Chromium Code Reviews| Index: src/arm64/simulator-arm64.h |
| diff --git a/src/arm64/simulator-arm64.h b/src/arm64/simulator-arm64.h |
| index c8c715a0677dbad216adb318478128e22d0fd881..a81a3f1123d084998bed7a53c5f07c207c279d24 100644 |
| --- a/src/arm64/simulator-arm64.h |
| +++ b/src/arm64/simulator-arm64.h |
| @@ -70,6 +70,239 @@ class SimulatorStack : public v8::internal::AllStatic { |
| #else // !defined(USE_SIMULATOR) |
| +// Assemble the specified IEEE-754 components into the target type and apply |
| +// appropriate rounding. |
| +// sign: 0 = positive, 1 = negative |
| +// exponent: Unbiased IEEE-754 exponent. |
| +// mantissa: The mantissa of the input. The top bit (which is not encoded for |
| +// normal IEEE-754 values) must not be omitted. This bit has the |
| +// value 'pow(2, exponent)'. |
| +// |
| +// The input value is assumed to be a normalized value. That is, the input may |
| +// not be infinity or NaN. If the source value is subnormal, it must be |
| +// normalized before calling this function such that the highest set bit in the |
| +// mantissa has the value 'pow(2, exponent)'. |
| +// |
| +// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than |
| +// calling a templated FPRound. |
| +template <class T, int ebits, int mbits> |
| +T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa, |
| + FPRounding round_mode) { |
| + static_assert((sizeof(T) * 8) >= (1 + ebits + mbits), |
| + "destination type T not large enough"); |
| + static_assert(sizeof(T) <= sizeof(uint64_t), |
| + "maximum size of destination type T is 64 bits"); |
| + static_assert(std::is_unsigned<T>::value, |
| + "destination type T must be unsigned"); |
| + |
| + DCHECK((sign == 0) || (sign == 1)); |
| + |
| + // Only FPTieEven and FPRoundOdd rounding modes are implemented. |
| + DCHECK((round_mode == FPTieEven) || (round_mode == FPRoundOdd)); |
| + |
| + // Rounding can promote subnormals to normals, and normals to infinities. For |
| + // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be |
| + // encodable as a float, but rounding based on the low-order mantissa bits |
| + // could make it overflow. With ties-to-even rounding, this value would become |
| + // an infinity. |
| + |
| + // ---- Rounding Method ---- |
| + // |
| + // The exponent is irrelevant in the rounding operation, so we treat the |
| + // lowest-order bit that will fit into the result ('onebit') as having |
| + // the value '1'. Similarly, the highest-order bit that won't fit into |
| + // the result ('halfbit') has the value '0.5'. The 'point' sits between |
| + // 'onebit' and 'halfbit': |
| + // |
| + // These bits fit into the result. |
| + // |---------------------| |
| + // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
| + // || |
| + // / | |
| + // / halfbit |
| + // onebit |
| + // |
| + // For subnormal outputs, the range of representable bits is smaller and |
| + // the position of onebit and halfbit depends on the exponent of the |
| + // input, but the method is otherwise similar. |
| + // |
| + // onebit(frac) |
| + // | |
| + // | halfbit(frac) halfbit(adjusted) |
| + // | / / |
| + // | | | |
| + // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00 |
| + // 0b00.0... -> 0b00.0... -> 0b00 |
| + // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00 |
| + // 0b00.1... -> 0b00.1... -> 0b01 |
| + // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01 |
| + // 0b01.0... -> 0b01.0... -> 0b01 |
| + // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10 |
| + // 0b01.1... -> 0b01.1... -> 0b10 |
| + // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10 |
| + // 0b10.0... -> 0b10.0... -> 0b10 |
| + // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10 |
| + // 0b10.1... -> 0b10.1... -> 0b11 |
| + // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11 |
| + // ... / | / | |
| + // / | / | |
| + // / | |
| + // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / | |
| + // |
| + // mantissa = (mantissa >> shift) + halfbit(adjusted); |
| + |
| + const int mantissa_offset = 0; |
| + const int exponent_offset = mantissa_offset + mbits; |
| + const int sign_offset = exponent_offset + ebits; |
| + DCHECK_EQ(sign_offset, static_cast<int>(sizeof(T) * 8 - 1)); |
| + |
| + // Bail out early for zero inputs. |
| + if (mantissa == 0) { |
| + return static_cast<T>(sign << sign_offset); |
| + } |
| + |
| + // If all bits in the exponent are set, the value is infinite or NaN. |
| + // This is true for all binary IEEE-754 formats. |
| + const int infinite_exponent = (1 << ebits) - 1; |
| + const int max_normal_exponent = infinite_exponent - 1; |
| + |
| + // Apply the exponent bias to encode it for the result. Doing this early makes |
| + // it easy to detect values that will be infinite or subnormal. |
| + exponent += max_normal_exponent >> 1; |
| + |
| + if (exponent > max_normal_exponent) { |
| + // Overflow: the input is too large for the result type to represent. |
| + if (round_mode == FPTieEven) { |
| + // FPTieEven rounding mode handles overflows using infinities. |
| + exponent = infinite_exponent; |
| + mantissa = 0; |
| + } else { |
| + DCHECK_EQ(round_mode, FPRoundOdd); |
| + // FPRoundOdd rounding mode handles overflows using the largest magnitude |
| + // normal number. |
| + exponent = max_normal_exponent; |
| + mantissa = (UINT64_C(1) << exponent_offset) - 1; |
| + } |
| + return static_cast<T>((sign << sign_offset) | |
| + (exponent << exponent_offset) | |
| + (mantissa << mantissa_offset)); |
| + } |
| + |
| + // Calculate the shift required to move the top mantissa bit to the proper |
| + // place in the destination type. |
| + const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64); |
| + int shift = highest_significant_bit - mbits; |
| + |
| + if (exponent <= 0) { |
| + // The output will be subnormal (before rounding). |
| + // For subnormal outputs, the shift must be adjusted by the exponent. The +1 |
| + // is necessary because the exponent of a subnormal value (encoded as 0) is |
| + // the same as the exponent of the smallest normal value (encoded as 1). |
| + shift += -exponent + 1; |
| + |
| + // Handle inputs that would produce a zero output. |
| + // |
| + // Shifts higher than highest_significant_bit+1 will always produce a zero |
| + // result. A shift of exactly highest_significant_bit+1 might produce a |
| + // non-zero result after rounding. |
| + if (shift > (highest_significant_bit + 1)) { |
| + if (round_mode == FPTieEven) { |
| + // The result will always be +/-0.0. |
| + return static_cast<T>(sign << sign_offset); |
| + } else { |
| + DCHECK_EQ(round_mode, FPRoundOdd); |
| + DCHECK_NE(mantissa, 0U); |
