Chromium Code Reviews| Index: src/arm64/assembler-arm64.cc |
| diff --git a/src/arm64/assembler-arm64.cc b/src/arm64/assembler-arm64.cc |
| index 423d81508e11e98f8a21d492ee3e37ffce6ffd83..421b1b30bddd4c9ec9e8cbbe510e4d48fef4fc76 100644 |
| --- a/src/arm64/assembler-arm64.cc |
| +++ b/src/arm64/assembler-arm64.cc |
| @@ -90,8 +90,8 @@ CPURegister CPURegList::PopHighestIndex() { |
| void CPURegList::RemoveCalleeSaved() { |
| if (type() == CPURegister::kRegister) { |
| Remove(GetCalleeSaved(RegisterSizeInBits())); |
| - } else if (type() == CPURegister::kFPRegister) { |
| - Remove(GetCalleeSavedFP(RegisterSizeInBits())); |
| + } else if (type() == CPURegister::kVRegister) { |
| + Remove(GetCalleeSavedV(RegisterSizeInBits())); |
| } else { |
| DCHECK(type() == CPURegister::kNoRegister); |
| DCHECK(IsEmpty()); |
| @@ -104,9 +104,8 @@ CPURegList CPURegList::GetCalleeSaved(int size) { |
| return CPURegList(CPURegister::kRegister, size, 19, 29); |
| } |
| - |
| -CPURegList CPURegList::GetCalleeSavedFP(int size) { |
| - return CPURegList(CPURegister::kFPRegister, size, 8, 15); |
| +CPURegList CPURegList::GetCalleeSavedV(int size) { |
| + return CPURegList(CPURegister::kVRegister, size, 8, 15); |
| } |
| @@ -117,11 +116,10 @@ CPURegList CPURegList::GetCallerSaved(int size) { |
| return list; |
| } |
| - |
| -CPURegList CPURegList::GetCallerSavedFP(int size) { |
| +CPURegList CPURegList::GetCallerSavedV(int size) { |
| // Registers d0-d7 and d16-d31 are caller-saved. |
| - CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7); |
| - list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31)); |
| + CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7); |
| + list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31)); |
| return list; |
| } |
| @@ -235,7 +233,7 @@ bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, |
| if (regs[i].IsRegister()) { |
| number_of_valid_regs++; |
| unique_regs |= regs[i].Bit(); |
| - } else if (regs[i].IsFPRegister()) { |
| + } else if (regs[i].IsVRegister()) { |
| number_of_valid_fpregs++; |
| unique_fpregs |= regs[i].Bit(); |
| } else { |
| @@ -272,6 +270,39 @@ bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, |
| return match; |
| } |
| +bool AreSameFormat(const VRegister& reg1, const VRegister& reg2, |
| + const VRegister& reg3, const VRegister& reg4) { |
| + DCHECK(reg1.IsValid()); |
| + bool match = true; |
| + match &= !reg2.IsValid() || reg2.IsSameFormat(reg1); |
| + match &= !reg3.IsValid() || reg3.IsSameFormat(reg1); |
| + match &= !reg4.IsValid() || reg4.IsSameFormat(reg1); |
| + return match; |
|
bbudge
2017/01/31 01:41:31
Rather than use integer & operator, could you retu
martyn.capewell
2017/02/03 11:01:31
Done.
|
| +} |
| + |
| +bool AreConsecutive(const VRegister& reg1, const VRegister& reg2, |
| + const VRegister& reg3, const VRegister& reg4) { |
| + DCHECK(reg1.IsValid()); |
| + if (!reg2.IsValid()) { |
|
bbudge
2017/01/31 01:41:31
DCHECK(!reg3.IsValid() && !reg4.IsValid()) ?
simi
martyn.capewell
2017/02/03 11:01:31
Done.
