread_ctx_.io_; | |
| 654 worker->hook = (WebPWorkerHook)FinishRow; | |
| 655 dec->num_caches_ = | |
| 656 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; | |
| 657 } else { | |
| 658 dec->num_caches_ = ST_CACHE_LINES; | |
| 659 } | |
| 660 return 1; | |
| 661 } | |
| 662 | |
| 663 int VP8GetThreadMethod(const WebPDecoderOptions* const options, | |
| 664 const WebPHeaderStructure* const headers, | |
| 665 int width, int height) { | |
| 666 if (options == NULL || options->use_threads == 0) { | |
| 667 return 0; | |
| 668 } | |
| 669 (void)headers; | |
| 670 (void)width; | |
| 671 (void)height; | |
| 672 assert(headers == NULL || !headers->is_lossless); | |
| 673 #if defined(WEBP_USE_THREAD) | |
| 674 if (width < MIN_WIDTH_FOR_THREADS) return 0; | |
| 675 // TODO(skal): tune the heuristic further | |
| 676 #if 0 | |
| 677 if (height < 2 * width) return 2; | |
| 678 #endif | |
| 679 return 2; | |
| 680 #else // !WEBP_USE_THREAD | |
| 681 return 0; | |
| 682 #endif | |
| 683 } | |
| 684 | |
| 685 #undef MT_CACHE_LINES | |
| 686 #undef ST_CACHE_LINES | |
| 687 | |
| 688 //------------------------------------------------------------------------------ | |
| 689 // Memory setup | |
| 690 | |
| 691 static int AllocateMemory(VP8Decoder* const dec) { | |
| 692 const int num_caches = dec->num_caches_; | |
| 693 const int mb_w = dec->mb_w_; | |
| 694 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. | |
| 695 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); | |
| 696 const size_t top_size = sizeof(VP8TopSamples) * mb_w; | |
| 697 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); | |
| 698 const size_t f_info_size = | |
| 699 (dec->filter_type_ > 0) ? | |
| 700 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) | |
| 701 : 0; | |
| 702 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); | |
| 703 const size_t mb_data_size = | |
| 704 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); | |
| 705 const size_t cache_height = (16 * num_caches | |
| 706 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; | |
| 707 const size_t cache_size = top_size * cache_height; | |
| 708 // alpha_size is the only one that scales as width x height. | |
| 709 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? | |
| 710 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; | |
| 711 const uint64_t needed = (uint64_t)intra_pred_mode_size | |
| 712 + top_size + mb_info_size + f_info_size | |
| 713 + yuv_size + mb_data_size | |
| 714 + cache_size + alpha_size + WEBP_ALIGN_CST; | |
| 715 uint8_t* mem; | |
| 716 | |
| 717 if (needed != (size_t)needed) return 0; // check for overflow | |
| 718 if (needed > dec->mem_size_) { | |
| 719 WebPSafeFree(dec->mem_); | |
| 720 dec->mem_size_ = 0; | |
| 721 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); | |
| 722 if (dec->mem_ == NULL) { | |
| 723 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, | |
| 724 "no memory during frame initialization."); | |
| 725 } | |
| 726 // down-cast is ok, thanks to WebPSafeAlloc() above. | |
| 727 dec->mem_size_ = (size_t)needed; | |
| 728 } | |
| 729 | |
| 730 mem = (uint8_t*)dec->mem_; | |
| 731 dec->intra_t_ = (uint8_t*)mem; | |
| 732 mem += intra_pred_mode_size; | |
| 733 | |
| 734 dec->yuv_t_ = (VP8TopSamples*)mem; | |
| 735 mem += top_size; | |
| 736 | |
| 737 dec->mb_info_ = ((VP8MB*)mem) + 1; | |
| 738 mem += mb_info_size; | |
| 739 | |
| 740 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; | |
| 741 mem += f_info_size; | |
| 742 dec->thread_ctx_.id_ = 0; | |
| 743 dec->thread_ctx_.f_info_ = dec->f_info_; | |
| 744 if (dec->mt_method_ > 0) { | |
| 745 // secondary cache line. The deblocking process need to make use of the | |
| 746 // filtering strength from previous macroblock row, while the new ones | |
| 747 // are being decoded in parallel. We'll just swap the pointers. | |
| 748 dec->thread_ctx_.f_info_ += mb_w; | |
| 749 } | |
| 750 | |
| 751 mem = (uint8_t*)WEBP_ALIGN(mem); | |
| 752 assert((yuv_size & WEBP_ALIGN_CST) == 0); | |
| 753 dec->yuv_b_ = (uint8_t*)mem; | |
| 754 mem += yuv_size; | |
| 755 | |
| 756 dec->mb_data_ = (VP8MBData*)mem; | |
| 757 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; | |
| 758 if (dec->mt_method_ == 2) { | |
| 759 dec->thread_ctx_.mb_data_ += mb_w; | |
| 760 } | |
| 761 mem += mb_data_size; | |
| 762 | |
| 763 dec->cache_y_stride_ = 16 * mb_w; | |
| 764 dec->cache_uv_stride_ = 8 * mb_w; | |
| 765 { | |
| 766 const int extra_rows = kFilterExtraRows[dec->filter_type_]; | |
| 767 const int extra_y = extra_rows * dec->cache_y_stride_; | |
| 768 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; | |
| 769 dec->cache_y_ = ((uint8_t*)mem) + extra_y; | |
| 770 dec->cache_u_ = dec->cache_y_ | |
| 771 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; | |
| 772 dec->cache_v_ = dec->cache_u_ | |
| 773 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; | |
| 774 dec->cache_id_ = 0; | |
| 775 } | |
| 776 mem += cache_size; | |
| 777 | |
| 778 // alpha plane | |
| 779 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; | |
| 780 mem += alpha_size; | |
| 781 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); | |
| 782 | |
| 783 // note: left/top-info is initialized once for all. | |
| 784 memset(dec->mb_info_ - 1, 0, mb_info_size); | |
| 785 VP8InitScanline(dec); // initialize left too. | |
| 786 | |
| 787 // initialize top | |
| 788 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); | |
| 789 | |
| 790 return 1; | |
| 791 } | |
| 792 | |
| 793 static void InitIo(VP8Decoder* const dec, VP8Io* io) { | |
| 794 // prepare 'io' | |
| 795 io->mb_y = 0; | |
| 796 io->y = dec->cache_y_; | |
| 797 io->u = dec->cache_u_; | |
| 798 io->v = dec->cache_v_; | |
| 799 io->y_stride = dec->cache_y_stride_; | |
| 800 io->uv_stride = dec->cache_uv_stride_; | |
| 801 io->a = NULL; | |
| 802 } | |
| 803 | |
| 804 int VP8InitFrame(VP8Decoder* const dec, VP8Io* const io) { | |
| 805 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. | |
| 806 if (!AllocateMemory(dec)) return 0; | |
| 807 InitIo(dec, io); | |
| 808 VP8DspInit(); // Init critical function pointers and look-up tables. | |
| 809 return 1; | |
| 810 } | |
| 811 | |
| 812 //------------------------------------------------------------------------------ | |
| OLD | NEW |