| + // For FPRoundOdd, if the mantissa is too small to represent and |
| + // non-zero return the next "odd" value. |
| + return static_cast<T>((sign << sign_offset) | 1); |
| + } |
| + } |
| + |
| + // Properly encode the exponent for a subnormal output. |
| + exponent = 0; |
| + } else { |
| + // Clear the topmost mantissa bit, since this is not encoded in IEEE-754 |
| + // normal values. |
| + mantissa &= ~(UINT64_C(1) << highest_significant_bit); |
| + } |
| + |
| + if (shift > 0) { |
| + if (round_mode == FPTieEven) { |
| + // We have to shift the mantissa to the right. Some precision is lost, so |
| + // we need to apply rounding. |
| + uint64_t onebit_mantissa = (mantissa >> (shift)) & 1; |
| + uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1; |
| + uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa); |
| + uint64_t adjusted = mantissa - adjustment; |
| + T halfbit_adjusted = (adjusted >> (shift - 1)) & 1; |
| + |
| + T result = |
| + static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) | |
| + ((mantissa >> shift) << mantissa_offset)); |
| + |
| + // A very large mantissa can overflow during rounding. If this happens, |
| + // the exponent should be incremented and the mantissa set to 1.0 |
| + // (encoded as 0). Applying halfbit_adjusted after assembling the float |
| + // has the nice side-effect that this case is handled for free. |
| + // |
| + // This also handles cases where a very large finite value overflows to |
| + // infinity, or where a very large subnormal value overflows to become |
| + // normal. |
| + return result + halfbit_adjusted; |
| + } else { |
| + DCHECK_EQ(round_mode, FPRoundOdd); |
| + // If any bits at position halfbit or below are set, onebit (ie. the |
| + // bottom bit of the resulting mantissa) must be set. |
| + uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1); |
| + if (fractional_bits != 0) { |
| + mantissa |= UINT64_C(1) << shift; |
| + } |
| + |
| + return static_cast<T>((sign << sign_offset) | |
| + (exponent << exponent_offset) | |
| + ((mantissa >> shift) << mantissa_offset)); |
| + } |
| + } else { |
| + // We have to shift the mantissa to the left (or not at all). The input |
| + // mantissa is exactly representable in the output mantissa, so apply no |
| + // rounding correction. |
| + return static_cast<T>((sign << sign_offset) | |
| + (exponent << exponent_offset) | |
| + ((mantissa << -shift) << mantissa_offset)); |
| + } |
| +} |
| + |
| +// Representation of memory, with typed getters and setters for access. |
| +class SimMemory { |
| + public: |
| + template <typename T> |
| + static T AddressUntag(T address) { |
| + // Cast the address using a C-style cast. A reinterpret_cast would be |
| + // appropriate, but it can't cast one integral type to another. |
| + uint64_t bits = (uint64_t)address; |
| + return (T)(bits & ~kAddressTagMask); |
| + } |
| + |
| + template <typename T, typename A> |
| + static T Read(A address) { |
| + T value; |
| + address = AddressUntag(address); |
| + DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || |
| + (sizeof(value) == 4) || (sizeof(value) == 8) || |
| + (sizeof(value) == 16)); |
| + memcpy(&value, reinterpret_cast<const char*>(address), sizeof(value)); |
| + return value; |
| + } |
| + |
| + template <typename T, typename A> |
| + static void Write(A address, T value) { |
| + address = AddressUntag(address); |
| + DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || |
| + (sizeof(value) == 4) || (sizeof(value) == 8) || |
| + (sizeof(value) == 16)); |
| + memcpy(reinterpret_cast<char*>(address), &value, sizeof(value)); |
| + } |
| +}; |
| // The proper way to initialize a simulated system register (such as NZCV) is as |
| // follows: |
| @@ -125,29 +358,329 @@ class SimSystemRegister { |
| // Represent a register (r0-r31, v0-v31). |
| +template <int kSizeInBytes> |
| class SimRegisterBase { |
| public: |
| template<typename T> |
| void Set(T new_value) { |
| - value_ = 0; |
| + static_assert(sizeof(new_value) <= kSizeInBytes, |
| + "Size of new_value must be <= size of template type."); |
| + if (sizeof(new_value) < kSizeInBytes) { |
| + // All AArch64 registers are zero-extending. |
| + memset(value_ + sizeof(new_value), 0, kSizeInBytes - sizeof(new_value)); |
| + } |
| memcpy(&value_, &new_value, sizeof(T)); |
| + NotifyRegisterWrite(); |
| } |
| - template<typename T> |
| - T Get() const { |
| + // Insert a typed value into a register, leaving the rest of the register |
| + // unchanged. The lane parameter indicates where in the register the value |
| + // should be inserted, in the range [ 0, sizeof(value_) / sizeof(T) ), where |
| + // 0 represents the least significant bits. |
| + template <typename T> |
| + void Insert(int lane, T new_value) { |
| + DCHECK_GE(lane, 0); |
| + DCHECK_LE(sizeof(new_value) + (lane * sizeof(new_value)), |
| + static_cast<unsigned>(kSizeInBytes)); |
| + memcpy(&value_[lane * sizeof(new_value)], &new_value, sizeof(new_value)); |
| + NotifyRegisterWrite(); |
| + } |
| + |
| + template <typename T> |
| + T Get(int lane = 0) const { |
| T result; |
| - memcpy(&result, &value_, sizeof(T)); |
| + DCHECK_GE(lane, 0); |
| + DCHECK_LE(sizeof(result) + (lane * sizeof(result)), |
| + static_cast<unsigned>(kSizeInBytes)); |
| + memcpy(&result, &value_[lane * sizeof(result)], sizeof(result)); |
| return result; |
| } |
| + // TODO(all): Make this return a map of updated bytes, so that we can |
| + // highlight updated lanes for load-and-insert. (That never happens for scalar |
| + // code, but NEON has some instructions that can update individual lanes.) |
| + bool WrittenSinceLastLog() const { return written_since_last_log_; } |
| + |
| + void NotifyRegisterLogged() { written_since_last_log_ = false; } |
| + |
| protected: |
| - int64_t value_; |
| + uint8_t value_[kSizeInBytes]; |
| + |
| + // Helpers to aid with register tracing. |
| + bool written_since_last_log_; |
| + |
| + void NotifyRegisterWrite() { written_since_last_log_ = true; } |
| }; |
|
bbudge
2017/02/22 01:50:58
nit: whitespace
martyn.capewell
2017/02/23 13:10:41
Done.
|
| +typedef SimRegisterBase<kXRegSize> SimRegister; // r0-r31 |
| +typedef SimRegisterBase<kQRegSize> SimVRegister; // v0-v31 |
| + |
| +// Representation of a vector register, with typed getters and setters for lanes |
| +// and additional information to represent lane state. |
| +class LogicVRegister { |
| + public: |
| + inline LogicVRegister(SimVRegister& other) // NOLINT |
| + : register_(other) { |
| + for (unsigned i = 0; i < sizeof(saturated_) / sizeof(saturated_[0]); i++) { |
|
bbudge
2017/02/22 01:50:58
Can you use kQRegSize instead of generating the le
martyn.capewell
2017/02/23 13:10:41
Done.
