| Index: src/arm64/simulator-arm64.h
|
| diff --git a/src/arm64/simulator-arm64.h b/src/arm64/simulator-arm64.h
|
| index 3016e616e4df8b8d1c41bba8df303f8a0c851125..918f0e96de31d5dc31d4503be1902874957adbae 100644
|
| --- a/src/arm64/simulator-arm64.h
|
| +++ b/src/arm64/simulator-arm64.h
|
| @@ -70,6 +70,239 @@ class SimulatorStack : public v8::internal::AllStatic {
|
|
|
| #else // !defined(USE_SIMULATOR)
|
|
|
| +// Assemble the specified IEEE-754 components into the target type and apply
|
| +// appropriate rounding.
|
| +// sign: 0 = positive, 1 = negative
|
| +// exponent: Unbiased IEEE-754 exponent.
|
| +// mantissa: The mantissa of the input. The top bit (which is not encoded for
|
| +// normal IEEE-754 values) must not be omitted. This bit has the
|
| +// value 'pow(2, exponent)'.
|
| +//
|
| +// The input value is assumed to be a normalized value. That is, the input may
|
| +// not be infinity or NaN. If the source value is subnormal, it must be
|
| +// normalized before calling this function such that the highest set bit in the
|
| +// mantissa has the value 'pow(2, exponent)'.
|
| +//
|
| +// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
|
| +// calling a templated FPRound.
|
| +template <class T, int ebits, int mbits>
|
| +T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
|
| + FPRounding round_mode) {
|
| + static_assert((sizeof(T) * 8) >= (1 + ebits + mbits),
|
| + "destination type T not large enough");
|
| + static_assert(sizeof(T) <= sizeof(uint64_t),
|
| + "maximum size of destination type T is 64 bits");
|
| + static_assert(std::is_unsigned<T>::value,
|
| + "destination type T must be unsigned");
|
| +
|
| + DCHECK((sign == 0) || (sign == 1));
|
| +
|
| + // Only FPTieEven and FPRoundOdd rounding modes are implemented.
|
| + DCHECK((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
|
| +
|
| + // Rounding can promote subnormals to normals, and normals to infinities. For
|
| + // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
|
| + // encodable as a float, but rounding based on the low-order mantissa bits
|
| + // could make it overflow. With ties-to-even rounding, this value would become
|
| + // an infinity.
|
| +
|
| + // ---- Rounding Method ----
|
| + //
|
| + // The exponent is irrelevant in the rounding operation, so we treat the
|
| + // lowest-order bit that will fit into the result ('onebit') as having
|
| + // the value '1'. Similarly, the highest-order bit that won't fit into
|
| + // the result ('halfbit') has the value '0.5'. The 'point' sits between
|
| + // 'onebit' and 'halfbit':
|
| + //
|
| + // These bits fit into the result.
|
| + // |---------------------|
|
| + // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
| + // ||
|
| + // / |
|
| + // / halfbit
|
| + // onebit
|
| + //
|
| + // For subnormal outputs, the range of representable bits is smaller and
|
| + // the position of onebit and halfbit depends on the exponent of the
|
| + // input, but the method is otherwise similar.
|
| + //
|
| + // onebit(frac)
|
| + // |
|
| + // | halfbit(frac) halfbit(adjusted)
|
| + // | / /
|
| + // | | |
|
| + // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
|
| + // 0b00.0... -> 0b00.0... -> 0b00
|
| + // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
|
| + // 0b00.1... -> 0b00.1... -> 0b01
|
| + // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
|
| + // 0b01.0... -> 0b01.0... -> 0b01
|
| + // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
|
| + // 0b01.1... -> 0b01.1... -> 0b10
|
| + // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
|
| + // 0b10.0... -> 0b10.0... -> 0b10
|
| + // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
|
| + // 0b10.1... -> 0b10.1... -> 0b11
|
| + // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
|
| + // ... / | / |
|
| + // / | / |
|
| + // / |
|
| + // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
|
| + //
|
| + // mantissa = (mantissa >> shift) + halfbit(adjusted);
|
| +
|
| + const int mantissa_offset = 0;
|
| + const int exponent_offset = mantissa_offset + mbits;
|
| + const int sign_offset = exponent_offset + ebits;
|
| + DCHECK_EQ(sign_offset, static_cast<int>(sizeof(T) * 8 - 1));
|
| +
|
| + // Bail out early for zero inputs.
|
| + if (mantissa == 0) {
|
| + return static_cast<T>(sign << sign_offset);
|
| + }
|
| +
|
| + // If all bits in the exponent are set, the value is infinite or NaN.
|
| + // This is true for all binary IEEE-754 formats.
|
| + const int infinite_exponent = (1 << ebits) - 1;
|
| + const int max_normal_exponent = infinite_exponent - 1;
|
| +
|
| + // Apply the exponent bias to encode it for the result. Doing this early makes
|
| + // it easy to detect values that will be infinite or subnormal.
|
| + exponent += max_normal_exponent >> 1;
|
| +
|
| + if (exponent > max_normal_exponent) {
|
| + // Overflow: the input is too large for the result type to represent.
|
| + if (round_mode == FPTieEven) {
|
| + // FPTieEven rounding mode handles overflows using infinities.
|
| + exponent = infinite_exponent;
|
| + mantissa = 0;
|
| + } else {
|
| + DCHECK_EQ(round_mode, FPRoundOdd);
|
| + // FPRoundOdd rounding mode handles overflows using the largest magnitude
|
| + // normal number.
|
| + exponent = max_normal_exponent;
|
| + mantissa = (UINT64_C(1) << exponent_offset) - 1;
|
| + }
|
| + return static_cast<T>((sign << sign_offset) |
|
| + (exponent << exponent_offset) |
|
| + (mantissa << mantissa_offset));
|
| + }
|
| +
|
| + // Calculate the shift required to move the top mantissa bit to the proper
|
| + // place in the destination type.
|
| + const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
|
| + int shift = highest_significant_bit - mbits;
|
| +
|
| + if (exponent <= 0) {
|
| + // The output will be subnormal (before rounding).
|
| + // For subnormal outputs, the shift must be adjusted by the exponent. The +1
|
| + // is necessary because the exponent of a subnormal value (encoded as 0) is
|
| + // the same as the exponent of the smallest normal value (encoded as 1).
|
| + shift += -exponent + 1;
|
| +
|
| + // Handle inputs that would produce a zero output.
|
| + //
|
| + // Shifts higher than highest_significant_bit+1 will always produce a zero
|
| + // result. A shift of exactly highest_significant_bit+1 might produce a
|
| + // non-zero result after rounding.
|
| + if (shift > (highest_significant_bit + 1)) {
|
| + if (round_mode == FPTieEven) {
|
| + // The result will always be +/-0.0.
|
| + return static_cast<T>(sign << sign_offset);
|
| + } else {
|
| + DCHECK_EQ(round_mode, FPRoundOdd);
|
| + DCHECK_NE(mantissa, 0U);
|
| + // For FPRoundOdd, if the mantissa is too small to represent and
|
| + // non-zero return the next "odd" value.
|
| + return static_cast<T>((sign << sign_offset) | 1);
|
| + }
|
| + }
|
| +
|
| + // Properly encode the exponent for a subnormal output.
|
| + exponent = 0;
|
| + } else {
|
| + // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
|
| + // normal values.
|
| + mantissa &= ~(UINT64_C(1) << highest_significant_bit);
|
| + }
|
| +
|
| + if (shift > 0) {
|
| + if (round_mode == FPTieEven) {
|
| + // We have to shift the mantissa to the right. Some precision is lost, so
|
| + // we need to apply rounding.
|
| + uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
|
| + uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
|
| + uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
|
| + uint64_t adjusted = mantissa - adjustment;
|
| + T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;
|
| +
|
| + T result =
|
| + static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
|
| + ((mantissa >> shift) << mantissa_offset));
|
| +
|
| + // A very large mantissa can overflow during rounding. If this happens,
|
| + // the exponent should be incremented and the mantissa set to 1.0
|
| + // (encoded as 0). Applying halfbit_adjusted after assembling the float
|
| + // has the nice side-effect that this case is handled for free.