|
| + return true; |
| + } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfVRegisters)) { |
| + return false; |
| + } |
| + |
| + if (!reg3.IsValid()) { |
| + return true; |
| + } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfVRegisters)) { |
| + return false; |
| + } |
| + |
| + if (!reg4.IsValid()) { |
| + return true; |
| + } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfVRegisters)) { |
| + return false; |
| + } |
| + |
| + return true; |
| +} |
| void Immediate::InitializeHandle(Handle<Object> handle) { |
| AllowDeferredHandleDereference using_raw_address; |
| @@ -1767,445 +1798,2162 @@ void Assembler::stlxrh(const Register& rs, const Register& rt, |
| Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt)); |
| } |
| -void Assembler::mov(const Register& rd, const Register& rm) { |
| - // Moves involving the stack pointer are encoded as add immediate with |
| - // second operand of zero. Otherwise, orr with first operand zr is |
| - // used. |
| - if (rd.IsSP() || rm.IsSP()) { |
| - add(rd, rm, 0); |
| +void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEON3DifferentOp vop) { |
| + DCHECK(AreSameFormat(vn, vm)); |
| + DCHECK((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) || |
| + (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || |
| + (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || |
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| + Instr format, op = vop; |
| + if (vd.IsScalar()) { |
| + op |= NEON_Q | NEONScalar; |
| + format = SFormat(vn); |
| } else { |
| - orr(rd, AppropriateZeroRegFor(rd), rm); |
| + format = VFormat(vn); |
| + } |
| + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEON3DifferentOp vop) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) || |
| + (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) || |
| + (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D())); |
| + Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEON3DifferentOp vop) { |
| + DCHECK(AreSameFormat(vm, vn)); |
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| + Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +#define NEON_3DIFF_LONG_LIST(V) \ |
| + V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \ |
| + V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \ |
| + V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \ |
| + V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \ |
| + V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \ |
| + V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \ |
| + V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \ |
| + V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \ |
| + V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \ |
| + V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \ |
| + V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \ |
| + V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \ |
| + V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \ |
| + V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \ |
| + V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \ |
| + V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \ |
| + V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \ |
| + V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \ |
| + V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \ |
| + V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \ |
| + V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \ |
| + V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \ |
| + V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \ |
| + V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \ |
| + V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \ |
| + V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \ |
| + V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \ |
| + V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \ |
| + V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \ |
| + V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \ |
| + V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| + V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ |
| + V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| + V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ |
| + V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| + V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm) { \ |
| + DCHECK(AS); \ |
| + NEON3DifferentL(vd, vn, vm, OP); \ |
| + } |
| +NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +#define NEON_3DIFF_HN_LIST(V) \ |
| + V(addhn, NEON_ADDHN, vd.IsD()) \ |
| + V(addhn2, NEON_ADDHN2, vd.IsQ()) \ |
| + V(raddhn, NEON_RADDHN, vd.IsD()) \ |
| + V(raddhn2, NEON_RADDHN2, vd.IsQ()) \ |
| + V(subhn, NEON_SUBHN, vd.IsD()) \ |
| + V(subhn2, NEON_SUBHN2, vd.IsQ()) \ |
| + V(rsubhn, NEON_RSUBHN, vd.IsD()) \ |
| + V(rsubhn2, NEON_RSUBHN2, vd.IsQ()) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm) { \ |
| + DCHECK(AS); \ |
| + NEON3DifferentHN(vd, vn, vm, OP); \ |
| } |
| +NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEONPermOp op) { |
| + DCHECK(AreSameFormat(vd, vn, vm)); |
| + DCHECK(!vd.Is1D()); |
| + Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::trn1(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_TRN1); |
| +} |
| -void Assembler::mvn(const Register& rd, const Operand& operand) { |
| - orn(rd, AppropriateZeroRegFor(rd), operand); |
| +void Assembler::trn2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_TRN2); |
| } |
| +void Assembler::uzp1(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_UZP1); |
| +} |
| -void Assembler::mrs(const Register& rt, SystemRegister sysreg) { |
| - DCHECK(rt.Is64Bits()); |
| - Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); |
| +void Assembler::uzp2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_UZP2); |
| } |
| +void Assembler::zip1(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_ZIP1); |
| +} |
| -void Assembler::msr(SystemRegister sysreg, const Register& rt) { |
| - DCHECK(rt.Is64Bits()); |
| - Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); |