|
| + saturated_[i] = kNotSaturated; |
| + } |
| + for (unsigned i = 0; i < sizeof(round_) / sizeof(round_[0]); i++) { |
| + round_[i] = 0; |
| + } |
| + } |
| + |
| + int64_t Int(VectorFormat vform, int index) const { |
| + int64_t element; |
| + switch (LaneSizeInBitsFromFormat(vform)) { |
| + case 8: |
| + element = register_.Get<int8_t>(index); |
| + break; |
| + case 16: |
| + element = register_.Get<int16_t>(index); |
| + break; |
| + case 32: |
| + element = register_.Get<int32_t>(index); |
| + break; |
| + case 64: |
| + element = register_.Get<int64_t>(index); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + return 0; |
| + } |
| + return element; |
| + } |
| + |
| + uint64_t Uint(VectorFormat vform, int index) const { |
| + uint64_t element; |
| + switch (LaneSizeInBitsFromFormat(vform)) { |
| + case 8: |
| + element = register_.Get<uint8_t>(index); |
| + break; |
| + case 16: |
| + element = register_.Get<uint16_t>(index); |
| + break; |
| + case 32: |
| + element = register_.Get<uint32_t>(index); |
| + break; |
| + case 64: |
| + element = register_.Get<uint64_t>(index); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + return 0; |
| + } |
| + return element; |
| + } |
| + |
| + uint64_t UintLeftJustified(VectorFormat vform, int index) const { |
| + return Uint(vform, index) << (64 - LaneSizeInBitsFromFormat(vform)); |
| + } |
| + |
| + int64_t IntLeftJustified(VectorFormat vform, int index) const { |
| + uint64_t value = UintLeftJustified(vform, index); |
| + int64_t result; |
| + memcpy(&result, &value, sizeof(result)); |
| + return result; |
| + } |
| + |
| + void SetInt(VectorFormat vform, int index, int64_t value) const { |
| + switch (LaneSizeInBitsFromFormat(vform)) { |
| + case 8: |
| + register_.Insert(index, static_cast<int8_t>(value)); |
| + break; |
| + case 16: |
| + register_.Insert(index, static_cast<int16_t>(value)); |
| + break; |
| + case 32: |
| + register_.Insert(index, static_cast<int32_t>(value)); |
| + break; |
| + case 64: |
| + register_.Insert(index, static_cast<int64_t>(value)); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + return; |
| + } |
| + } |
| + |
| + void SetIntArray(VectorFormat vform, const int64_t* src) const { |
| + ClearForWrite(vform); |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + SetInt(vform, i, src[i]); |
| + } |
| + } |
| + |
| + void SetUint(VectorFormat vform, int index, uint64_t value) const { |
| + switch (LaneSizeInBitsFromFormat(vform)) { |
| + case 8: |
| + register_.Insert(index, static_cast<uint8_t>(value)); |
| + break; |
| + case 16: |
| + register_.Insert(index, static_cast<uint16_t>(value)); |
| + break; |
| + case 32: |
| + register_.Insert(index, static_cast<uint32_t>(value)); |
| + break; |
| + case 64: |
| + register_.Insert(index, static_cast<uint64_t>(value)); |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + return; |
| + } |
| + } |
| + |
| + void SetUintArray(VectorFormat vform, const uint64_t* src) const { |
| + ClearForWrite(vform); |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + SetUint(vform, i, src[i]); |
| + } |
| + } |
| + |
| + void ReadUintFromMem(VectorFormat vform, int index, uint64_t addr) const; |
| + |
| + void WriteUintToMem(VectorFormat vform, int index, uint64_t addr) const; |
| + |
| + template <typename T> |
| + T Float(int index) const { |
| + return register_.Get<T>(index); |
| + } |
| + |
| + template <typename T> |
| + void SetFloat(int index, T value) const { |
| + register_.Insert(index, value); |
| + } |
| + |
| + // When setting a result in a register of size less than Q, the top bits of |
| + // the Q register must be cleared. |
| + void ClearForWrite(VectorFormat vform) const { |
| + unsigned size = RegisterSizeInBytesFromFormat(vform); |
| + for (unsigned i = size; i < kQRegSize; i++) { |
| + SetUint(kFormat16B, i, 0); |
| + } |
| + } |
| + |
| + // Saturation state for each lane of a vector. |
| + enum Saturation { |
| + kNotSaturated = 0, |
| + kSignedSatPositive = 1 << 0, |
| + kSignedSatNegative = 1 << 1, |
| + kSignedSatMask = kSignedSatPositive | kSignedSatNegative, |
| + kSignedSatUndefined = kSignedSatMask, |
| + kUnsignedSatPositive = 1 << 2, |
| + kUnsignedSatNegative = 1 << 3, |
| + kUnsignedSatMask = kUnsignedSatPositive | kUnsignedSatNegative, |
| + kUnsignedSatUndefined = kUnsignedSatMask |
| + }; |
| + |
| + // Getters for saturation state. |
| + Saturation GetSignedSaturation(int index) { |
| + return static_cast<Saturation>(saturated_[index] & kSignedSatMask); |
| + } |
| + |
| + Saturation GetUnsignedSaturation(int index) { |
| + return static_cast<Saturation>(saturated_[index] & kUnsignedSatMask); |
| + } |
| + |
| + // Setters for saturation state. |
| + void ClearSat(int index) { saturated_[index] = kNotSaturated; } |
| + |
| + void SetSignedSat(int index, bool positive) { |
| + SetSatFlag(index, positive ? kSignedSatPositive : kSignedSatNegative); |
| + } |
| + |
| + void SetUnsignedSat(int index, bool positive) { |
| + SetSatFlag(index, positive ? kUnsignedSatPositive : kUnsignedSatNegative); |
| + } |
| + |
| + void SetSatFlag(int index, Saturation sat) { |
| + saturated_[index] = static_cast<Saturation>(saturated_[index] | sat); |
| + DCHECK_NE(sat & kUnsignedSatMask, kUnsignedSatUndefined); |
| + DCHECK_NE(sat & kSignedSatMask, kSignedSatUndefined); |
| + } |
| + |
| + // Saturate lanes of a vector based on saturation state. |
| + LogicVRegister& SignedSaturate(VectorFormat vform) { |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + Saturation sat = GetSignedSaturation(i); |
| + if (sat == kSignedSatPositive) { |
| + SetInt(vform, i, MaxIntFromFormat(vform)); |
| + } else if (sat == kSignedSatNegative) { |
| + SetInt(vform, i, MinIntFromFormat(vform)); |
| + } |
| + } |
| + return *this; |
| + } |
| + |
| + LogicVRegister& UnsignedSaturate(VectorFormat vform) { |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + Saturation sat = GetUnsignedSaturation(i); |
| + if (sat == kUnsignedSatPositive) { |
| + SetUint(vform, i, MaxUintFromFormat(vform)); |
| + } else if (sat == kUnsignedSatNegative) { |
| + SetUint(vform, i, 0); |
| + } |
| + } |
| + return *this; |
| + } |
| + |
| + // Getter for rounding state. |
| + bool GetRounding(int index) { return round_[index]; } |
| + |
| + // Setter for rounding state. |
| + void SetRounding(int index, bool round) { round_[index] = round; } |
| + |
| + // Round lanes of a vector based on rounding state. |
| + LogicVRegister& Round(VectorFormat vform) { |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + SetUint(vform, i, Uint(vform, i) + (GetRounding(i) ? 1 : 0)); |
| + } |
| + return *this; |
| + } |
| + |
| + // Unsigned halve lanes of a vector, and use the saturation state to set the |
| + // top bit. |
| + LogicVRegister& Uhalve(VectorFormat vform) { |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + uint64_t val = Uint(vform, i); |
| + SetRounding(i, (val & 1) == 1); |
| + val >>= 1; |
| + if (GetUnsignedSaturation(i) != kNotSaturated) { |
| + // If the operation causes unsigned saturation, the bit shifted into the |
| + // most significant bit must be set. |
| + val |= (MaxUintFromFormat(vform) >> 1) + 1; |
| + } |
| + SetInt(vform, i, val); |
| + } |
| + return *this; |
| + } |
| + |
| + // Signed halve lanes of a vector, and use the carry state to set the top bit. |
| + LogicVRegister& Halve(VectorFormat vform) { |
| + for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
| + int64_t val = Int(vform, i); |
| + SetRounding(i, (val & 1) == 1); |
| + val >>= 1; |
| + if (GetSignedSaturation(i) != kNotSaturated) { |
| + // If the operation causes signed saturation, the sign bit must be |
| + // inverted. |
| + val ^= (MaxUintFromFormat(vform) >> 1) + 1; |
| + } |
| + SetInt(vform, i, val); |
| + } |
| + return *this; |
| + } |
| + private: |
| + SimVRegister& register_; |
| -typedef SimRegisterBase SimRegister; // r0-r31 |
| -typedef SimRegisterBase SimFPRegister; // v0-v31 |
| + // Allocate one saturation state entry per lane; largest register is type Q, |
| + // and lanes can be a minimum of one byte wide. |
| + Saturation saturated_[kQRegSize]; |
| + // Allocate one rounding state entry per lane. |
| + bool round_[kQRegSize]; |
| +}; |
| class Simulator : public DecoderVisitor { |
| public: |
| @@ -315,6 +848,7 @@ class Simulator : public DecoderVisitor { |
| CheckBreakNext(); |
| Decode(pc_); |
| increment_pc(); |
| + LogAllWrittenRegisters(); |
| CheckBreakpoints(); |
| } |
| @@ -333,7 +867,7 @@ class Simulator : public DecoderVisitor { |
| // |
| template<typename T> |
| T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const { |
| - DCHECK(code < kNumberOfRegisters); |
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters)); |
| if (IsZeroRegister(code, r31mode)) { |
| return 0; |
| } |
| @@ -349,6 +883,8 @@ class Simulator : public DecoderVisitor { |
| return reg<int64_t>(code, r31mode); |
| } |
