| Index: src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| diff --git a/src/opts/SkBitmapFilter_opts_SSE2.cpp b/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| index 259e2efc0ecdd83a9cbc89b2ab691f2e42a7d47a..b0405669218ba635017e36d308374235eae44953 100644
|
| --- a/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| +++ b/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| @@ -5,17 +5,15 @@
|
| * found in the LICENSE file.
|
| */
|
|
|
| -#include "SkBitmapProcState.h"
|
| +#include <emmintrin.h>
|
| #include "SkBitmap.h"
|
| +#include "SkBitmapFilter_opts_SSE2.h"
|
| +#include "SkBitmapProcState.h"
|
| #include "SkColor.h"
|
| #include "SkColorPriv.h"
|
| -#include "SkUnPreMultiply.h"
|
| -#include "SkShader.h"
|
| #include "SkConvolver.h"
|
| -
|
| -#include "SkBitmapFilter_opts_SSE2.h"
|
| -
|
| -#include <emmintrin.h>
|
| +#include "SkShader.h"
|
| +#include "SkUnPreMultiply.h"
|
|
|
| #if 0
|
| static inline void print128i(__m128i value) {
|
| @@ -175,7 +173,6 @@ void highQualityFilter_ScaleOnly_SSE2(const SkBitmapProcState &s, int x, int y,
|
|
|
| s.fInvProc(s.fInvMatrix, SkIntToScalar(x),
|
| SkIntToScalar(y), &srcPt);
|
| -
|
| }
|
| }
|
|
|
| @@ -185,126 +182,126 @@ void convolveHorizontally_SSE2(const unsigned char* src_data,
|
| const SkConvolutionFilter1D& filter,
|
| unsigned char* out_row,
|
| bool /*has_alpha*/) {
|
| - int num_values = filter.numValues();
|
| -
|
| - int filter_offset, filter_length;
|
| - __m128i zero = _mm_setzero_si128();
|
| - __m128i mask[4];
|
| - // |mask| will be used to decimate all extra filter coefficients that are
|
| - // loaded by SIMD when |filter_length| is not divisible by 4.
|
| - // mask[0] is not used in following algorithm.
|
| - mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| - mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| - mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| -
|
| - // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| - for (int out_x = 0; out_x < num_values; out_x++) {
|
| - const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
|
| - filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| -
|
| - __m128i accum = _mm_setzero_si128();
|
| -
|
| - // Compute the first pixel in this row that the filter affects. It will
|
| - // touch |filter_length| pixels (4 bytes each) after this.
|
| - const __m128i* row_to_filter =
|
| - reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
| -
|
| - // We will load and accumulate with four coefficients per iteration.
|
| - for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
| -
|
| - // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
| - __m128i coeff, coeff16;
|
| - // [16] xx xx xx xx c3 c2 c1 c0
|
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| - // [16] xx xx xx xx c1 c1 c0 c0
|
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| - // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| -
|
| - // Load four pixels => unpack the first two pixels to 16 bits =>
|
| - // multiply with coefficients => accumulate the convolution result.
|
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| - __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a0*c0 b0*c0 g0*c0 r0*c0
|
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| - // [32] a1*c1 b1*c1 g1*c1 r1*c1
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| -
|
| - // Duplicate 3rd and 4th coefficients for all channels =>
|
| - // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
| - // => accumulate the convolution results.
|
| - // [16] xx xx xx xx c3 c3 c2 c2
|
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| - // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| - // [16] a3 g3 b3 r3 a2 g2 b2 r2
|
| - src16 = _mm_unpackhi_epi8(src8, zero);
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a2*c2 b2*c2 g2*c2 r2*c2
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| - // [32] a3*c3 b3*c3 g3*c3 r3*c3
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| -
|
| - // Advance the pixel and coefficients pointers.
|
| - row_to_filter += 1;
|
| - filter_values += 4;
|
| - }
|
| + int num_values = filter.numValues();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + __m128i accum = _mm_setzero_si128();
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filter_length| pixels (4 bytes each) after this.
|
| + const __m128i* row_to_filter =
|
| + reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
| +
|
| + // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
| + __m128i coeff, coeff16;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Load four pixels => unpack the first two pixels to 16 bits =>
|
| + // multiply with coefficients => accumulate the convolution result.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0*c0 b0*c0 g0*c0 r0*c0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a1*c1 b1*c1 g1*c1 r1*c1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Duplicate 3rd and 4th coefficients for all channels =>
|
| + // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
| + // => accumulate the convolution results.