|
| + //
|
| + // This also handles cases where a very large finite value overflows to
|
| + // infinity, or where a very large subnormal value overflows to become
|
| + // normal.
|
| + return result + halfbit_adjusted;
|
| + } else {
|
| + DCHECK_EQ(round_mode, FPRoundOdd);
|
| + // If any bits at position halfbit or below are set, onebit (ie. the
|
| + // bottom bit of the resulting mantissa) must be set.
|
| + uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
|
| + if (fractional_bits != 0) {
|
| + mantissa |= UINT64_C(1) << shift;
|
| + }
|
| +
|
| + return static_cast<T>((sign << sign_offset) |
|
| + (exponent << exponent_offset) |
|
| + ((mantissa >> shift) << mantissa_offset));
|
| + }
|
| + } else {
|
| + // We have to shift the mantissa to the left (or not at all). The input
|
| + // mantissa is exactly representable in the output mantissa, so apply no
|
| + // rounding correction.
|
| + return static_cast<T>((sign << sign_offset) |
|
| + (exponent << exponent_offset) |
|
| + ((mantissa << -shift) << mantissa_offset));
|
| + }
|
| +}
|
| +
|
| +// Representation of memory, with typed getters and setters for access.
|
| +class SimMemory {
|
| + public:
|
| + template <typename T>
|
| + static T AddressUntag(T address) {
|
| + // Cast the address using a C-style cast. A reinterpret_cast would be
|
| + // appropriate, but it can't cast one integral type to another.
|
| + uint64_t bits = (uint64_t)address;
|
| + return (T)(bits & ~kAddressTagMask);
|
| + }
|
| +
|
| + template <typename T, typename A>
|
| + static T Read(A address) {
|
| + T value;
|
| + address = AddressUntag(address);
|
| + DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) ||
|
| + (sizeof(value) == 4) || (sizeof(value) == 8) ||
|
| + (sizeof(value) == 16));
|
| + memcpy(&value, reinterpret_cast<const char*>(address), sizeof(value));
|
| + return value;
|
| + }
|
| +
|
| + template <typename T, typename A>
|
| + static void Write(A address, T value) {
|
| + address = AddressUntag(address);
|
| + DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) ||
|
| + (sizeof(value) == 4) || (sizeof(value) == 8) ||
|
| + (sizeof(value) == 16));
|
| + memcpy(reinterpret_cast<char*>(address), &value, sizeof(value));
|
| + }
|
| +};
|
|
|
| // The proper way to initialize a simulated system register (such as NZCV) is as
|
| // follows:
|
| @@ -125,29 +358,330 @@ class SimSystemRegister {
|
|
|
|
|
| // Represent a register (r0-r31, v0-v31).
|
| +template <int kSizeInBytes>
|
| class SimRegisterBase {
|
| public:
|
| template<typename T>
|
| void Set(T new_value) {
|
| - value_ = 0;
|
| + static_assert(sizeof(new_value) <= kSizeInBytes,
|
| + "Size of new_value must be <= size of template type.");
|
| + if (sizeof(new_value) < kSizeInBytes) {
|
| + // All AArch64 registers are zero-extending.
|
| + memset(value_ + sizeof(new_value), 0, kSizeInBytes - sizeof(new_value));
|
| + }
|
| memcpy(&value_, &new_value, sizeof(T));
|
| + NotifyRegisterWrite();
|
| }
|
|
|
| - template<typename T>
|
| - T Get() const {
|
| + // Insert a typed value into a register, leaving the rest of the register
|
| + // unchanged. The lane parameter indicates where in the register the value
|
| + // should be inserted, in the range [ 0, sizeof(value_) / sizeof(T) ), where
|
| + // 0 represents the least significant bits.
|
| + template <typename T>
|
| + void Insert(int lane, T new_value) {
|
| + DCHECK_GE(lane, 0);
|
| + DCHECK_LE(sizeof(new_value) + (lane * sizeof(new_value)),
|
| + static_cast<unsigned>(kSizeInBytes));
|
| + memcpy(&value_[lane * sizeof(new_value)], &new_value, sizeof(new_value));
|
| + NotifyRegisterWrite();
|
| + }
|
| +
|
| + template <typename T>
|
| + T Get(int lane = 0) const {
|
| T result;
|
| - memcpy(&result, &value_, sizeof(T));
|
| + DCHECK_GE(lane, 0);
|
| + DCHECK_LE(sizeof(result) + (lane * sizeof(result)),
|
| + static_cast<unsigned>(kSizeInBytes));
|
| + memcpy(&result, &value_[lane * sizeof(result)], sizeof(result));
|
| return result;
|
| }
|
|
|
| + // TODO(all): Make this return a map of updated bytes, so that we can
|
| + // highlight updated lanes for load-and-insert. (That never happens for scalar
|
| + // code, but NEON has some instructions that can update individual lanes.)
|
| + bool WrittenSinceLastLog() const { return written_since_last_log_; }
|
| +
|
| + void NotifyRegisterLogged() { written_since_last_log_ = false; }
|
| +
|
| protected:
|
| - int64_t value_;
|
| + uint8_t value_[kSizeInBytes];
|
| +
|
| + // Helpers to aid with register tracing.
|
| + bool written_since_last_log_;
|
| +
|
| + void NotifyRegisterWrite() { written_since_last_log_ = true; }
|
| };
|
|
|
| +typedef SimRegisterBase<kXRegSize> SimRegister; // r0-r31
|
| +typedef SimRegisterBase<kQRegSize> SimVRegister; // v0-v31
|
| +
|
| +// Representation of a vector register, with typed getters and setters for lanes
|
| +// and additional information to represent lane state.
|
| +class LogicVRegister {
|
| + public:
|
| + inline LogicVRegister(SimVRegister& other) // NOLINT
|
| + : register_(other) {
|
| + for (unsigned i = 0; i < arraysize(saturated_); i++) {
|
| + saturated_[i] = kNotSaturated;
|
| + }
|
| + for (unsigned i = 0; i < arraysize(round_); i++) {
|
| + round_[i] = false;
|
| + }
|
| + }
|
| +
|
| + int64_t Int(VectorFormat vform, int index) const {
|
| + int64_t element;
|
| + switch (LaneSizeInBitsFromFormat(vform)) {
|
| + case 8:
|
| + element = register_.Get<int8_t>(index);
|
| + break;
|
| + case 16:
|
| + element = register_.Get<int16_t>(index);
|
| + break;
|
| + case 32:
|
| + element = register_.Get<int32_t>(index);
|
| + break;
|
| + case 64:
|
| + element = register_.Get<int64_t>(index);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + return 0;
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + uint64_t Uint(VectorFormat vform, int index) const {
|
| + uint64_t element;
|
| + switch (LaneSizeInBitsFromFormat(vform)) {
|
| + case 8:
|
| + element = register_.Get<uint8_t>(index);
|
| + break;
|
| + case 16:
|
| + element = register_.Get<uint16_t>(index);
|
| + break;
|
| + case 32:
|
| + element = register_.Get<uint32_t>(index);
|
| + break;
|
| + case 64:
|
| + element = register_.Get<uint64_t>(index);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + return 0;
|
| + }
|
| + return element;
|
| + }
|
| +
|
| + uint64_t UintLeftJustified(VectorFormat vform, int index) const {
|
| + return Uint(vform, index) << (64 - LaneSizeInBitsFromFormat(vform));
|
| + }
|
| +
|
| + int64_t IntLeftJustified(VectorFormat vform, int index) const {
|
| + uint64_t value = UintLeftJustified(vform, index);
|
| + int64_t result;
|
| + memcpy(&result, &value, sizeof(result));
|
| + return result;
|
| + }
|
| +
|
| + void SetInt(VectorFormat vform, int index, int64_t value) const {
|
| + switch (LaneSizeInBitsFromFormat(vform)) {
|
| + case 8:
|
| + register_.Insert(index, static_cast<int8_t>(value));
|
| + break;
|
| + case 16:
|
| + register_.Insert(index, static_cast<int16_t>(value));
|
| + break;
|
| + case 32:
|
| + register_.Insert(index, static_cast<int32_t>(value));
|
| + break;
|
| + case 64:
|
| + register_.Insert(index, static_cast<int64_t>(value));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + return;
|
| + }
|
| + }
|
| +
|
| + void SetIntArray(VectorFormat vform, const int64_t* src) const {
|
| + ClearForWrite(vform);
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + SetInt(vform, i, src[i]);
|
| + }
|
| + }
|
| +
|
| + void SetUint(VectorFormat vform, int index, uint64_t value) const {
|
| + switch (LaneSizeInBitsFromFormat(vform)) {
|
| + case 8:
|
| + register_.Insert(index, static_cast<uint8_t>(value));
|
| + break;
|
| + case 16:
|
| + register_.Insert(index, static_cast<uint16_t>(value));
|
| + break;
|
| + case 32:
|
| + register_.Insert(index, static_cast<uint32_t>(value));
|
| + break;
|
| + case 64:
|
| + register_.Insert(index, static_cast<uint64_t>(value));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + return;
|
| + }
|
| + }
|
| +
|
| + void SetUintArray(VectorFormat vform, const uint64_t* src) const {
|
| + ClearForWrite(vform);
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + SetUint(vform, i, src[i]);
|
| + }
|
| + }
|
| +
|
| + void ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const;
|
| +
|
| + void WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const;
|
| +
|
| + template <typename T>
|
| + T Float(int index) const {
|
| + return register_.Get<T>(index);
|
| + }
|
| +
|
| + template <typename T>
|
| + void SetFloat(int index, T value) const {
|
| + register_.Insert(index, value);
|
| + }
|
| +
|
| + // When setting a result in a register of size less than Q, the top bits of
|
| + // the Q register must be cleared.