| + enum RegLogMode { LogRegWrites, NoRegLog }; |
| + |
| // Write 'value' into an integer register. The value is zero-extended. This |
| // behaviour matches AArch64 register writes. |
| template<typename T> |
| @@ -373,7 +909,7 @@ class Simulator : public DecoderVisitor { |
| template <typename T> |
| void set_reg_no_log(unsigned code, T value, |
| Reg31Mode r31mode = Reg31IsZeroRegister) { |
| - DCHECK(code < kNumberOfRegisters); |
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters)); |
| if (!IsZeroRegister(code, r31mode)) { |
| registers_[code].Set(value); |
| } |
| @@ -392,16 +928,39 @@ class Simulator : public DecoderVisitor { |
| // Commonly-used special cases. |
| template<typename T> |
| void set_lr(T value) { |
| - DCHECK(sizeof(T) == kPointerSize); |
| + DCHECK_EQ(sizeof(T), static_cast<unsigned>(kPointerSize)); |
| set_reg(kLinkRegCode, value); |
| } |
| template<typename T> |
| void set_sp(T value) { |
| - DCHECK(sizeof(T) == kPointerSize); |
| + DCHECK_EQ(sizeof(T), static_cast<unsigned>(kPointerSize)); |
| set_reg(31, value, Reg31IsStackPointer); |
| } |
| + // Vector register accessors. |
| + // These are equivalent to the integer register accessors, but for vector |
| + // registers. |
| + |
| + // A structure for representing a 128-bit Q register. |
| + struct qreg_t { |
| + uint8_t val[kQRegSize]; |
| + }; |
| + |
| + // Basic accessor: read the register as the specified type. |
| + template <typename T> |
| + T vreg(unsigned code) const { |
| + static_assert((sizeof(T) == kBRegSize) || (sizeof(T) == kHRegSize) || |
| + (sizeof(T) == kSRegSize) || (sizeof(T) == kDRegSize) || |
| + (sizeof(T) == kQRegSize), |
| + "Template type must match size of register."); |
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); |
| + |
| + return vregisters_[code].Get<T>(); |
| + } |
| + |
| + inline SimVRegister& vreg(unsigned code) { return vregisters_[code]; } |
| + |
| int64_t sp() { return xreg(31, Reg31IsStackPointer); } |
| int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); } |
| int64_t fp() { |
| @@ -411,87 +970,135 @@ class Simulator : public DecoderVisitor { |
| Address get_sp() const { return reg<Address>(31, Reg31IsStackPointer); } |
| - template<typename T> |
| - T fpreg(unsigned code) const { |
| - DCHECK(code < kNumberOfRegisters); |
| - return fpregisters_[code].Get<T>(); |
| - } |
| + // Common specialized accessors for the vreg() template. |
| + uint8_t breg(unsigned code) const { return vreg<uint8_t>(code); } |
| - // Common specialized accessors for the fpreg() template. |
| - float sreg(unsigned code) const { |
| - return fpreg<float>(code); |
| - } |
| + float hreg(unsigned code) const { return vreg<uint16_t>(code); } |
| - uint32_t sreg_bits(unsigned code) const { |
| - return fpreg<uint32_t>(code); |
| - } |
| + float sreg(unsigned code) const { return vreg<float>(code); } |
| - double dreg(unsigned code) const { |
| - return fpreg<double>(code); |
| - } |
| + uint32_t sreg_bits(unsigned code) const { return vreg<uint32_t>(code); } |
| - uint64_t dreg_bits(unsigned code) const { |
| - return fpreg<uint64_t>(code); |
| - } |
| + double dreg(unsigned code) const { return vreg<double>(code); } |
| + |
| + uint64_t dreg_bits(unsigned code) const { return vreg<uint64_t>(code); } |
| + |
| + qreg_t qreg(unsigned code) const { return vreg<qreg_t>(code); } |
| + |
| + // As above, with parameterized size and return type. The value is |
| + // either zero-extended or truncated to fit, as required. |
| + template <typename T> |
| + T vreg(unsigned size, unsigned code) const { |
| + uint64_t raw = 0; |
| + T result; |
| - double fpreg(unsigned size, unsigned code) const { |
| switch (size) { |
| - case kSRegSizeInBits: return sreg(code); |
| - case kDRegSizeInBits: return dreg(code); |
| + case kSRegSize: |
| + raw = vreg<uint32_t>(code); |
| + break; |
| + case kDRegSize: |
| + raw = vreg<uint64_t>(code); |
| + break; |
| default: |
| UNREACHABLE(); |
| - return 0.0; |
| + break; |
| } |
| + |
| + static_assert(sizeof(result) <= sizeof(raw), |
| + "Template type must be <= 64 bits."); |
| + // Copy the result and truncate to fit. This assumes a little-endian host. |
| + memcpy(&result, &raw, sizeof(result)); |
| + return result; |
| } |
| // Write 'value' into a floating-point register. The value is zero-extended. |
| // This behaviour matches AArch64 register writes. |
| - template<typename T> |
| - void set_fpreg(unsigned code, T value) { |
| - set_fpreg_no_log(code, value); |
| - |
| - if (sizeof(value) <= kSRegSize) { |
| - LogFPRegister(code, kPrintSRegValue); |
| - } else { |
| - LogFPRegister(code, kPrintDRegValue); |
| + template <typename T> |
| + void set_vreg(unsigned code, T value, RegLogMode log_mode = LogRegWrites) { |
| + static_assert( |
| + (sizeof(value) == kBRegSize) || (sizeof(value) == kHRegSize) || |
| + (sizeof(value) == kSRegSize) || (sizeof(value) == kDRegSize) || |
| + (sizeof(value) == kQRegSize), |
| + "Template type must match size of register."); |
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); |
| + vregisters_[code].Set(value); |
| + |
| + if (log_mode == LogRegWrites) { |
| + LogVRegister(code, GetPrintRegisterFormat(value)); |
| } |
| } |
| - // Common specialized accessors for the set_fpreg() template. |
| - void set_sreg(unsigned code, float value) { |
| - set_fpreg(code, value); |
| + // Common specialized accessors for the set_vreg() template. |
| + void set_breg(unsigned code, int8_t value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| + } |
| + |
| + void set_hreg(unsigned code, int16_t value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| + } |
| + |
| + void set_sreg(unsigned code, float value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| + } |
| + |
| + void set_sreg_bits(unsigned code, uint32_t value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| } |
| - void set_sreg_bits(unsigned code, uint32_t value) { |
| - set_fpreg(code, value); |
| + void set_dreg(unsigned code, double value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| } |
| - void set_dreg(unsigned code, double value) { |
| - set_fpreg(code, value); |
| + void set_dreg_bits(unsigned code, uint64_t value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| } |
| - void set_dreg_bits(unsigned code, uint64_t value) { |
| - set_fpreg(code, value); |
| + void set_qreg(unsigned code, qreg_t value, |
| + RegLogMode log_mode = LogRegWrites) { |
| + set_vreg(code, value, log_mode); |
| } |
| // As above, but don't automatically log the register update. |
| template <typename T> |
| - void set_fpreg_no_log(unsigned code, T value) { |
| - DCHECK((sizeof(value) == kDRegSize) || (sizeof(value) == kSRegSize)); |
| - DCHECK(code < kNumberOfFPRegisters); |
| - fpregisters_[code].Set(value); |
| + void set_vreg_no_log(unsigned code, T value) { |
| + STATIC_ASSERT((sizeof(value) == kBRegSize) || |
| + (sizeof(value) == kHRegSize) || |
| + (sizeof(value) == kSRegSize) || |
| + (sizeof(value) == kDRegSize) || (sizeof(value) == kQRegSize)); |
| + DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); |
| + vregisters_[code].Set(value); |
| + } |
| + |
| + void set_breg_no_log(unsigned code, uint8_t value) { |
| + set_vreg_no_log(code, value); |
| + } |
| + |
| + void set_hreg_no_log(unsigned code, uint16_t value) { |
| + set_vreg_no_log(code, value); |
| } |
| void set_sreg_no_log(unsigned code, float value) { |
| - set_fpreg_no_log(code, value); |
| + set_vreg_no_log(code, value); |
| } |
| void set_dreg_no_log(unsigned code, double value) { |
| - set_fpreg_no_log(code, value); |
| + set_vreg_no_log(code, value); |
| + } |
| + |
| + void set_qreg_no_log(unsigned code, qreg_t value) { |
| + set_vreg_no_log(code, value); |
| } |
| SimSystemRegister& nzcv() { return nzcv_; } |
| SimSystemRegister& fpcr() { return fpcr_; } |
| + FPRounding RMode() { return static_cast<FPRounding>(fpcr_.RMode()); } |
| + bool DN() { return fpcr_.DN() != 0; } |
| // Debug helpers |
| @@ -518,66 +1125,195 @@ class Simulator : public DecoderVisitor { |
| // Print all registers of the specified types. |
| void PrintRegisters(); |
| - void PrintFPRegisters(); |
| + void PrintVRegisters(); |
| void PrintSystemRegisters(); |
| - // Like Print* (above), but respect log_parameters(). |
| - void LogSystemRegisters() { |
| - if (log_parameters() & LOG_SYS_REGS) PrintSystemRegisters(); |
| + // As above, but only print the registers that have been updated. |
| + void PrintWrittenRegisters(); |
| + void PrintWrittenVRegisters(); |
| + |
| + // As above, but respect LOG_REG and LOG_VREG. |
| + void LogWrittenRegisters() { |
| + if (log_parameters() & LOG_REGS) PrintWrittenRegisters(); |
| + } |
| + void LogWrittenVRegisters() { |
| + if (log_parameters() & LOG_VREGS) PrintWrittenVRegisters(); |
| + } |
| + void LogAllWrittenRegisters() { |
| + LogWrittenRegisters(); |
| + LogWrittenVRegisters(); |
| + } |
| + |