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + // [16] a3 g3 b3 r3 a2 g2 b2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2*c2 b2*c2 g2*c2 r2*c2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a3*c3 b3*c3 g3*c3 r3*c3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Advance the pixel and coefficients pointers.
|
| + row_to_filter += 1;
|
| + filter_values += 4;
|
| + }
|
|
|
| - // When |filter_length| is not divisible by 4, we need to decimate some of
|
| - // the filter coefficient that was loaded incorrectly to zero; Other than
|
| - // that the algorithm is same with above, exceot that the 4th pixel will be
|
| - // always absent.
|
| - int r = filter_length&3;
|
| - if (r) {
|
| - // Note: filter_values must be padded to align_up(filter_offset, 8).
|
| - __m128i coeff, coeff16;
|
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| - // Mask out extra filter taps.
|
| - coeff = _mm_and_si128(coeff, mask[r]);
|
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| -
|
| - // Note: line buffer must be padded to align_up(filter_offset, 16).
|
| - // We resolve this by use C-version for the last horizontal line.
|
| - __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| -
|
| - src16 = _mm_unpackhi_epi8(src8, zero);
|
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum = _mm_add_epi32(accum, t);
|
| - }
|
| + // When |filter_length| is not divisible by 4, we need to decimate some of
|
| + // the filter coefficient that was loaded incorrectly to zero; Other than
|
| + // that the algorithm is same with above, exceot that the 4th pixel will be
|
| + // always absent.
|
| + int r = filter_length&3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8).
|
| + __m128i coeff, coeff16;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Note: line buffer must be padded to align_up(filter_offset, 16).
|
| + // We resolve this by use C-version for the last horizontal line.
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + }
|
|
|
| - // Shift right for fixed point implementation.
|
| - accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);
|
| + // Shift right for fixed point implementation.
|
| + accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);
|
|
|
| - // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| - accum = _mm_packs_epi32(accum, zero);
|
| - // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| - accum = _mm_packus_epi16(accum, zero);
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + accum = _mm_packs_epi32(accum, zero);
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + accum = _mm_packus_epi16(accum, zero);
|
|
|
| - // Store the pixel value of 32 bits.
|
| - *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
| - out_row += 4;
|
| - }
|
| + // Store the pixel value of 32 bits.
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
| + out_row += 4;
|
| + }
|
| }
|
|
|
| // Convolves horizontally along four rows. The row data is given in
|
| @@ -314,116 +311,116 @@ void convolveHorizontally_SSE2(const unsigned char* src_data,
|
| void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
|
| const SkConvolutionFilter1D& filter,
|
| unsigned char* out_row[4]) {
|
| - int num_values = filter.numValues();
|
| -
|
| - int filter_offset, filter_length;
|
| - __m128i zero = _mm_setzero_si128();
|
| - __m128i mask[4];
|
| - // |mask| will be used to decimate all extra filter coefficients that are
|
| - // loaded by SIMD when |filter_length| is not divisible by 4.
|
| - // mask[0] is not used in following algorithm.
|
| - mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| - mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| - mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| -
|
| - // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| - for (int out_x = 0; out_x < num_values; out_x++) {
|
| - const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
|
| - filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| -
|
| - // four pixels in a column per iteration.