|
| + void ClearForWrite(VectorFormat vform) const {
|
| + unsigned size = RegisterSizeInBytesFromFormat(vform);
|
| + for (unsigned i = size; i < kQRegSize; i++) {
|
| + SetUint(kFormat16B, i, 0);
|
| + }
|
| + }
|
|
|
| -typedef SimRegisterBase SimRegister; // r0-r31
|
| -typedef SimRegisterBase SimFPRegister; // v0-v31
|
| + // Saturation state for each lane of a vector.
|
| + enum Saturation {
|
| + kNotSaturated = 0,
|
| + kSignedSatPositive = 1 << 0,
|
| + kSignedSatNegative = 1 << 1,
|
| + kSignedSatMask = kSignedSatPositive | kSignedSatNegative,
|
| + kSignedSatUndefined = kSignedSatMask,
|
| + kUnsignedSatPositive = 1 << 2,
|
| + kUnsignedSatNegative = 1 << 3,
|
| + kUnsignedSatMask = kUnsignedSatPositive | kUnsignedSatNegative,
|
| + kUnsignedSatUndefined = kUnsignedSatMask
|
| + };
|
| +
|
| + // Getters for saturation state.
|
| + Saturation GetSignedSaturation(int index) {
|
| + return static_cast<Saturation>(saturated_[index] & kSignedSatMask);
|
| + }
|
| +
|
| + Saturation GetUnsignedSaturation(int index) {
|
| + return static_cast<Saturation>(saturated_[index] & kUnsignedSatMask);
|
| + }
|
| +
|
| + // Setters for saturation state.
|
| + void ClearSat(int index) { saturated_[index] = kNotSaturated; }
|
| +
|
| + void SetSignedSat(int index, bool positive) {
|
| + SetSatFlag(index, positive ? kSignedSatPositive : kSignedSatNegative);
|
| + }
|
|
|
| + void SetUnsignedSat(int index, bool positive) {
|
| + SetSatFlag(index, positive ? kUnsignedSatPositive : kUnsignedSatNegative);
|
| + }
|
| +
|
| + void SetSatFlag(int index, Saturation sat) {
|
| + saturated_[index] = static_cast<Saturation>(saturated_[index] | sat);
|
| + DCHECK_NE(sat & kUnsignedSatMask, kUnsignedSatUndefined);
|
| + DCHECK_NE(sat & kSignedSatMask, kSignedSatUndefined);
|
| + }
|
| +
|
| + // Saturate lanes of a vector based on saturation state.
|
| + LogicVRegister& SignedSaturate(VectorFormat vform) {
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + Saturation sat = GetSignedSaturation(i);
|
| + if (sat == kSignedSatPositive) {
|
| + SetInt(vform, i, MaxIntFromFormat(vform));
|
| + } else if (sat == kSignedSatNegative) {
|
| + SetInt(vform, i, MinIntFromFormat(vform));
|
| + }
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + LogicVRegister& UnsignedSaturate(VectorFormat vform) {
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + Saturation sat = GetUnsignedSaturation(i);
|
| + if (sat == kUnsignedSatPositive) {
|
| + SetUint(vform, i, MaxUintFromFormat(vform));
|
| + } else if (sat == kUnsignedSatNegative) {
|
| + SetUint(vform, i, 0);
|
| + }
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + // Getter for rounding state.
|
| + bool GetRounding(int index) { return round_[index]; }
|
| +
|
| + // Setter for rounding state.
|
| + void SetRounding(int index, bool round) { round_[index] = round; }
|
| +
|
| + // Round lanes of a vector based on rounding state.
|
| + LogicVRegister& Round(VectorFormat vform) {
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + SetUint(vform, i, Uint(vform, i) + (GetRounding(i) ? 1 : 0));
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + // Unsigned halve lanes of a vector, and use the saturation state to set the
|
| + // top bit.
|
| + LogicVRegister& Uhalve(VectorFormat vform) {
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + uint64_t val = Uint(vform, i);
|
| + SetRounding(i, (val & 1) == 1);
|
| + val >>= 1;
|
| + if (GetUnsignedSaturation(i) != kNotSaturated) {
|
| + // If the operation causes unsigned saturation, the bit shifted into the
|
| + // most significant bit must be set.
|
| + val |= (MaxUintFromFormat(vform) >> 1) + 1;
|
| + }
|
| + SetInt(vform, i, val);
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + // Signed halve lanes of a vector, and use the carry state to set the top bit.
|
| + LogicVRegister& Halve(VectorFormat vform) {
|
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
| + int64_t val = Int(vform, i);
|
| + SetRounding(i, (val & 1) == 1);
|
| + val >>= 1;
|
| + if (GetSignedSaturation(i) != kNotSaturated) {
|
| + // If the operation causes signed saturation, the sign bit must be
|
| + // inverted.
|
| + val ^= (MaxUintFromFormat(vform) >> 1) + 1;
|
| + }
|
| + SetInt(vform, i, val);
|
| + }
|
| + return *this;
|
| + }
|
| +
|
| + private:
|
| + SimVRegister& register_;
|
| +
|
| + // Allocate one saturation state entry per lane; largest register is type Q,
|
| + // and lanes can be a minimum of one byte wide.
|
| + Saturation saturated_[kQRegSize];
|
| +
|
| + // Allocate one rounding state entry per lane.
|
| + bool round_[kQRegSize];
|
| +};
|
|
|
| class Simulator : public DecoderVisitor {
|
| public:
|
| @@ -315,6 +849,7 @@ class Simulator : public DecoderVisitor {
|
| CheckBreakNext();
|
| Decode(pc_);
|
| increment_pc();
|
| + LogAllWrittenRegisters();
|
| CheckBreakpoints();
|
| }
|
|
|
| @@ -333,7 +868,7 @@ class Simulator : public DecoderVisitor {
|
| //
|
| template<typename T>
|
| T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
|
| - DCHECK(code < kNumberOfRegisters);
|
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
|
| if (IsZeroRegister(code, r31mode)) {
|
| return 0;
|
| }
|
| @@ -349,6 +884,8 @@ class Simulator : public DecoderVisitor {
|
| return reg<int64_t>(code, r31mode);
|
| }
|
|
|
| + enum RegLogMode { LogRegWrites, NoRegLog };
|
| +
|
| // Write 'value' into an integer register. The value is zero-extended. This
|
| // behaviour matches AArch64 register writes.
|
| template<typename T>
|
| @@ -373,7 +910,7 @@ class Simulator : public DecoderVisitor {
|
| template <typename T>
|
| void set_reg_no_log(unsigned code, T value,
|
| Reg31Mode r31mode = Reg31IsZeroRegister) {
|
| - DCHECK(code < kNumberOfRegisters);
|
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters));
|
| if (!IsZeroRegister(code, r31mode)) {
|
| registers_[code].Set(value);
|
| }
|
| @@ -392,16 +929,39 @@ class Simulator : public DecoderVisitor {
|
| // Commonly-used special cases.