| + // Specify relevant register formats for Print(V)Register and related helpers. |
| + enum PrintRegisterFormat { |
| + // The lane size. |
| + kPrintRegLaneSizeB = 0 << 0, |
| + kPrintRegLaneSizeH = 1 << 0, |
| + kPrintRegLaneSizeS = 2 << 0, |
| + kPrintRegLaneSizeW = kPrintRegLaneSizeS, |
| + kPrintRegLaneSizeD = 3 << 0, |
| + kPrintRegLaneSizeX = kPrintRegLaneSizeD, |
| + kPrintRegLaneSizeQ = 4 << 0, |
| + |
| + kPrintRegLaneSizeOffset = 0, |
| + kPrintRegLaneSizeMask = 7 << 0, |
| + |
| + // The lane count. |
| + kPrintRegAsScalar = 0, |
| + kPrintRegAsDVector = 1 << 3, |
| + kPrintRegAsQVector = 2 << 3, |
| + |
| + kPrintRegAsVectorMask = 3 << 3, |
| + |
| + // Indicate floating-point format lanes. (This flag is only supported for S- |
| + // and D-sized lanes.) |
| + kPrintRegAsFP = 1 << 5, |
| + |
| + // Supported combinations. |
| + |
| + kPrintXReg = kPrintRegLaneSizeX | kPrintRegAsScalar, |
| + kPrintWReg = kPrintRegLaneSizeW | kPrintRegAsScalar, |
| + kPrintSReg = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP, |
| + kPrintDReg = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP, |
| + |
| + kPrintReg1B = kPrintRegLaneSizeB | kPrintRegAsScalar, |
| + kPrintReg8B = kPrintRegLaneSizeB | kPrintRegAsDVector, |
| + kPrintReg16B = kPrintRegLaneSizeB | kPrintRegAsQVector, |
| + kPrintReg1H = kPrintRegLaneSizeH | kPrintRegAsScalar, |
| + kPrintReg4H = kPrintRegLaneSizeH | kPrintRegAsDVector, |
| + kPrintReg8H = kPrintRegLaneSizeH | kPrintRegAsQVector, |
| + kPrintReg1S = kPrintRegLaneSizeS | kPrintRegAsScalar, |
| + kPrintReg2S = kPrintRegLaneSizeS | kPrintRegAsDVector, |
| + kPrintReg4S = kPrintRegLaneSizeS | kPrintRegAsQVector, |
| + kPrintReg1SFP = kPrintRegLaneSizeS | kPrintRegAsScalar | kPrintRegAsFP, |
| + kPrintReg2SFP = kPrintRegLaneSizeS | kPrintRegAsDVector | kPrintRegAsFP, |
| + kPrintReg4SFP = kPrintRegLaneSizeS | kPrintRegAsQVector | kPrintRegAsFP, |
| + kPrintReg1D = kPrintRegLaneSizeD | kPrintRegAsScalar, |
| + kPrintReg2D = kPrintRegLaneSizeD | kPrintRegAsQVector, |
| + kPrintReg1DFP = kPrintRegLaneSizeD | kPrintRegAsScalar | kPrintRegAsFP, |
| + kPrintReg2DFP = kPrintRegLaneSizeD | kPrintRegAsQVector | kPrintRegAsFP, |
| + kPrintReg1Q = kPrintRegLaneSizeQ | kPrintRegAsScalar |
| + }; |
| + |
| + unsigned GetPrintRegLaneSizeInBytesLog2(PrintRegisterFormat format) { |
| + return (format & kPrintRegLaneSizeMask) >> kPrintRegLaneSizeOffset; |
| } |
| - void LogRegisters() { |
| - if (log_parameters() & LOG_REGS) PrintRegisters(); |
| + |
| + unsigned GetPrintRegLaneSizeInBytes(PrintRegisterFormat format) { |
| + return 1 << GetPrintRegLaneSizeInBytesLog2(format); |
| } |
| - void LogFPRegisters() { |
| - if (log_parameters() & LOG_FP_REGS) PrintFPRegisters(); |
| + |
| + unsigned GetPrintRegSizeInBytesLog2(PrintRegisterFormat format) { |
| + if (format & kPrintRegAsDVector) return kDRegSizeLog2; |
| + if (format & kPrintRegAsQVector) return kQRegSizeLog2; |
| + |
| + // Scalar types. |
| + return GetPrintRegLaneSizeInBytesLog2(format); |
| } |
| - // Specify relevant register sizes, for PrintFPRegister. |
| - // |
| - // These values are bit masks; they can be combined in case multiple views of |
| - // a machine register are interesting. |
| - enum PrintFPRegisterSizes { |
| - kPrintDRegValue = 1 << kDRegSize, |
| - kPrintSRegValue = 1 << kSRegSize, |
| - kPrintAllFPRegValues = kPrintDRegValue | kPrintSRegValue |
| - }; |
| + unsigned GetPrintRegSizeInBytes(PrintRegisterFormat format) { |
| + return 1 << GetPrintRegSizeInBytesLog2(format); |
| + } |
| + |
| + unsigned GetPrintRegLaneCount(PrintRegisterFormat format) { |
| + unsigned reg_size_log2 = GetPrintRegSizeInBytesLog2(format); |
| + unsigned lane_size_log2 = GetPrintRegLaneSizeInBytesLog2(format); |
| + DCHECK_GE(reg_size_log2, lane_size_log2); |
| + return 1 << (reg_size_log2 - lane_size_log2); |
| + } |
| + |
| + template <typename T> |
| + PrintRegisterFormat GetPrintRegisterFormat(T value) { |
| + return GetPrintRegisterFormatForSize(sizeof(value)); |
| + } |
| + |
| + PrintRegisterFormat GetPrintRegisterFormat(double value) { |
| + static_assert(sizeof(value) == kDRegSize, |
| + "D register must be size of double."); |
| + return GetPrintRegisterFormatForSizeFP(sizeof(value)); |
| + } |
| + |
| + PrintRegisterFormat GetPrintRegisterFormat(float value) { |
| + static_assert(sizeof(value) == kSRegSize, |
| + "S register must be size of float."); |
| + return GetPrintRegisterFormatForSizeFP(sizeof(value)); |
| + } |
| + |
| + PrintRegisterFormat GetPrintRegisterFormat(VectorFormat vform); |
| + PrintRegisterFormat GetPrintRegisterFormatFP(VectorFormat vform); |
| + |
| + PrintRegisterFormat GetPrintRegisterFormatForSize(size_t reg_size, |
| + size_t lane_size); |
| + |
| + PrintRegisterFormat GetPrintRegisterFormatForSize(size_t size) { |
| + return GetPrintRegisterFormatForSize(size, size); |
| + } |
| + |
| + PrintRegisterFormat GetPrintRegisterFormatForSizeFP(size_t size) { |
| + switch (size) { |
| + default: |
| + UNREACHABLE(); |
| + case kDRegSize: |
| + return kPrintDReg; |
| + case kSRegSize: |
| + return kPrintSReg; |
| + } |
| + } |
| + |
| + PrintRegisterFormat GetPrintRegisterFormatTryFP(PrintRegisterFormat format) { |
| + if ((GetPrintRegLaneSizeInBytes(format) == kSRegSize) || |
| + (GetPrintRegLaneSizeInBytes(format) == kDRegSize)) { |
| + return static_cast<PrintRegisterFormat>(format | kPrintRegAsFP); |
| + } |
| + return format; |
| + } |
| // Print individual register values (after update). |
| void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer); |
| - void PrintFPRegister(unsigned code, |
| - PrintFPRegisterSizes sizes = kPrintAllFPRegValues); |
| + void PrintVRegister(unsigned code, PrintRegisterFormat sizes); |
| void PrintSystemRegister(SystemRegister id); |
| // Like Print* (above), but respect log_parameters(). |
| void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) { |
| if (log_parameters() & LOG_REGS) PrintRegister(code, r31mode); |
| } |
| - void LogFPRegister(unsigned code, |
| - PrintFPRegisterSizes sizes = kPrintAllFPRegValues) { |
| - if (log_parameters() & LOG_FP_REGS) PrintFPRegister(code, sizes); |
| + void LogVRegister(unsigned code, PrintRegisterFormat format) { |
| + if (log_parameters() & LOG_VREGS) PrintVRegister(code, format); |
| } |
| void LogSystemRegister(SystemRegister id) { |
| if (log_parameters() & LOG_SYS_REGS) PrintSystemRegister(id); |
| } |
| // Print memory accesses. |
| - void PrintRead(uintptr_t address, size_t size, unsigned reg_code); |
| - void PrintReadFP(uintptr_t address, size_t size, unsigned reg_code); |
| - void PrintWrite(uintptr_t address, size_t size, unsigned reg_code); |
| - void PrintWriteFP(uintptr_t address, size_t size, unsigned reg_code); |
| + void PrintRead(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format); |
| + void PrintWrite(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format); |
| + void PrintVRead(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format, unsigned lane); |
| + void PrintVWrite(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format, unsigned lane); |
| // Like Print* (above), but respect log_parameters(). |
| - void LogRead(uintptr_t address, size_t size, unsigned reg_code) { |
| - if (log_parameters() & LOG_REGS) PrintRead(address, size, reg_code); |
| - } |
| - void LogReadFP(uintptr_t address, size_t size, unsigned reg_code) { |
| - if (log_parameters() & LOG_FP_REGS) PrintReadFP(address, size, reg_code); |
| - } |
| - void LogWrite(uintptr_t address, size_t size, unsigned reg_code) { |
| - if (log_parameters() & LOG_WRITE) PrintWrite(address, size, reg_code); |
| + void LogRead(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format) { |
| + if (log_parameters() & LOG_REGS) PrintRead(address, reg_code, format); |
| + } |
| + void LogWrite(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format) { |
| + if (log_parameters() & LOG_WRITE) PrintWrite(address, reg_code, format); |
| + } |
| + void LogVRead(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format, unsigned lane = 0) { |
| + if (log_parameters() & LOG_VREGS) { |
| + PrintVRead(address, reg_code, format, lane); |
| + } |
| } |
| - void LogWriteFP(uintptr_t address, size_t size, unsigned reg_code) { |
| - if (log_parameters() & LOG_WRITE) PrintWriteFP(address, size, reg_code); |
| + void LogVWrite(uintptr_t address, unsigned reg_code, |
| + PrintRegisterFormat format, unsigned lane = 0) { |
| + if (log_parameters() & LOG_WRITE) { |
| + PrintVWrite(address, reg_code, format, lane); |
| + } |
| } |
| int log_parameters() { return log_parameters_; } |
| @@ -596,6 +1332,14 @@ class Simulator : public DecoderVisitor { |
| } |
| } |
| + // Helper functions for register tracing. |
| + void PrintRegisterRawHelper(unsigned code, Reg31Mode r31mode, |
| + int size_in_bytes = kXRegSize); |
| + void PrintVRegisterRawHelper(unsigned code, int bytes = kQRegSize, |