|
| - __m128i accum0 = _mm_setzero_si128();
|
| - __m128i accum1 = _mm_setzero_si128();
|
| - __m128i accum2 = _mm_setzero_si128();
|
| - __m128i accum3 = _mm_setzero_si128();
|
| - int start = (filter_offset<<2);
|
| - // We will load and accumulate with four coefficients per iteration.
|
| - for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
| - __m128i coeff, coeff16lo, coeff16hi;
|
| - // [16] xx xx xx xx c3 c2 c1 c0
|
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| - // [16] xx xx xx xx c1 c1 c0 c0
|
| - coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| - // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| - coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| - // [16] xx xx xx xx c3 c3 c2 c2
|
| - coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| - // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| - coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| -
|
| - __m128i src8, src16, mul_hi, mul_lo, t;
|
| -
|
| -#define ITERATION(src, accum) \
|
| - src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
| - src16 = _mm_unpacklo_epi8(src8, zero); \
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| - accum = _mm_add_epi32(accum, t); \
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| - accum = _mm_add_epi32(accum, t); \
|
| - src16 = _mm_unpackhi_epi8(src8, zero); \
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| - accum = _mm_add_epi32(accum, t); \
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| - accum = _mm_add_epi32(accum, t)
|
| -
|
| - ITERATION(src_data[0] + start, accum0);
|
| - ITERATION(src_data[1] + start, accum1);
|
| - ITERATION(src_data[2] + start, accum2);
|
| - ITERATION(src_data[3] + start, accum3);
|
| -
|
| - start += 16;
|
| - filter_values += 4;
|
| - }
|
| + int num_values = filter.numValues();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + // four pixels in a column per iteration.
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + __m128i accum3 = _mm_setzero_si128();
|
| + int start = (filter_offset<<2);
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
| + __m128i coeff, coeff16lo, coeff16hi;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| +#define ITERATION(src, accum) \
|
| + src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
| + src16 = _mm_unpacklo_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + src16 = _mm_unpackhi_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t)
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filter_values += 4;
|
| + }
|
|
|
| - int r = filter_length & 3;
|
| - if (r) {
|
| - // Note: filter_values must be padded to align_up(filter_offset, 8);
|
| - __m128i coeff;
|
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| - // Mask out extra filter taps.
|
| - coeff = _mm_and_si128(coeff, mask[r]);
|
| -
|
| - __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| - /* c1 c1 c1 c1 c0 c0 c0 c0 */
|
| - coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| - __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| - coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| -
|
| - __m128i src8, src16, mul_hi, mul_lo, t;
|
| -
|
| - ITERATION(src_data[0] + start, accum0);
|
| - ITERATION(src_data[1] + start, accum1);
|
| - ITERATION(src_data[2] + start, accum2);
|
| - ITERATION(src_data[3] + start, accum3);
|
| - }
|
| + int r = filter_length & 3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8);
|
| + __m128i coeff;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| +
|
| + __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + /* c1 c1 c1 c1 c0 c0 c0 c0 */
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| + }
|
|
|
| - accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| - accum0 = _mm_packs_epi32(accum0, zero);
|
| - accum0 = _mm_packus_epi16(accum0, zero);
|
| - accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| - accum1 = _mm_packs_epi32(accum1, zero);
|
| - accum1 = _mm_packus_epi16(accum1, zero);
|
| - accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| - accum2 = _mm_packs_epi32(accum2, zero);
|
| - accum2 = _mm_packus_epi16(accum2, zero);
|
| - accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| - accum3 = _mm_packs_epi32(accum3, zero);
|
| - accum3 = _mm_packus_epi16(accum3, zero);
|
| -
|
| - *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
| - *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
| - *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
| - *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
| -
|
| - out_row[0] += 4;
|
| - out_row[1] += 4;
|
| - out_row[2] += 4;
|
| - out_row[3] += 4;
|
| - }
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum0 = _mm_packs_epi32(accum0, zero);
|
| + accum0 = _mm_packus_epi16(accum0, zero);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_packs_epi32(accum1, zero);
|
| + accum1 = _mm_packus_epi16(accum1, zero);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + accum2 = _mm_packus_epi16(accum2, zero);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_packs_epi32(accum3, zero);
|
| + accum3 = _mm_packus_epi16(accum3, zero);
|
| +
|
| + *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
| + *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
| + *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
| + *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
| +
|
| + out_row[0] += 4;
|
| + out_row[1] += 4;
|
| + out_row[2] += 4;
|
| + out_row[3] += 4;
|
| + }
|
| }
|
|
|
| // Does vertical convolution to produce one output row. The filter values and
|
| @@ -438,166 +435,166 @@ void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filt
|
| unsigned char* const* source_data_rows,
|
| int pixel_width,
|
| unsigned char* out_row) {
|
| - int width = pixel_width & ~3;
|
| -
|
| - __m128i zero = _mm_setzero_si128();
|
| - __m128i accum0, accum1, accum2, accum3, coeff16;
|
| - const __m128i* src;
|
| - // Output four pixels per iteration (16 bytes).