|
| template<typename T>
|
| void set_lr(T value) {
|
| - DCHECK(sizeof(T) == kPointerSize);
|
| + DCHECK_EQ(sizeof(T), static_cast<unsigned>(kPointerSize));
|
| set_reg(kLinkRegCode, value);
|
| }
|
|
|
| template<typename T>
|
| void set_sp(T value) {
|
| - DCHECK(sizeof(T) == kPointerSize);
|
| + DCHECK_EQ(sizeof(T), static_cast<unsigned>(kPointerSize));
|
| set_reg(31, value, Reg31IsStackPointer);
|
| }
|
|
|
| + // Vector register accessors.
|
| + // These are equivalent to the integer register accessors, but for vector
|
| + // registers.
|
| +
|
| + // A structure for representing a 128-bit Q register.
|
| + struct qreg_t {
|
| + uint8_t val[kQRegSize];
|
| + };
|
| +
|
| + // Basic accessor: read the register as the specified type.
|
| + template <typename T>
|
| + T vreg(unsigned code) const {
|
| + static_assert((sizeof(T) == kBRegSize) || (sizeof(T) == kHRegSize) ||
|
| + (sizeof(T) == kSRegSize) || (sizeof(T) == kDRegSize) ||
|
| + (sizeof(T) == kQRegSize),
|
| + "Template type must match size of register.");
|
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
|
| +
|
| + return vregisters_[code].Get<T>();
|
| + }
|
| +
|
| + inline SimVRegister& vreg(unsigned code) { return vregisters_[code]; }
|
| +
|
| int64_t sp() { return xreg(31, Reg31IsStackPointer); }
|
| int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); }
|
| int64_t fp() {
|
| @@ -411,87 +971,135 @@ class Simulator : public DecoderVisitor {
|
|
|
| Address get_sp() const { return reg<Address>(31, Reg31IsStackPointer); }
|
|
|
| - template<typename T>
|
| - T fpreg(unsigned code) const {
|
| - DCHECK(code < kNumberOfRegisters);
|
| - return fpregisters_[code].Get<T>();
|
| - }
|
| + // Common specialized accessors for the vreg() template.
|
| + uint8_t breg(unsigned code) const { return vreg<uint8_t>(code); }
|
|
|
| - // Common specialized accessors for the fpreg() template.
|
| - float sreg(unsigned code) const {
|
| - return fpreg<float>(code);
|
| - }
|
| + float hreg(unsigned code) const { return vreg<uint16_t>(code); }
|
|
|
| - uint32_t sreg_bits(unsigned code) const {
|
| - return fpreg<uint32_t>(code);
|
| - }
|
| + float sreg(unsigned code) const { return vreg<float>(code); }
|
|
|
| - double dreg(unsigned code) const {
|
| - return fpreg<double>(code);
|
| - }
|
| + uint32_t sreg_bits(unsigned code) const { return vreg<uint32_t>(code); }
|
|
|
| - uint64_t dreg_bits(unsigned code) const {
|
| - return fpreg<uint64_t>(code);
|
| - }
|
| + double dreg(unsigned code) const { return vreg<double>(code); }
|
| +
|
| + uint64_t dreg_bits(unsigned code) const { return vreg<uint64_t>(code); }
|
| +
|
| + qreg_t qreg(unsigned code) const { return vreg<qreg_t>(code); }
|
| +
|
| + // As above, with parameterized size and return type. The value is
|
| + // either zero-extended or truncated to fit, as required.
|
| + template <typename T>
|
| + T vreg(unsigned size, unsigned code) const {
|
| + uint64_t raw = 0;
|
| + T result;
|
|
|
| - double fpreg(unsigned size, unsigned code) const {
|
| switch (size) {
|
| - case kSRegSizeInBits: return sreg(code);
|
| - case kDRegSizeInBits: return dreg(code);
|
| + case kSRegSize:
|
| + raw = vreg<uint32_t>(code);
|
| + break;
|
| + case kDRegSize:
|
| + raw = vreg<uint64_t>(code);
|
| + break;
|
| default:
|
| UNREACHABLE();
|
| - return 0.0;
|
| + break;
|
| }
|
| +
|
| + static_assert(sizeof(result) <= sizeof(raw),
|
| + "Template type must be <= 64 bits.");
|
| + // Copy the result and truncate to fit. This assumes a little-endian host.
|
| + memcpy(&result, &raw, sizeof(result));
|
| + return result;
|
| }
|
|
|
| // Write 'value' into a floating-point register. The value is zero-extended.
|
| // This behaviour matches AArch64 register writes.
|
| - template<typename T>
|
| - void set_fpreg(unsigned code, T value) {
|
| - set_fpreg_no_log(code, value);
|
| -
|
| - if (sizeof(value) <= kSRegSize) {
|
| - LogFPRegister(code, kPrintSRegValue);
|
| - } else {
|
| - LogFPRegister(code, kPrintDRegValue);
|
| + template <typename T>
|
| + void set_vreg(unsigned code, T value, RegLogMode log_mode = LogRegWrites) {
|
| + static_assert(
|
| + (sizeof(value) == kBRegSize) || (sizeof(value) == kHRegSize) ||
|
| + (sizeof(value) == kSRegSize) || (sizeof(value) == kDRegSize) ||
|
| + (sizeof(value) == kQRegSize),
|
| + "Template type must match size of register.");
|
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
|
| + vregisters_[code].Set(value);
|
| +
|
| + if (log_mode == LogRegWrites) {
|
| + LogVRegister(code, GetPrintRegisterFormat(value));
|
| }
|
| }
|
|
|
| - // Common specialized accessors for the set_fpreg() template.
|
| - void set_sreg(unsigned code, float value) {
|
| - set_fpreg(code, value);
|
| + // Common specialized accessors for the set_vreg() template.
|
| + void set_breg(unsigned code, int8_t value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| + }
|
| +
|
| + void set_hreg(unsigned code, int16_t value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| + }
|
| +
|
| + void set_sreg(unsigned code, float value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| + }
|
| +
|
| + void set_sreg_bits(unsigned code, uint32_t value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| }
|
|
|
| - void set_sreg_bits(unsigned code, uint32_t value) {
|
| - set_fpreg(code, value);
|
| + void set_dreg(unsigned code, double value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| }
|
|
|
| - void set_dreg(unsigned code, double value) {
|
| - set_fpreg(code, value);
|
| + void set_dreg_bits(unsigned code, uint64_t value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| }
|
|
|
| - void set_dreg_bits(unsigned code, uint64_t value) {
|
| - set_fpreg(code, value);
|
| + void set_qreg(unsigned code, qreg_t value,
|
| + RegLogMode log_mode = LogRegWrites) {
|
| + set_vreg(code, value, log_mode);
|
| }
|
|
|
| // As above, but don't automatically log the register update.
|
| template <typename T>
|
| - void set_fpreg_no_log(unsigned code, T value) {
|
| - DCHECK((sizeof(value) == kDRegSize) || (sizeof(value) == kSRegSize));
|
| - DCHECK(code < kNumberOfFPRegisters);
|
| - fpregisters_[code].Set(value);
|
| + void set_vreg_no_log(unsigned code, T value) {
|
| + STATIC_ASSERT((sizeof(value) == kBRegSize) ||
|
| + (sizeof(value) == kHRegSize) ||
|
| + (sizeof(value) == kSRegSize) ||
|
| + (sizeof(value) == kDRegSize) || (sizeof(value) == kQRegSize));
|
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters));
|
| + vregisters_[code].Set(value);
|
| + }
|
| +
|
| + void set_breg_no_log(unsigned code, uint8_t value) {
|
| + set_vreg_no_log(code, value);
|
| + }
|
| +
|
| + void set_hreg_no_log(unsigned code, uint16_t value) {
|
| + set_vreg_no_log(code, value);
|
| }
|
|
|
| void set_sreg_no_log(unsigned code, float value) {
|
| - set_fpreg_no_log(code, value);
|
| + set_vreg_no_log(code, value);
|
| }
|
|
|
| void set_dreg_no_log(unsigned code, double value) {
|
| - set_fpreg_no_log(code, value);
|
| + set_vreg_no_log(code, value);
|
| + }
|
| +
|
| + void set_qreg_no_log(unsigned code, qreg_t value) {
|
| + set_vreg_no_log(code, value);
|
| }
|
|
|
| SimSystemRegister& nzcv() { return nzcv_; }
|
| SimSystemRegister& fpcr() { return fpcr_; }
|
| + FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); }
|
| + bool DN() { return fpcr_.DN() != 0; }
|
|
|
| // Debug helpers
|
|
|
| @@ -518,66 +1126,195 @@ class Simulator : public DecoderVisitor {
|
|
|
| // Print all registers of the specified types.