| + int lsb = 0); |
| + void PrintVRegisterFPHelper(unsigned code, unsigned lane_size_in_bytes, |
| + int lane_count = 1, int rightmost_lane = 0); |
| + |
| static inline const char* WRegNameForCode(unsigned code, |
| Reg31Mode mode = Reg31IsZeroRegister); |
| static inline const char* XRegNameForCode(unsigned code, |
| @@ -670,6 +1414,10 @@ class Simulator : public DecoderVisitor { |
| void LoadStoreWriteBack(unsigned addr_reg, |
| int64_t offset, |
| AddrMode addrmode); |
| + void NEONLoadStoreMultiStructHelper(const Instruction* instr, |
| + AddrMode addr_mode); |
| + void NEONLoadStoreSingleStructHelper(const Instruction* instr, |
| + AddrMode addr_mode); |
| void CheckMemoryAccess(uintptr_t address, uintptr_t stack); |
| // Memory read helpers. |
| @@ -677,7 +1425,8 @@ class Simulator : public DecoderVisitor { |
| T MemoryRead(A address) { |
| T value; |
| STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || |
| - (sizeof(value) == 4) || (sizeof(value) == 8)); |
| + (sizeof(value) == 4) || (sizeof(value) == 8) || |
| + (sizeof(value) == 16)); |
| memcpy(&value, reinterpret_cast<const void*>(address), sizeof(value)); |
| return value; |
| } |
| @@ -686,7 +1435,8 @@ class Simulator : public DecoderVisitor { |
| template <typename T, typename A> |
| void MemoryWrite(A address, T value) { |
| STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || |
| - (sizeof(value) == 4) || (sizeof(value) == 8)); |
| + (sizeof(value) == 4) || (sizeof(value) == 8) || |
| + (sizeof(value) == 16)); |
| memcpy(reinterpret_cast<void*>(address), &value, sizeof(value)); |
| } |
| @@ -704,14 +1454,652 @@ class Simulator : public DecoderVisitor { |
| void DataProcessing2Source(Instruction* instr); |
| template <typename T> |
| void BitfieldHelper(Instruction* instr); |
| + uint16_t PolynomialMult(uint8_t op1, uint8_t op2); |
| + |
| + void ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr); |
| + void ld1(VectorFormat vform, LogicVRegister dst, int index, uint64_t addr); |
| + void ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr); |
| + void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + uint64_t addr); |
| + void ld2(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + int index, uint64_t addr); |
| + void ld2r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + uint64_t addr); |
| + void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, uint64_t addr); |
| + void ld3(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, int index, uint64_t addr); |
| + void ld3r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, uint64_t addr); |
| + void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, LogicVRegister dst4, uint64_t addr); |
| + void ld4(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, LogicVRegister dst4, int index, uint64_t addr); |
| + void ld4r(VectorFormat vform, LogicVRegister dst1, LogicVRegister dst2, |
| + LogicVRegister dst3, LogicVRegister dst4, uint64_t addr); |
| + void st1(VectorFormat vform, LogicVRegister src, uint64_t addr); |
| + void st1(VectorFormat vform, LogicVRegister src, int index, uint64_t addr); |
| + void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + uint64_t addr); |
| + void st2(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + int index, uint64_t addr); |
| + void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + LogicVRegister src3, uint64_t addr); |
| + void st3(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + LogicVRegister src3, int index, uint64_t addr); |
| + void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + LogicVRegister src3, LogicVRegister src4, uint64_t addr); |
| + void st4(VectorFormat vform, LogicVRegister src, LogicVRegister src2, |
| + LogicVRegister src3, LogicVRegister src4, int index, uint64_t addr); |
| + LogicVRegister cmp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + Condition cond); |
| + LogicVRegister cmp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, int imm, Condition cond); |
| + LogicVRegister cmptst(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister add(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister addp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister mla(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister mls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister mul(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister mul(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister mla(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister mls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister pmul(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + |
| + typedef LogicVRegister (Simulator::*ByElementOp)(VectorFormat vform, |
| + LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister fmul(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister fmulx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smull(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smull2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umull(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umull2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smlal(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smlal2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umlal(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umlal2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smlsl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister smlsl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umlsl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister umlsl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister sqdmull(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister sqdmull2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, int index); |
| + LogicVRegister sqdmlal(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister sqdmlal2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, int index); |
| + LogicVRegister sqdmlsl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister sqdmlsl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, int index); |
| + LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, int index); |
| + LogicVRegister sub(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister and_(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister orr(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister orn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister eor(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister bic(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister bic(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, uint64_t imm); |
| + LogicVRegister bif(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister bit(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister bsl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister cls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister clz(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister cnt(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister not_(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister rbit(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister rev(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int revSize); |
| + LogicVRegister rev16(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister rev32(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister rev64(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister addlp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, bool is_signed, |
| + bool do_accumulate); |
| + LogicVRegister saddlp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uaddlp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sadalp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uadalp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister ext(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + int index); |
| + LogicVRegister ins_element(VectorFormat vform, LogicVRegister dst, |
| + int dst_index, const LogicVRegister& src, |
| + int src_index); |
| + LogicVRegister ins_immediate(VectorFormat vform, LogicVRegister dst, |
| + int dst_index, uint64_t imm); |
| + LogicVRegister dup_element(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int src_index); |
| + LogicVRegister dup_immediate(VectorFormat vform, LogicVRegister dst, |
| + uint64_t imm); |
| + LogicVRegister movi(VectorFormat vform, LogicVRegister dst, uint64_t imm); |
| + LogicVRegister mvni(VectorFormat vform, LogicVRegister dst, uint64_t imm); |
| + LogicVRegister orr(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, uint64_t imm); |
| + LogicVRegister sshl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister ushl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister SMinMax(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + bool max); |
