| Index: pkg/analyzer/lib/src/generated/resolver.dart
|
| diff --git a/pkg/analyzer/lib/src/generated/resolver.dart b/pkg/analyzer/lib/src/generated/resolver.dart
|
| index 3c113ced4feaf4ce0f45571f2920509d5c2be858..32d24bfeaba13a37917c3c1e487b87c0ae1a0b7f 100644
|
| --- a/pkg/analyzer/lib/src/generated/resolver.dart
|
| +++ b/pkg/analyzer/lib/src/generated/resolver.dart
|
| @@ -4193,13 +4193,7 @@ class InferenceContext {
|
| return;
|
| }
|
|
|
| - if (context is FutureUnionType) {
|
| - // Try and match the Future type first.
|
| - if (_typeSystem.isSubtypeOf(inferred, context.futureOfType) ||
|
| - _typeSystem.isSubtypeOf(inferred, context.type)) {
|
| - setType(node, inferred);
|
| - }
|
| - } else if (_typeSystem.isSubtypeOf(inferred, context)) {
|
| + if (_typeSystem.isSubtypeOf(inferred, context)) {
|
| setType(node, inferred);
|
| }
|
| } else {
|
| @@ -4362,17 +4356,17 @@ class InferenceContext {
|
| static DartType getContext(AstNode node) => node?.getProperty(_typeProperty);
|
|
|
| /**
|
| - * Look for a single contextual type attached to [node], and returns the type
|
| - * if found, otherwise null.
|
| - *
|
| - * If [node] has a contextual union type like `T | Future<T>` this will
|
| - * simplify it to only return `T`. If the caller can handle a union type,
|
| - * [getContext] should be used instead.
|
| - */
|
| + * Look for a single contextual type attached to [node], and returns the type
|
| + * if found, otherwise null.
|
| + *
|
| + * If [node] has a contextual union type like `T | Future<T>` this will
|
| + * simplify it to only return `T`. If the caller can handle a union type,
|
| + * [getContext] should be used instead.
|
| + */
|
| static DartType getType(AstNode node) {
|
| DartType t = getContext(node);
|
| - if (t is FutureUnionType) {
|
| - return t.type;
|
| + if (t is InterfaceType && t.isDartAsyncFutureOr) {
|
| + return t.typeArguments[0]; // The T in FutureOr<T>
|
| }
|
| return t;
|
| }
|
| @@ -4380,15 +4374,19 @@ class InferenceContext {
|
| /**
|
| * Like [getContext] but expands a union type into a list of types.
|
| */
|
| - static Iterable<DartType> getTypes(AstNode node) {
|
| + Iterable<DartType> getTypes(AstNode node) {
|
| DartType t = getContext(node);
|
| if (t == null) {
|
| return DartType.EMPTY_LIST;
|
| }
|
| - if (t is FutureUnionType) {
|
| - return t.types;
|
| + if (t is InterfaceType && t.isDartAsyncFutureOr) {
|
| + var tArg = t.typeArguments[0]; // The T in FutureOr<T>
|
| + return [
|
| + _typeProvider.futureType.instantiate([tArg]),
|
| + tArg
|
| + ];
|
| }
|
| - return <DartType>[t];
|
| + return [t];
|
| }
|
|
|
| /**
|
| @@ -5219,22 +5217,6 @@ class ResolverVisitor extends ScopedVisitor {
|
| }
|
|
|
| /**
|
| - * Returns true if this method is `Future.then` or an override thereof.
|
| - *
|
| - * If so we will apply special typing rules in strong mode, to handle the
|
| - * implicit union of `S | Future<S>`
|
| - */
|
| - bool isFutureThen(Element element) {
|
| - // If we are a method named then
|
| - if (element is MethodElement && element.name == 'then') {
|
| - DartType type = element.enclosingElement.type;
|
| - // On Future or a subtype, then we're good.
|
| - return (type.isDartAsyncFuture || isSubtypeOfFuture(type));
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - /**
|
| * Returns true if this type is any subtype of the built in Future type.