|
| void PrintRegisters();
|
| - void PrintFPRegisters();
|
| + void PrintVRegisters();
|
| void PrintSystemRegisters();
|
|
|
| - // Like Print* (above), but respect log_parameters().
|
| - void LogSystemRegisters() {
|
| - if (log_parameters() & LOG_SYS_REGS) PrintSystemRegisters();
|
| + // As above, but only print the registers that have been updated.
|
| + void PrintWrittenRegisters();
|
| + void PrintWrittenVRegisters();
|
| +
|
| + // As above, but respect LOG_REG and LOG_VREG.
|
| + void LogWrittenRegisters() {
|
| + if (log_parameters() & LOG_REGS) PrintWrittenRegisters();
|
| + }
|
| + void LogWrittenVRegisters() {
|
| + if (log_parameters() & LOG_VREGS) PrintWrittenVRegisters();
|
| + }
|
| + void LogAllWrittenRegisters() {
|
| + LogWrittenRegisters();
|
| + LogWrittenVRegisters();
|
| + }
|
| +
|
| + // Specify relevant register formats for Print(V)Register and related helpers.
|
| + enum PrintRegisterFormat {
|
| + // The lane size.
|
| + kPrintRegLaneSizeB = 0 << 0,
|
| + kPrintRegLaneSizeH = 1 << 0,
|
| + kPrintRegLaneSizeS = 2 << 0,
|
| + kPrintRegLaneSizeW = kPrintRegLaneSizeS,
|
| + kPrintRegLaneSizeD = 3 << 0,
|
| + kPrintRegLaneSizeX = kPrintRegLaneSizeD,
|
| + kPrintRegLaneSizeQ = 4 << 0,
|
| +
|
| + kPrintRegLaneSizeOffset = 0,
|
| + kPrintRegLaneSizeMask = 7 << 0,
|
| +
|
| + // The lane count.
|
| + kPrintRegAsScalar = 0,
|
| + kPrintRegAsDVector = 1 << 3,
|
| + kPrintRegAsQVector = 2 << 3,
|
| +
|
| + kPrintRegAsVectorMask = 3 << 3,
|
| +
|
| + // Indicate floating-point format lanes. (This flag is only supported for S-
|
| + // and D-sized lanes.)
|
| + kPrintRegAsFP = 1 << 5,
|
| +
|
| + // Supported combinations.
|
| +
|
| + kPrintXReg = kPrintRegLaneSizeX | kPrintRegAsScalar,
|
| + kPrintWReg = kPrintRegLaneSizeW | kPrintRegAsScalar,
|
| + kPrintSReg = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
|
| + kPrintDReg = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,
|
| +
|
| + kPrintReg1B = kPrintRegLaneSizeB | kPrintRegAsScalar,
|
| + kPrintReg8B = kPrintRegLaneSizeB | kPrintRegAsDVector,
|
| + kPrintReg16B = kPrintRegLaneSizeB | kPrintRegAsQVector,
|
| + kPrintReg1H = kPrintRegLaneSizeH | kPrintRegAsScalar,
|
| + kPrintReg4H = kPrintRegLaneSizeH | kPrintRegAsDVector,
|
| + kPrintReg8H = kPrintRegLaneSizeH | kPrintRegAsQVector,
|
| + kPrintReg1S = kPrintRegLaneSizeS | kPrintRegAsScalar,
|
| + kPrintReg2S = kPrintRegLaneSizeS | kPrintRegAsDVector,
|
| + kPrintReg4S = kPrintRegLaneSizeS | kPrintRegAsQVector,
|
| + kPrintReg1SFP = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP,
|
| + kPrintReg2SFP = kPrintRegLaneSizeS | kPrintRegAsDVector | kPrintRegAsFP,
|
| + kPrintReg4SFP = kPrintRegLaneSizeS | kPrintRegAsQVector | kPrintRegAsFP,
|
| + kPrintReg1D = kPrintRegLaneSizeD | kPrintRegAsScalar,
|
| + kPrintReg2D = kPrintRegLaneSizeD | kPrintRegAsQVector,
|
| + kPrintReg1DFP = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP,
|
| + kPrintReg2DFP = kPrintRegLaneSizeD | kPrintRegAsQVector | kPrintRegAsFP,
|
| + kPrintReg1Q = kPrintRegLaneSizeQ | kPrintRegAsScalar
|
| + };
|
| +
|
| + unsigned GetPrintRegLaneSizeInBytesLog2(PrintRegisterFormat format) {
|
| + return (format & kPrintRegLaneSizeMask) >> kPrintRegLaneSizeOffset;
|
| }
|
| - void LogRegisters() {
|
| - if (log_parameters() & LOG_REGS) PrintRegisters();
|
| +
|
| + unsigned GetPrintRegLaneSizeInBytes(PrintRegisterFormat format) {
|
| + return 1 << GetPrintRegLaneSizeInBytesLog2(format);
|
| }
|
| - void LogFPRegisters() {
|
| - if (log_parameters() & LOG_FP_REGS) PrintFPRegisters();
|
| +
|
| + unsigned GetPrintRegSizeInBytesLog2(PrintRegisterFormat format) {
|
| + if (format & kPrintRegAsDVector) return kDRegSizeLog2;
|
| + if (format & kPrintRegAsQVector) return kQRegSizeLog2;
|
| +
|
| + // Scalar types.
|
| + return GetPrintRegLaneSizeInBytesLog2(format);
|
| }
|
|
|
| - // Specify relevant register sizes, for PrintFPRegister.
|
| - //
|
| - // These values are bit masks; they can be combined in case multiple views of
|
| - // a machine register are interesting.
|
| - enum PrintFPRegisterSizes {
|
| - kPrintDRegValue = 1 << kDRegSize,
|
| - kPrintSRegValue = 1 << kSRegSize,
|
| - kPrintAllFPRegValues = kPrintDRegValue | kPrintSRegValue
|
| - };
|
| + unsigned GetPrintRegSizeInBytes(PrintRegisterFormat format) {
|
| + return 1 << GetPrintRegSizeInBytesLog2(format);
|
| + }
|
| +
|
| + unsigned GetPrintRegLaneCount(PrintRegisterFormat format) {
|
| + unsigned reg_size_log2 = GetPrintRegSizeInBytesLog2(format);
|
| + unsigned lane_size_log2 = GetPrintRegLaneSizeInBytesLog2(format);
|
| + DCHECK_GE(reg_size_log2, lane_size_log2);
|
| + return 1 << (reg_size_log2 - lane_size_log2);
|
| + }
|
| +
|
| + template <typename T>
|
| + PrintRegisterFormat GetPrintRegisterFormat(T value) {
|
| + return GetPrintRegisterFormatForSize(sizeof(value));
|
| + }
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormat(double value) {
|
| + static_assert(sizeof(value) == kDRegSize,
|
| + "D register must be size of double.");
|
| + return GetPrintRegisterFormatForSizeFP(sizeof(value));
|
| + }
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormat(float value) {
|
| + static_assert(sizeof(value) == kSRegSize,
|
| + "S register must be size of float.");
|
| + return GetPrintRegisterFormatForSizeFP(sizeof(value));
|
| + }
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormat(VectorFormat vform);
|
| + PrintRegisterFormat GetPrintRegisterFormatFP(VectorFormat vform);
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormatForSize(size_t reg_size,
|
| + size_t lane_size);
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormatForSize(size_t size) {
|
| + return GetPrintRegisterFormatForSize(size, size);
|
| + }
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormatForSizeFP(size_t size) {
|
| + switch (size) {
|
| + default:
|
| + UNREACHABLE();
|
| + case kDRegSize:
|
| + return kPrintDReg;
|
| + case kSRegSize:
|
| + return kPrintSReg;
|
| + }
|
| + }
|
| +
|
| + PrintRegisterFormat GetPrintRegisterFormatTryFP(PrintRegisterFormat format) {
|
| + if ((GetPrintRegLaneSizeInBytes(format) == kSRegSize) ||
|
| + (GetPrintRegLaneSizeInBytes(format) == kDRegSize)) {
|
| + return static_cast<PrintRegisterFormat>(format | kPrintRegAsFP);
|
| + }
|
| + return format;
|
| + }
|
|
|
| // Print individual register values (after update).