| + LogicVRegister smax(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister smin(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister SMinMaxP(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, bool max); |
| + LogicVRegister smaxp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister sminp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister addp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister addv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uaddlv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister saddlv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister SMinMaxV(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, bool max); |
| + LogicVRegister smaxv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sminv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uxtl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uxtl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sxtl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sxtl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister Table(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& ind, bool zero_out_of_bounds, |
| + const LogicVRegister* tab1, |
| + const LogicVRegister* tab2 = NULL, |
| + const LogicVRegister* tab3 = NULL, |
| + const LogicVRegister* tab4 = NULL); |
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& ind); |
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& ind); |
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& tab3, const LogicVRegister& ind); |
| + LogicVRegister tbl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& tab3, const LogicVRegister& tab4, |
| + const LogicVRegister& ind); |
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& ind); |
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& ind); |
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& tab3, const LogicVRegister& ind); |
| + LogicVRegister tbx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& tab, const LogicVRegister& tab2, |
| + const LogicVRegister& tab3, const LogicVRegister& tab4, |
| + const LogicVRegister& ind); |
| + LogicVRegister uaddl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uaddl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uaddw(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uaddw2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister saddl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister saddl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister saddw(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister saddw2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister usubl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister usubl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister usubw(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister usubw2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister ssubl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister ssubl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister ssubw(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister ssubw2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister UMinMax(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + bool max); |
| + LogicVRegister umax(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister umin(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister UMinMaxP(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, bool max); |
| + LogicVRegister umaxp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uminp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister UMinMaxV(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, bool max); |
| + LogicVRegister umaxv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uminv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister trn1(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister trn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister zip1(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister zip2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uzp1(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uzp2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister shl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister scvtf(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int fbits, |
| + FPRounding rounding_mode); |
| + LogicVRegister ucvtf(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int fbits, |
| + FPRounding rounding_mode); |
| + LogicVRegister sshll(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sshll2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister shll(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister shll2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister ushll(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister ushll2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sli(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sri(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sshr(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister ushr(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister ssra(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister usra(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister srsra(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister ursra(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister suqadd(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister usqadd(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sqshl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister uqshl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqshlu(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister abs(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister neg(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister ExtractNarrow(VectorFormat vform, LogicVRegister dst, |
| + bool dstIsSigned, const LogicVRegister& src, |
| + bool srcIsSigned); |
| + LogicVRegister xtn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sqxtn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister uqxtn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister sqxtun(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister AbsDiff(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + bool issigned); |
| + LogicVRegister saba(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister uaba(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister shrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister shrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister rshrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister rshrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister uqshrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister uqshrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister uqrshrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister uqrshrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqshrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqshrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqrshrn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqrshrn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqshrun(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqshrun2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqrshrun(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqrshrun2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, int shift); |
| + LogicVRegister sqrdmulh(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2, bool round = true); |
| + LogicVRegister sqdmulh(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2); |
| +#define NEON_3VREG_LOGIC_LIST(V) \ |
| + V(addhn) \ |
| + V(addhn2) \ |
| + V(raddhn) \ |
| + V(raddhn2) \ |
| + V(subhn) \ |
| + V(subhn2) \ |
| + V(rsubhn) \ |
| + V(rsubhn2) \ |
| + V(pmull) \ |
| + V(pmull2) \ |
| + V(sabal) \ |
| + V(sabal2) \ |
| + V(uabal) \ |
| + V(uabal2) \ |
| + V(sabdl) \ |
| + V(sabdl2) \ |
| + V(uabdl) \ |
| + V(uabdl2) \ |
| + V(smull) \ |
| + V(smull2) \ |
| + V(umull) \ |
| + V(umull2) \ |
| + V(smlal) \ |
| + V(smlal2) \ |
| + V(umlal) \ |
| + V(umlal2) \ |
| + V(smlsl) \ |
| + V(smlsl2) \ |
| + V(umlsl) \ |
| + V(umlsl2) \ |
| + V(sqdmlal) \ |
| + V(sqdmlal2) \ |
| + V(sqdmlsl) \ |
| + V(sqdmlsl2) \ |
| + V(sqdmull) \ |
| + V(sqdmull2) |
| + |
| +#define DEFINE_LOGIC_FUNC(FXN) \ |
| + LogicVRegister FXN(VectorFormat vform, LogicVRegister dst, \ |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + NEON_3VREG_LOGIC_LIST(DEFINE_LOGIC_FUNC) |
| +#undef DEFINE_LOGIC_FUNC |
| + |
| +#define NEON_FP3SAME_LIST(V) \ |
| + V(fadd, FPAdd, false) \ |
| + V(fsub, FPSub, true) \ |
| + V(fmul, FPMul, true) \ |
| + V(fmulx, FPMulx, true) \ |
| + V(fdiv, FPDiv, true) \ |
| + V(fmax, FPMax, false) \ |
| + V(fmin, FPMin, false) \ |
| + V(fmaxnm, FPMaxNM, false) \ |
| + V(fminnm, FPMinNM, false) |
| + |
| +#define DECLARE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \ |
| + template <typename T> \ |
| + LogicVRegister FN(VectorFormat vform, LogicVRegister dst, \ |