|
| - for (int out_x = 0; out_x < width; out_x += 4) {
|
| -
|
| - // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| - accum0 = _mm_setzero_si128();
|
| - accum1 = _mm_setzero_si128();
|
| - accum2 = _mm_setzero_si128();
|
| - accum3 = _mm_setzero_si128();
|
| -
|
| - // Convolve with one filter coefficient per iteration.
|
| - for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| -
|
| - // Duplicate the filter coefficient 8 times.
|
| - // [16] cj cj cj cj cj cj cj cj
|
| - coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| -
|
| - // Load four pixels (16 bytes) together.
|
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| - src = reinterpret_cast<const __m128i*>(
|
| - &source_data_rows[filter_y][out_x << 2]);
|
| - __m128i src8 = _mm_loadu_si128(src);
|
| -
|
| - // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
| - // multiply with current coefficient => accumulate the result.
|
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a0 b0 g0 r0
|
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum0 = _mm_add_epi32(accum0, t);
|
| - // [32] a1 b1 g1 r1
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum1 = _mm_add_epi32(accum1, t);
|
| -
|
| - // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
| - // multiply with current coefficient => accumulate the result.
|
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| - src16 = _mm_unpackhi_epi8(src8, zero);
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a2 b2 g2 r2
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum2 = _mm_add_epi32(accum2, t);
|
| - // [32] a3 b3 g3 r3
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum3 = _mm_add_epi32(accum3, t);
|
| - }
|
| -
|
| - // Shift right for fixed point implementation.
|
| - accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| - accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| - accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| - accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| -
|
| - // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| - accum0 = _mm_packs_epi32(accum0, accum1);
|
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| - accum2 = _mm_packs_epi32(accum2, accum3);
|
| + int width = pixel_width & ~3;
|
| +
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i accum0, accum1, accum2, accum3, coeff16;
|
| + const __m128i* src;
|
| + // Output four pixels per iteration (16 bytes).
|
| + for (int out_x = 0; out_x < width; out_x += 4) {
|
| +
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + accum3 = _mm_setzero_si128();
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| +
|
| + // Duplicate the filter coefficient 8 times.
|
| + // [16] cj cj cj cj cj cj cj cj
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][out_x << 2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| +
|
| + // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| +
|
| + // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + // [32] a3 b3 g3 r3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum3 = _mm_add_epi32(accum3, t);
|
| + }
|
|
|
| - // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| - accum0 = _mm_packus_epi16(accum0, accum2);
|
| + // Shift right for fixed point implementation.