|
| void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer);
|
| - void PrintFPRegister(unsigned code,
|
| - PrintFPRegisterSizes sizes = kPrintAllFPRegValues);
|
| + void PrintVRegister(unsigned code, PrintRegisterFormat sizes);
|
| void PrintSystemRegister(SystemRegister id);
|
|
|
| // Like Print* (above), but respect log_parameters().
|
| void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) {
|
| if (log_parameters() & LOG_REGS) PrintRegister(code, r31mode);
|
| }
|
| - void LogFPRegister(unsigned code,
|
| - PrintFPRegisterSizes sizes = kPrintAllFPRegValues) {
|
| - if (log_parameters() & LOG_FP_REGS) PrintFPRegister(code, sizes);
|
| + void LogVRegister(unsigned code, PrintRegisterFormat format) {
|
| + if (log_parameters() & LOG_VREGS) PrintVRegister(code, format);
|
| }
|
| void LogSystemRegister(SystemRegister id) {
|
| if (log_parameters() & LOG_SYS_REGS) PrintSystemRegister(id);
|
| }
|
|
|
| // Print memory accesses.
|
| - void PrintRead(uintptr_t address, size_t size, unsigned reg_code);
|
| - void PrintReadFP(uintptr_t address, size_t size, unsigned reg_code);
|
| - void PrintWrite(uintptr_t address, size_t size, unsigned reg_code);
|
| - void PrintWriteFP(uintptr_t address, size_t size, unsigned reg_code);
|
| + void PrintRead(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format);
|
| + void PrintWrite(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format);
|
| + void PrintVRead(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format, unsigned lane);
|
| + void PrintVWrite(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format, unsigned lane);
|
|
|
| // Like Print* (above), but respect log_parameters().
|
| - void LogRead(uintptr_t address, size_t size, unsigned reg_code) {
|
| - if (log_parameters() & LOG_REGS) PrintRead(address, size, reg_code);
|
| - }
|
| - void LogReadFP(uintptr_t address, size_t size, unsigned reg_code) {
|
| - if (log_parameters() & LOG_FP_REGS) PrintReadFP(address, size, reg_code);
|
| - }
|
| - void LogWrite(uintptr_t address, size_t size, unsigned reg_code) {
|
| - if (log_parameters() & LOG_WRITE) PrintWrite(address, size, reg_code);
|
| + void LogRead(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format) {
|
| + if (log_parameters() & LOG_REGS) PrintRead(address, reg_code, format);
|
| + }
|
| + void LogWrite(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format) {
|
| + if (log_parameters() & LOG_WRITE) PrintWrite(address, reg_code, format);
|
| + }
|
| + void LogVRead(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format, unsigned lane = 0) {
|
| + if (log_parameters() & LOG_VREGS) {
|
| + PrintVRead(address, reg_code, format, lane);
|
| + }
|
| }
|
| - void LogWriteFP(uintptr_t address, size_t size, unsigned reg_code) {
|
| - if (log_parameters() & LOG_WRITE) PrintWriteFP(address, size, reg_code);
|
| + void LogVWrite(uintptr_t address, unsigned reg_code,
|
| + PrintRegisterFormat format, unsigned lane = 0) {
|
| + if (log_parameters() & LOG_WRITE) {
|
| + PrintVWrite(address, reg_code, format, lane);
|
| + }
|
| }
|
|
|
| int log_parameters() { return log_parameters_; }
|
| @@ -596,6 +1333,14 @@ class Simulator : public DecoderVisitor {
|
| }
|
| }
|
|
|
| + // Helper functions for register tracing.
|
| + void PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode,
|
| + int size_in_bytes = kXRegSize);
|
| + void PrintVRegisterRawHelper(unsigned code, int bytes = kQRegSize,
|
| + int lsb = 0);
|
| + void PrintVRegisterFPHelper(unsigned code, unsigned lane_size_in_bytes,
|
| + int lane_count = 1, int rightmost_lane = 0);
|
| +
|
| static inline const char* WRegNameForCode(unsigned code,
|
| Reg31Mode mode = Reg31IsZeroRegister);
|
| static inline const char* XRegNameForCode(unsigned code,
|
| @@ -670,6 +1415,10 @@ class Simulator : public DecoderVisitor {
|
| void LoadStoreWriteBack(unsigned addr_reg,
|
| int64_t offset,
|
| AddrMode addrmode);
|
| + void NEONLoadStoreMultiStructHelper(const Instruction* instr,
|
| + AddrMode addr_mode);
|
| + void NEONLoadStoreSingleStructHelper(const Instruction* instr,
|
| + AddrMode addr_mode);
|
| void CheckMemoryAccess(uintptr_t address, uintptr_t stack);
|
|
|
| // Memory read helpers.
|
| @@ -677,7 +1426,8 @@ class Simulator : public DecoderVisitor {
|
| T MemoryRead(A address) {
|
| T value;
|
| STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
|
| - (sizeof(value) == 4) || (sizeof(value) == 8));
|
| + (sizeof(value) == 4) || (sizeof(value) == 8) ||
|
| + (sizeof(value) == 16));
|
| memcpy(&value, reinterpret_cast<const void*>(address), sizeof(value));
|
| return value;
|
| }
|
| @@ -686,7 +1436,8 @@ class Simulator : public DecoderVisitor {
|
| template <typename T, typename A>
|
| void MemoryWrite(A address, T value) {
|
| STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
|
| - (sizeof(value) == 4) || (sizeof(value) == 8));
|
| + (sizeof(value) == 4) || (sizeof(value) == 8) ||
|
| + (sizeof(value) == 16));
|
| memcpy(reinterpret_cast<void*>(address), &value, sizeof(value));
|
| }
|
|
|
| @@ -704,14 +1455,652 @@ class Simulator : public DecoderVisitor {
|
| void DataProcessing2Source(Instruction* instr);
|
| template <typename T>
|
| void BitfieldHelper(Instruction* instr);
|
| + uint16_t PolynomialMult(uint8_t op1, uint8_t op2);
|
| +
|
| + void ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr);
|
| + void ld1(VectorFormat vform, LogicVRegister dst, int index, uint64_t addr);
|
| + void ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr);
|
| + void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + uint64_t addr);
|
| + void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + int index, uint64_t addr);
|
| + void ld2r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + uint64_t addr);
|
| + void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, uint64_t addr);
|
| + void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, int index, uint64_t addr);
|
| + void ld3r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, uint64_t addr);
|
| + void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, LogicVRegister dst4, uint64_t addr);
|
| + void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, LogicVRegister dst4, int index, uint64_t addr);
|
| + void ld4r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2,
|
| + LogicVRegister dst3, LogicVRegister dst4, uint64_t addr);
|
| + void st1(VectorFormat vform, LogicVRegister src, uint64_t addr);
|
| + void st1(VectorFormat vform, LogicVRegister src, int index, uint64_t addr);
|
| + void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + uint64_t addr);
|
| + void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + int index, uint64_t addr);
|
| + void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + LogicVRegister src3, uint64_t addr);
|
| + void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + LogicVRegister src3, int index, uint64_t addr);
|
| + void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + LogicVRegister src3, LogicVRegister src4, uint64_t addr);
|
| + void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2,
|
| + LogicVRegister src3, LogicVRegister src4, int index, uint64_t addr);
|
| + LogicVRegister cmp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + Condition cond);
|
| + LogicVRegister cmp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, int imm, Condition cond);
|
| + LogicVRegister cmptst(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister add(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister addp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister mla(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister mls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister mul(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister mul(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister mla(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister mls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister pmul(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| +
|
| + typedef LogicVRegister (Simulator::*ByElementOp)(VectorFormat vform,
|
| + LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister fmul(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister fmulx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smull(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smull2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umull(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umull2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smlal(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smlal2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umlal(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umlal2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smlsl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister smlsl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umlsl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister umlsl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister sqdmull(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister sqdmull2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, int index);
|
| + LogicVRegister sqdmlal(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister sqdmlal2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, int index);
|
| + LogicVRegister sqdmlsl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister sqdmlsl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, int index);
|
| + LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, int index);
|
| + LogicVRegister sub(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister and_(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister orr(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister orn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister eor(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister bic(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister bic(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, uint64_t imm);