| +void Assembler::zip2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONPerm(vd, vn, vm, NEON_ZIP2); |
| } |
| +void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn, |
| + NEONShiftImmediateOp op, int immh_immb) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + Instr q, scalar; |
| + if (vn.IsScalar()) { |
| + q = NEON_Q; |
| + scalar = NEONScalar; |
| + } else { |
| + q = vd.IsD() ? 0 : NEON_Q; |
| + scalar = 0; |
| + } |
| + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn, |
| + int shift, NEONShiftImmediateOp op) { |
| + int laneSizeInBits = vn.LaneSizeInBits(); |
| + DCHECK((shift >= 0) && (shift < laneSizeInBits)); |
| + NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16); |
| +} |
| + |
| +void Assembler::NEONShiftRightImmediate(const VRegister& vd, |
| + const VRegister& vn, int shift, |
| + NEONShiftImmediateOp op) { |
| + int laneSizeInBits = vn.LaneSizeInBits(); |
| + DCHECK((shift >= 1) && (shift <= laneSizeInBits)); |
| + NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16); |
| +} |
| + |
| +void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn, |
| + int shift, NEONShiftImmediateOp op) { |
| + int laneSizeInBits = vn.LaneSizeInBits(); |
| + DCHECK((shift >= 0) && (shift < laneSizeInBits)); |
| + int immh_immb = (laneSizeInBits + shift) << 16; |
| + |
| + DCHECK((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || |
| + (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || |
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| + Instr q; |
| + q = vn.IsD() ? 0 : NEON_Q; |
| + Emit(q | op | immh_immb | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn, |
| + int shift, NEONShiftImmediateOp op) { |
| + Instr q, scalar; |
| + int laneSizeInBits = vd.LaneSizeInBits(); |
| + DCHECK((shift >= 1) && (shift <= laneSizeInBits)); |
| + int immh_immb = (2 * laneSizeInBits - shift) << 16; |
| + |
| + if (vn.IsScalar()) { |
| + DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || |
| + (vd.Is1S() && vn.Is1D())); |
| + q = NEON_Q; |
| + scalar = NEONScalar; |
| + } else { |
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| + scalar = 0; |
| + q = vd.IsD() ? 0 : NEON_Q; |
| + } |
| + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::hint(SystemHint code) { |
| - Emit(HINT | ImmHint(code) | Rt(xzr)); |
| +void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL); |
| } |
| +void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI); |
| +} |
| -void Assembler::dmb(BarrierDomain domain, BarrierType type) { |
| - Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| +void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) { |
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm); |
| } |
| +void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) { |
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU); |
| +} |
| -void Assembler::dsb(BarrierDomain domain, BarrierType type) { |
| - Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| +void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) { |
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm); |
| } |
| +void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsD()); |
| + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); |
| +} |
| -void Assembler::isb() { |
| - Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); |
| +void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsQ()); |
| + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); |
| } |
| +void Assembler::sxtl(const VRegister& vd, const VRegister& vn) { |
| + sshll(vd, vn, 0); |
| +} |
| -void Assembler::fmov(FPRegister fd, double imm) { |
| - DCHECK(fd.Is64Bits()); |
| - DCHECK(IsImmFP64(imm)); |
| - Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm)); |
| +void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) { |
| + sshll2(vd, vn, 0); |
| } |
| +void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsD()); |
| + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); |
| +} |
| -void Assembler::fmov(FPRegister fd, float imm) { |
| - DCHECK(fd.Is32Bits()); |
| - DCHECK(IsImmFP32(imm)); |
| - Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm)); |
| +void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsQ()); |
| + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); |
| } |
| +void Assembler::uxtl(const VRegister& vd, const VRegister& vn) { |
| + ushll(vd, vn, 0); |
| +} |
| -void Assembler::fmov(Register rd, FPRegister fn) { |
| - DCHECK(rd.SizeInBits() == fn.SizeInBits()); |
| - FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; |
| - Emit(op | Rd(rd) | Rn(fn)); |
| +void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) { |
| + ushll2(vd, vn, 0); |
| } |
| +void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRI); |
| +} |
| -void Assembler::fmov(FPRegister fd, Register rn) { |
| - DCHECK(fd.SizeInBits() == rn.SizeInBits()); |
| - FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx; |
| - Emit(op | Rd(fd) | Rn(rn)); |
| +void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR); |
| } |
| +void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_USHR); |
| +} |
| -void Assembler::fmov(FPRegister fd, FPRegister fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn)); |
| +void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR); |
| } |
| +void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR); |
| +} |
| -void Assembler::fadd(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FADD); |
| +void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA); |
| } |
| +void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_USRA); |
| +} |
| -void Assembler::fsub(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FSUB); |
| +void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA); |
| } |
| +void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA); |
| +} |
| -void Assembler::fmul(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FMUL); |
| +void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsD()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); |
| } |
| +void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); |