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, accum3);
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| +
|
| + if (has_alpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
|
|
| - if (has_alpha) {
|
| - // Compute the max(ri, gi, bi) for each pixel.
|
| - // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| - __m128i a = _mm_srli_epi32(accum0, 8);
|
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| - __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| - // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| - a = _mm_srli_epi32(accum0, 16);
|
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| - b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| - // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| - b = _mm_slli_epi32(b, 24);
|
| -
|
| - // Make sure the value of alpha channel is always larger than maximum
|
| - // value of color channels.
|
| - accum0 = _mm_max_epu8(b, accum0);
|
| - } else {
|
| - // Set value of alpha channels to 0xFF.
|
| - __m128i mask = _mm_set1_epi32(0xff000000);
|
| - accum0 = _mm_or_si128(accum0, mask);
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
| + out_row += 16;
|
| }
|
|
|
| - // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| - _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
| - out_row += 16;
|
| - }
|
| -
|
| - // When the width of the output is not divisible by 4, We need to save one
|
| - // pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
| - if (pixel_width & 3) {
|
| - accum0 = _mm_setzero_si128();
|
| - accum1 = _mm_setzero_si128();
|
| - accum2 = _mm_setzero_si128();
|
| - for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
| - coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| - src = reinterpret_cast<const __m128i*>(
|
| - &source_data_rows[filter_y][width<<2]);
|
| - __m128i src8 = _mm_loadu_si128(src);
|
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a0 b0 g0 r0
|
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum0 = _mm_add_epi32(accum0, t);
|
| - // [32] a1 b1 g1 r1
|
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| - accum1 = _mm_add_epi32(accum1, t);
|
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| - src16 = _mm_unpackhi_epi8(src8, zero);
|
| - mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| - mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| - // [32] a2 b2 g2 r2
|
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| - accum2 = _mm_add_epi32(accum2, t);
|
| - }
|
| + // When the width of the output is not divisible by 4, We need to save one
|
| + // pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
| + if (pixel_width & 3) {
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][width<<2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + }
|
|
|
| - accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| - accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| - accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| - accum0 = _mm_packs_epi32(accum0, accum1);
|
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| - accum2 = _mm_packs_epi32(accum2, zero);
|
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| - accum0 = _mm_packus_epi16(accum0, accum2);
|
| - if (has_alpha) {
|
| - // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| - __m128i a = _mm_srli_epi32(accum0, 8);
|
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| - __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| - // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| - a = _mm_srli_epi32(accum0, 16);
|
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| - b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| - // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| - b = _mm_slli_epi32(b, 24);
|
| - accum0 = _mm_max_epu8(b, accum0);
|
| - } else {
|
| - __m128i mask = _mm_set1_epi32(0xff000000);
|
| - accum0 = _mm_or_si128(accum0, mask);
|
| - }
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| + if (has_alpha) {
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
|
|
| - for (int out_x = width; out_x < pixel_width; out_x++) {
|
| - *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
| - accum0 = _mm_srli_si128(accum0, 4);
|
| - out_row += 4;
|
| + for (int out_x = width; out_x < pixel_width; out_x++) {
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
| + accum0 = _mm_srli_si128(accum0, 4);
|
| + out_row += 4;
|
| + }
|
| }
|
| - }
|
| }
|
|
|
| void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values,
|
| @@ -606,19 +603,19 @@ void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filt
|
| int pixel_width,
|
| unsigned char* out_row,
|
| bool has_alpha) {
|
| - if (has_alpha) {
|
| - convolveVertically_SSE2<true>(filter_values,
|
| - filter_length,
|
| - source_data_rows,
|
| - pixel_width,
|
| - out_row);
|
| - } else {
|
| - convolveVertically_SSE2<false>(filter_values,
|
| - filter_length,
|
| - source_data_rows,
|
| - pixel_width,
|
| - out_row);
|
| - }
|
| + if (has_alpha) {
|
| + convolveVertically_SSE2<true>(filter_values,
|
| + filter_length,
|
| + source_data_rows,
|
| + pixel_width,
|
| + out_row);
|
| + } else {
|
| + convolveVertically_SSE2<false>(filter_values,
|
| + filter_length,
|
| + source_data_rows,
|
| + pixel_width,
|
| + out_row);
|
| + }
|
| }
|
|
|
| void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) {
|
|
|