|
| + LogicVRegister bif(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister bit(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister bsl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister cls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister clz(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister cnt(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister not_(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister rbit(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister rev(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int revSize);
|
| + LogicVRegister rev16(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister rev32(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister rev64(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister addlp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, bool is_signed,
|
| + bool do_accumulate);
|
| + LogicVRegister saddlp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uaddlp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sadalp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uadalp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister ext(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + int index);
|
| + LogicVRegister ins_element(VectorFormat vform, LogicVRegister dst,
|
| + int dst_index, const LogicVRegister& src,
|
| + int src_index);
|
| + LogicVRegister ins_immediate(VectorFormat vform, LogicVRegister dst,
|
| + int dst_index, uint64_t imm);
|
| + LogicVRegister dup_element(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int src_index);
|
| + LogicVRegister dup_immediate(VectorFormat vform, LogicVRegister dst,
|
| + uint64_t imm);
|
| + LogicVRegister movi(VectorFormat vform, LogicVRegister dst, uint64_t imm);
|
| + LogicVRegister mvni(VectorFormat vform, LogicVRegister dst, uint64_t imm);
|
| + LogicVRegister orr(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, uint64_t imm);
|
| + LogicVRegister sshl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister ushl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister SMinMax(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + bool max);
|
| + LogicVRegister smax(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister smin(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister SMinMaxP(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, bool max);
|
| + LogicVRegister smaxp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister sminp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister addp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister addv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uaddlv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister saddlv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister SMinMaxV(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, bool max);
|
| + LogicVRegister smaxv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sminv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uxtl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uxtl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sxtl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sxtl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister Table(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& ind, bool zero_out_of_bounds,
|
| + const LogicVRegister* tab1,
|
| + const LogicVRegister* tab2 = NULL,
|
| + const LogicVRegister* tab3 = NULL,
|
| + const LogicVRegister* tab4 = NULL);
|
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& ind);
|
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& ind);
|
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& tab3, const LogicVRegister& ind);
|
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& tab3, const LogicVRegister& tab4,
|
| + const LogicVRegister& ind);
|
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& ind);
|
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& ind);
|
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& tab3, const LogicVRegister& ind);
|
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& tab, const LogicVRegister& tab2,
|
| + const LogicVRegister& tab3, const LogicVRegister& tab4,
|
| + const LogicVRegister& ind);
|
| + LogicVRegister uaddl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uaddl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uaddw(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uaddw2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister saddl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister saddl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister saddw(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister saddw2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister usubl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister usubl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister usubw(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister usubw2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister ssubl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister ssubl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister ssubw(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister ssubw2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister UMinMax(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + bool max);
|
| + LogicVRegister umax(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister umin(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister UMinMaxP(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, bool max);
|
| + LogicVRegister umaxp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uminp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister UMinMaxV(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, bool max);
|
| + LogicVRegister umaxv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uminv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister trn1(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister trn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister zip1(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister zip2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uzp1(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uzp2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister shl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister scvtf(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int fbits,
|
| + FPRounding rounding_mode);
|
| + LogicVRegister ucvtf(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int fbits,
|
| + FPRounding rounding_mode);
|
| + LogicVRegister sshll(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sshll2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister shll(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister shll2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister ushll(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister ushll2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sli(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sri(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sshr(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister ushr(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister ssra(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister usra(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister srsra(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister ursra(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister suqadd(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister usqadd(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sqshl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister uqshl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqshlu(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister abs(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister neg(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister ExtractNarrow(VectorFormat vform, LogicVRegister dst,
|
| + bool dstIsSigned, const LogicVRegister& src,
|
| + bool srcIsSigned);
|
| + LogicVRegister xtn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sqxtn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister uqxtn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister sqxtun(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister AbsDiff(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + bool issigned);
|
| + LogicVRegister saba(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister uaba(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister shrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister shrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister rshrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister rshrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister uqshrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister uqshrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister uqrshrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister uqrshrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqshrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqshrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqrshrn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqrshrn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqshrun(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqshrun2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqrshrun(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqrshrun2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, int shift);
|
| + LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2, bool round = true);
|
| + LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2);
|
| +#define NEON_3VREG_LOGIC_LIST(V) \
|
| + V(addhn) \
|
| + V(addhn2) \
|
| + V(raddhn) \
|
| + V(raddhn2) \
|
| + V(subhn) \
|