|
| */
|
| bool isSubtypeOfFuture(DartType type) =>
|
| @@ -5536,8 +5518,7 @@ class ResolverVisitor extends ScopedVisitor {
|
| Object visitAwaitExpression(AwaitExpression node) {
|
| DartType contextType = InferenceContext.getContext(node);
|
| if (contextType != null) {
|
| - var futureUnion =
|
| - FutureUnionType.from(contextType, typeProvider, typeSystem);
|
| + var futureUnion = _createFutureOr(contextType);
|
| InferenceContext.setType(node.expression, futureUnion);
|
| }
|
| return super.visitAwaitExpression(node);
|
| @@ -6078,29 +6059,8 @@ class ResolverVisitor extends ScopedVisitor {
|
| matchFunctionTypeParameters(node.typeParameters, functionType);
|
| if (functionType is FunctionType) {
|
| _inferFormalParameterList(node.parameters, functionType);
|
| -
|
| - DartType returnType;
|
| - ParameterElement parameterElement =
|
| - resolutionMap.staticParameterElementForExpression(node);
|
| - if (isFutureThen(parameterElement?.enclosingElement)) {
|
| - var futureThenType =
|
| - InferenceContext.getContext(node.parent) as FunctionType;
|
| -
|
| - // Pretend the return type of Future<T>.then<S> first parameter is
|
| - //
|
| - // T -> (S | Future<S>)
|
| - //
|
| - // We can't represent this in Dart so we populate it here during
|
| - // inference.
|
| - var typeParamS =
|
| - futureThenType.returnType.flattenFutures(typeSystem);
|
| - returnType =
|
| - FutureUnionType.from(typeParamS, typeProvider, typeSystem);
|
| - } else {
|
| - returnType = _computeReturnOrYieldType(functionType.returnType);
|
| - }
|
| -
|
| - InferenceContext.setType(node.body, returnType);
|
| + InferenceContext.setType(
|
| + node.body, _computeReturnOrYieldType(functionType.returnType));
|
| }
|
| }
|
| super.visitFunctionExpression(node);
|
| @@ -6229,7 +6189,7 @@ class ResolverVisitor extends ScopedVisitor {
|
| // TODO(jmesserly): if we support union types for real, `new C<Ti | Tj>`
|
| // will become a valid possibility. Right now the only allowed union is
|
| // `T | Future<T>` so we can take a simple approach.
|
| - for (var contextType in InferenceContext.getTypes(node)) {
|
| + for (var contextType in inferenceContext.getTypes(node)) {
|
| if (contextType is InterfaceType &&
|
| contextType.typeArguments != null &&
|
| contextType.typeArguments.isNotEmpty) {
|
| @@ -6665,12 +6625,23 @@ class ResolverVisitor extends ScopedVisitor {
|
| }
|
| // async functions expect `Future<T> | T`
|
| var futureTypeParam = declaredType.flattenFutures(typeSystem);
|
| - return FutureUnionType.from(futureTypeParam, typeProvider, typeSystem);
|
| + return _createFutureOr(futureTypeParam);
|
| }
|
| return declaredType;
|
| }
|
|
|
| /**
|
| + * Creates a union of `T | Future<T>`, unless `T` is already a
|
| + * future-union, in which case it simply returns `T`.
|
| + */
|
| + DartType _createFutureOr(DartType type) {
|
| + if (type.isDartAsyncFutureOr) {
|
| + return type;
|
| + }
|
| + return typeProvider.futureOrType.instantiate([type]);
|
| + }
|
| +
|
| + /**
|
| * The given expression is the expression used to compute the iterator for a
|
| * for-each statement. Attempt to compute the type of objects that will be
|
| * assigned to the loop variable and return that type. Return `null` if the
|
| @@ -8295,8 +8266,23 @@ class TypeNameResolver {
|
| }
|
| DartType type = null;
|
| if (element is ClassElement) {
|
| - _setElement(typeName, element);
|
| type = element.type;
|
| + // In non-strong mode `FutureOr<T>` is treated as `dynamic`
|
| + if (!typeSystem.isStrong && type.isDartAsyncFutureOr) {
|
| + type = dynamicType;
|
| + _setElement(typeName, type.element);
|
| + typeName.staticType = type;
|
| + node.type = type;
|
| + if (argumentList != null) {
|
| + NodeList<TypeAnnotation> arguments = argumentList.arguments;
|
| + if (arguments.length != 1) {
|
| + reportErrorForNode(_getInvalidTypeParametersErrorCode(node), node,
|
| + [typeName.name, 1, arguments.length]);
|
| + }
|
| + }
|
| + return;
|
| + }
|
| + _setElement(typeName, element);
|
| } else if (element is FunctionTypeAliasElement) {
|
| _setElement(typeName, element);
|
| type = element.type;
|
|
|