| + const LogicVRegister& src1, const LogicVRegister& src2); \ |
| + LogicVRegister FN(VectorFormat vform, LogicVRegister dst, \ |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + NEON_FP3SAME_LIST(DECLARE_NEON_FP_VECTOR_OP) |
| +#undef DECLARE_NEON_FP_VECTOR_OP |
| + |
| +#define NEON_FPPAIRWISE_LIST(V) \ |
| + V(faddp, fadd, FPAdd) \ |
| + V(fmaxp, fmax, FPMax) \ |
| + V(fmaxnmp, fmaxnm, FPMaxNM) \ |
| + V(fminp, fmin, FPMin) \ |
| + V(fminnmp, fminnm, FPMinNM) |
| + |
| +#define DECLARE_NEON_FP_PAIR_OP(FNP, FN, OP) \ |
| + LogicVRegister FNP(VectorFormat vform, LogicVRegister dst, \ |
| + const LogicVRegister& src1, const LogicVRegister& src2); \ |
| + LogicVRegister FNP(VectorFormat vform, LogicVRegister dst, \ |
| + const LogicVRegister& src); |
| + NEON_FPPAIRWISE_LIST(DECLARE_NEON_FP_PAIR_OP) |
| +#undef DECLARE_NEON_FP_PAIR_OP |
| + |
| + template <typename T> |
| + LogicVRegister frecps(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister frecps(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + template <typename T> |
| + LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2); |
| + LogicVRegister frsqrts(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, |
| + const LogicVRegister& src2); |
| + template <typename T> |
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister fmla(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + template <typename T> |
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister fmls(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister fnmul(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| template <typename T> |
| - T FPDefaultNaN() const; |
| + LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + Condition cond); |
| + LogicVRegister fcmp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + Condition cond); |
| + LogicVRegister fabscmp(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2, |
| + Condition cond); |
| + LogicVRegister fcmp_zero(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, Condition cond); |
| + |
| + template <typename T> |
| + LogicVRegister fneg(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fneg(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + template <typename T> |
| + LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister frecpx(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + template <typename T> |
| + LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fabs_(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fabd(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src1, const LogicVRegister& src2); |
| + LogicVRegister frint(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, FPRounding rounding_mode, |
| + bool inexact_exception = false); |
| + LogicVRegister fcvts(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, FPRounding rounding_mode, |
| + int fbits = 0); |
| + LogicVRegister fcvtu(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, FPRounding rounding_mode, |
| + int fbits = 0); |
| + LogicVRegister fcvtl(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fcvtl2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fcvtn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fcvtn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fcvtxn(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fcvtxn2(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fsqrt(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister frsqrte(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister frecpe(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, FPRounding rounding); |
| + LogicVRegister ursqrte(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister urecpe(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + |
| + typedef float (Simulator::*FPMinMaxOp)(float a, float b); |
| + |
| + LogicVRegister FMinMaxV(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src, FPMinMaxOp Op); |
| + |
| + LogicVRegister fminv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fmaxv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fminnmv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + LogicVRegister fmaxnmv(VectorFormat vform, LogicVRegister dst, |
| + const LogicVRegister& src); |
| + |
| + template <typename T> |
| + T FPRecipSqrtEstimate(T op); |
| + template <typename T> |
| + T FPRecipEstimate(T op, FPRounding rounding); |
| + template <typename T, typename R> |
| + R FPToFixed(T op, int fbits, bool is_signed, FPRounding rounding); |
| void FPCompare(double val0, double val1); |
| double FPRoundInt(double value, FPRounding round_mode); |
| double FPToDouble(float value); |
| float FPToFloat(double value, FPRounding round_mode); |
| + float FPToFloat(float16 value); |
| + float16 FPToFloat16(float value, FPRounding round_mode); |
| + float16 FPToFloat16(double value, FPRounding round_mode); |
| + double recip_sqrt_estimate(double a); |
| + double recip_estimate(double a); |
| + double FPRecipSqrtEstimate(double a); |
| + double FPRecipEstimate(double a); |
| double FixedToDouble(int64_t src, int fbits, FPRounding round_mode); |
| double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode); |
| float FixedToFloat(int64_t src, int fbits, FPRounding round_mode); |
| @@ -743,6 +2131,9 @@ class Simulator : public DecoderVisitor { |
| T FPMul(T op1, T op2); |
| template <typename T> |
| + T FPMulx(T op1, T op2); |
| + |
| + template <typename T> |
| T FPMulAdd(T a, T op1, T op2); |
| template <typename T> |
| @@ -751,17 +2142,18 @@ class Simulator : public DecoderVisitor { |
| template <typename T> |
| T FPSub(T op1, T op2); |
| - // Standard NaN processing. |
| template <typename T> |
| - T FPProcessNaN(T op); |
| - |
| - bool FPProcessNaNs(Instruction* instr); |
| + T FPRecipStepFused(T op1, T op2); |
| template <typename T> |
| - T FPProcessNaNs(T op1, T op2); |
| + T FPRSqrtStepFused(T op1, T op2); |
| - template <typename T> |
| - T FPProcessNaNs3(T op1, T op2, T op3); |
| + // This doesn't do anything at the moment. We'll need it if we want support |
| + // for cumulative exception bits or floating-point exceptions. |
| + void FPProcessException() {} |
| + |
| + // Standard NaN processing. |
| + bool FPProcessNaNs(Instruction* instr); |
| void CheckStackAlignment(); |
| @@ -773,7 +2165,7 @@ class Simulator : public DecoderVisitor { |
| static const uint64_t kCallerSavedRegisterCorruptionValue = |
| 0xca11edc0de000000UL; |
| // This value is a NaN in both 32-bit and 64-bit FP. |
| - static const uint64_t kCallerSavedFPRegisterCorruptionValue = |
| + static const uint64_t kCallerSavedVRegisterCorruptionValue = |
| 0x7ff000007f801000UL; |
| // This value is a mix of 32/64-bits NaN and "verbose" immediate. |
| static const uint64_t kDefaultCPURegisterCorruptionValue = |
| @@ -801,7 +2193,7 @@ class Simulator : public DecoderVisitor { |
| SimRegister registers_[kNumberOfRegisters]; |
| // Floating point registers |
| - SimFPRegister fpregisters_[kNumberOfFPRegisters]; |
| + SimVRegister vregisters_[kNumberOfVRegisters]; |
| // Processor state |
| // bits[31, 27]: Condition flags N, Z, C, and V. |
| @@ -868,10 +2260,67 @@ class Simulator : public DecoderVisitor { |
| private: |
| void Init(FILE* stream); |
| + template <typename T> |
| + static T FPDefaultNaN(); |
| + |
| + template <typename T> |
| + T FPProcessNaN(T op) { |
| + DCHECK(std::isnan(op)); |
| + return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op); |
| + } |
| + |
| + template <typename T> |
| + T FPProcessNaNs(T op1, T op2) { |
| + if (IsSignallingNaN(op1)) { |
| + return FPProcessNaN(op1); |
| + } else if (IsSignallingNaN(op2)) { |
| + return FPProcessNaN(op2); |
| + } else if (std::isnan(op1)) { |
| + DCHECK(IsQuietNaN(op1)); |
| + return FPProcessNaN(op1); |
| + } else if (std::isnan(op2)) { |
| + DCHECK(IsQuietNaN(op2)); |
| + return FPProcessNaN(op2); |
| + } else { |
| + return 0.0; |
| + } |
| + } |
| + |
| + template <typename T> |
| + T FPProcessNaNs3(T op1, T op2, T op3) { |
| + if (IsSignallingNaN(op1)) { |
| + return FPProcessNaN(op1); |
| + } else if (IsSignallingNaN(op2)) { |
| + return FPProcessNaN(op2); |
| + } else if (IsSignallingNaN(op3)) { |
| + return FPProcessNaN(op3); |
| + } else if (std::isnan(op1)) { |
| + DCHECK(IsQuietNaN(op1)); |
| + return FPProcessNaN(op1); |
| + } else if (std::isnan(op2)) { |
| + DCHECK(IsQuietNaN(op2)); |
| + return FPProcessNaN(op2); |
| + } else if (std::isnan(op3)) { |
| + DCHECK(IsQuietNaN(op3)); |
| + return FPProcessNaN(op3); |
| + } else { |
| + return 0.0; |
| + } |
| + } |
| + |
| int log_parameters_; |
| Isolate* isolate_; |
| }; |
| +template <> |
| +inline double Simulator::FPDefaultNaN<double>() { |
| + return kFP64DefaultNaN; |
| +} |
| + |
| +template <> |
| +inline float Simulator::FPDefaultNaN<float>() { |
| + return kFP32DefaultNaN; |
| +} |
| // When running with the simulator transition into simulated execution at this |
| // point. |