| + V(subhn2) \
|
| + V(rsubhn) \
|
| + V(rsubhn2) \
|
| + V(pmull) \
|
| + V(pmull2) \
|
| + V(sabal) \
|
| + V(sabal2) \
|
| + V(uabal) \
|
| + V(uabal2) \
|
| + V(sabdl) \
|
| + V(sabdl2) \
|
| + V(uabdl) \
|
| + V(uabdl2) \
|
| + V(smull) \
|
| + V(smull2) \
|
| + V(umull) \
|
| + V(umull2) \
|
| + V(smlal) \
|
| + V(smlal2) \
|
| + V(umlal) \
|
| + V(umlal2) \
|
| + V(smlsl) \
|
| + V(smlsl2) \
|
| + V(umlsl) \
|
| + V(umlsl2) \
|
| + V(sqdmlal) \
|
| + V(sqdmlal2) \
|
| + V(sqdmlsl) \
|
| + V(sqdmlsl2) \
|
| + V(sqdmull) \
|
| + V(sqdmull2)
|
| +
|
| +#define DEFINE_LOGIC_FUNC(FXN) \
|
| + LogicVRegister FXN(VectorFormat vform, LogicVRegister dst, \
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + NEON_3VREG_LOGIC_LIST(DEFINE_LOGIC_FUNC)
|
| +#undef DEFINE_LOGIC_FUNC
|
| +
|
| +#define NEON_FP3SAME_LIST(V) \
|
| + V(fadd, FPAdd, false) \
|
| + V(fsub, FPSub, true) \
|
| + V(fmul, FPMul, true) \
|
| + V(fmulx, FPMulx, true) \
|
| + V(fdiv, FPDiv, true) \
|
| + V(fmax, FPMax, false) \
|
| + V(fmin, FPMin, false) \
|
| + V(fmaxnm, FPMaxNM, false) \
|
| + V(fminnm, FPMinNM, false)
|
| +
|
| +#define DECLARE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \
|
| + template <typename T> \
|
| + LogicVRegister FN(VectorFormat vform, LogicVRegister dst, \
|
| + const LogicVRegister& src1, const LogicVRegister& src2); \
|
| + LogicVRegister FN(VectorFormat vform, LogicVRegister dst, \
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + NEON_FP3SAME_LIST(DECLARE_NEON_FP_VECTOR_OP)
|
| +#undef DECLARE_NEON_FP_VECTOR_OP
|
| +
|
| +#define NEON_FPPAIRWISE_LIST(V) \
|
| + V(faddp, fadd, FPAdd) \
|
| + V(fmaxp, fmax, FPMax) \
|
| + V(fmaxnmp, fmaxnm, FPMaxNM) \
|
| + V(fminp, fmin, FPMin) \
|
| + V(fminnmp, fminnm, FPMinNM)
|
| +
|
| +#define DECLARE_NEON_FP_PAIR_OP(FNP, FN, OP) \
|
| + LogicVRegister FNP(VectorFormat vform, LogicVRegister dst, \
|
| + const LogicVRegister& src1, const LogicVRegister& src2); \
|
| + LogicVRegister FNP(VectorFormat vform, LogicVRegister dst, \
|
| + const LogicVRegister& src);
|
| + NEON_FPPAIRWISE_LIST(DECLARE_NEON_FP_PAIR_OP)
|
| +#undef DECLARE_NEON_FP_PAIR_OP
|
| +
|
| + template <typename T>
|
| + LogicVRegister frecps(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister frecps(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + template <typename T>
|
| + LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2);
|
| + LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1,
|
| + const LogicVRegister& src2);
|
| + template <typename T>
|
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + template <typename T>
|
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister fnmul(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
|
|
| template <typename T>
|
| - T FPDefaultNaN() const;
|
| + LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + Condition cond);
|
| + LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + Condition cond);
|
| + LogicVRegister fabscmp(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2,
|
| + Condition cond);
|
| + LogicVRegister fcmp_zero(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, Condition cond);
|
| +
|
| + template <typename T>
|
| + LogicVRegister fneg(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fneg(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + template <typename T>
|
| + LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + template <typename T>
|
| + LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fabd(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src1, const LogicVRegister& src2);
|
| + LogicVRegister frint(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, FPRounding rounding_mode,
|
| + bool inexact_exception = false);
|
| + LogicVRegister fcvts(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, FPRounding rounding_mode,
|
| + int fbits = 0);
|
| + LogicVRegister fcvtu(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, FPRounding rounding_mode,
|
| + int fbits = 0);
|
| + LogicVRegister fcvtl(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fcvtl2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fcvtn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fcvtn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fcvtxn(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fcvtxn2(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fsqrt(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister frsqrte(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister frecpe(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, FPRounding rounding);
|
| + LogicVRegister ursqrte(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister urecpe(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| +
|
| + typedef float (Simulator::*FPMinMaxOp)(float a, float b);
|
| +
|
| + LogicVRegister FMinMaxV(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src, FPMinMaxOp Op);
|
| +
|
| + LogicVRegister fminv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fmaxv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fminnmv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| + LogicVRegister fmaxnmv(VectorFormat vform, LogicVRegister dst,
|
| + const LogicVRegister& src);
|
| +
|
| + template <typename T>
|
| + T FPRecipSqrtEstimate(T op);
|
| + template <typename T>
|
| + T FPRecipEstimate(T op, FPRounding rounding);
|
| + template <typename T, typename R>
|
| + R FPToFixed(T op, int fbits, bool is_signed, FPRounding rounding);
|
|
|
| void FPCompare(double val0, double val1);
|
| double FPRoundInt(double value, FPRounding round_mode);
|
| double FPToDouble(float value);
|
| float FPToFloat(double value, FPRounding round_mode);
|
| + float FPToFloat(float16 value);
|
| + float16 FPToFloat16(float value, FPRounding round_mode);
|
| + float16 FPToFloat16(double value, FPRounding round_mode);
|
| + double recip_sqrt_estimate(double a);
|
| + double recip_estimate(double a);
|
| + double FPRecipSqrtEstimate(double a);
|
| + double FPRecipEstimate(double a);
|
| double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
|
| double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
|
| float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
|
| @@ -743,6 +2132,9 @@ class Simulator : public DecoderVisitor {
|
| T FPMul(T op1, T op2);
|
|
|
| template <typename T>
|
| + T FPMulx(T op1, T op2);
|
| +
|
| + template <typename T>
|
| T FPMulAdd(T a, T op1, T op2);
|
|
|
| template <typename T>
|
| @@ -751,17 +2143,18 @@ class Simulator : public DecoderVisitor {
|
| template <typename T>
|
| T FPSub(T op1, T op2);
|
|
|
| - // Standard NaN processing.
|
| template <typename T>
|
| - T FPProcessNaN(T op);
|
| -
|
| - bool FPProcessNaNs(Instruction* instr);
|
| + T FPRecipStepFused(T op1, T op2);
|
|
|
| template <typename T>
|
| - T FPProcessNaNs(T op1, T op2);
|
| + T FPRSqrtStepFused(T op1, T op2);
|
|
|
| - template <typename T>
|
| - T FPProcessNaNs3(T op1, T op2, T op3);
|
| + // This doesn't do anything at the moment. We'll need it if we want support
|
| + // for cumulative exception bits or floating-point exceptions.
|
| + void FPProcessException() {}
|
| +
|
| + // Standard NaN processing.
|
| + bool FPProcessNaNs(Instruction* instr);
|
|
|
| void CheckStackAlignment();
|
|
|
| @@ -773,7 +2166,7 @@ class Simulator : public DecoderVisitor {
|
| static const uint64_t kCallerSavedRegisterCorruptionValue =
|
| 0xca11edc0de000000UL;
|
| // This value is a NaN in both 32-bit and 64-bit FP.
|
| - static const uint64_t kCallerSavedFPRegisterCorruptionValue =
|
| + static const uint64_t kCallerSavedVRegisterCorruptionValue =
|
| 0x7ff000007f801000UL;
|
| // This value is a mix of 32/64-bits NaN and "verbose" immediate.
|
| static const uint64_t kDefaultCPURegisterCorruptionValue =
|
| @@ -801,7 +2194,7 @@ class Simulator : public DecoderVisitor {
|
| SimRegister registers_[kNumberOfRegisters];
|
|
|
| // Floating point registers
|
| - SimFPRegister fpregisters_[kNumberOfFPRegisters];
|
| + SimVRegister vregisters_[kNumberOfVRegisters];
|
|
|
| // Processor state
|
| // bits[31, 27]: Condition flags N, Z, C, and V.
|
| @@ -959,10 +2352,67 @@ class Simulator : public DecoderVisitor {
|
| private:
|
| void Init(FILE* stream);
|
|
|
| + template <typename T>
|
| + static T FPDefaultNaN();
|
| +
|
| + template <typename T>
|
| + T FPProcessNaN(T op) {
|
| + DCHECK(std::isnan(op));
|
| + return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
|
| + }
|
| +
|
| + template <typename T>
|
| + T FPProcessNaNs(T op1, T op2) {
|
| + if (IsSignallingNaN(op1)) {
|
| + return FPProcessNaN(op1);
|
| + } else if (IsSignallingNaN(op2)) {
|
| + return FPProcessNaN(op2);
|
| + } else if (std::isnan(op1)) {
|
| + DCHECK(IsQuietNaN(op1));
|
| + return FPProcessNaN(op1);
|
| + } else if (std::isnan(op2)) {
|
| + DCHECK(IsQuietNaN(op2));
|
| + return FPProcessNaN(op2);
|
| + } else {
|
| + return 0.0;
|
| + }
|
| + }
|
| +
|
| + template <typename T>
|
| + T FPProcessNaNs3(T op1, T op2, T op3) {
|
| + if (IsSignallingNaN(op1)) {
|
| + return FPProcessNaN(op1);
|
| + } else if (IsSignallingNaN(op2)) {
|
| + return FPProcessNaN(op2);
|
| + } else if (IsSignallingNaN(op3)) {
|
| + return FPProcessNaN(op3);
|
| + } else if (std::isnan(op1)) {
|
| + DCHECK(IsQuietNaN(op1));
|
| + return FPProcessNaN(op1);
|
| + } else if (std::isnan(op2)) {
|
| + DCHECK(IsQuietNaN(op2));
|
| + return FPProcessNaN(op2);
|
| + } else if (std::isnan(op3)) {
|
| + DCHECK(IsQuietNaN(op3));
|
| + return FPProcessNaN(op3);
|
| + } else {
|
| + return 0.0;
|
| + }
|
| + }
|
| +
|
| int log_parameters_;
|
| Isolate* isolate_;
|
| };
|
|
|
| +template <>
|
| +inline double Simulator::FPDefaultNaN<double>() {
|
| + return kFP64DefaultNaN;
|
| +}
|
| +
|
| +template <>
|
| +inline float Simulator::FPDefaultNaN<float>() {
|
| + return kFP32DefaultNaN;
|
| +}
|
|
|
| // When running with the simulator transition into simulated execution at this
|
| // point.
|
|
|