| +} |
| -void Assembler::fmadd(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - const FPRegister& fa) { |
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); |
| +void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsD()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); |
| } |
| +void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); |
| +} |
| -void Assembler::fmsub(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - const FPRegister& fa) { |
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); |
| +void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); |
| } |
| +void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); |
| +} |
| -void Assembler::fnmadd(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - const FPRegister& fa) { |
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); |
| +void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); |
| } |
| +void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); |
| +} |
| -void Assembler::fnmsub(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - const FPRegister& fa) { |
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); |
| +void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); |
| } |
| +void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); |
| +} |
| -void Assembler::fdiv(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FDIV); |
| +void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); |
| } |
| +void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); |
| +} |
| -void Assembler::fmax(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FMAX); |
| +void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); |
| } |
| +void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); |
| +} |
| -void Assembler::fmaxnm(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FMAXNM); |
| +void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); |
| } |
| +void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK(vn.IsVector() && vd.IsQ()); |
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); |
| +} |
| -void Assembler::fmin(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FMIN); |
| +void Assembler::uaddw(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsD()); |
| + NEON3DifferentW(vd, vn, vm, NEON_UADDW); |
| } |
| +void Assembler::uaddw2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsQ()); |
| + NEON3DifferentW(vd, vn, vm, NEON_UADDW2); |
| +} |
| -void Assembler::fminnm(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm) { |
| - FPDataProcessing2Source(fd, fn, fm, FMINNM); |
| +void Assembler::saddw(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsD()); |
| + NEON3DifferentW(vd, vn, vm, NEON_SADDW); |
| } |
| +void Assembler::saddw2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsQ()); |
| + NEON3DifferentW(vd, vn, vm, NEON_SADDW2); |
| +} |
| -void Assembler::fabs(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FABS); |
| +void Assembler::usubw(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsD()); |
| + NEON3DifferentW(vd, vn, vm, NEON_USUBW); |
| } |
| +void Assembler::usubw2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsQ()); |
| + NEON3DifferentW(vd, vn, vm, NEON_USUBW2); |
| +} |
| -void Assembler::fneg(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FNEG); |
| +void Assembler::ssubw(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsD()); |
| + NEON3DifferentW(vd, vn, vm, NEON_SSUBW); |
| } |
| +void Assembler::ssubw2(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(vm.IsQ()); |
| + NEON3DifferentW(vd, vn, vm, NEON_SSUBW2); |
| +} |
| -void Assembler::fsqrt(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FSQRT); |
| +void Assembler::mov(const Register& rd, const Register& rm) { |
| + // Moves involving the stack pointer are encoded as add immediate with |
| + // second operand of zero. Otherwise, orr with first operand zr is |
| + // used. |
| + if (rd.IsSP() || rm.IsSP()) { |
| + add(rd, rm, 0); |
| + } else { |
| + orr(rd, AppropriateZeroRegFor(rd), rm); |
| + } |
| } |
| +void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) { |
| + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the |
| + // number of lanes, and T is b, h, s or d. |
| + int lane_size = vd.LaneSizeInBytes(); |
| + NEONFormatField format; |
| + switch (lane_size) { |
| + case 1: |
| + format = NEON_16B; |
| + DCHECK(rn.IsW()); |
| + break; |
| + case 2: |
| + format = NEON_8H; |
| + DCHECK(rn.IsW()); |
| + break; |
| + case 4: |
| + format = NEON_4S; |
| + DCHECK(rn.IsW()); |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 8); |
| + DCHECK(rn.IsX()); |
| + format = NEON_2D; |
| + break; |
| + } |
| -void Assembler::frinta(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FRINTA); |
| + DCHECK((0 <= vd_index) && |
| + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| + Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd)); |
| } |
| +void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) { |
| + DCHECK_GE(vn.SizeInBytes(), 4); |
| + umov(rd, vn, vn_index); |
| +} |
| -void Assembler::frintm(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FRINTM); |
| +void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) { |
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| + // number of lanes, and T is b, h, s. |
| + int lane_size = vn.LaneSizeInBytes(); |
| + NEONFormatField format; |
| + Instr q = 0; |
| + switch (lane_size) { |
| + case 1: |
| + format = NEON_16B; |
| + break; |
| + case 2: |
| + format = NEON_8H; |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 4); |
| + DCHECK(rd.IsX()); |
| + format = NEON_4S; |
| + break; |
| + } |
| + q = rd.IsW() ? 0 : NEON_Q; |
| + DCHECK((0 <= vn_index) && |
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| + Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); |
| } |
| +void Assembler::cls(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(!vd.Is1D() && !vd.Is2D()); |
| + Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::frintn(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FRINTN); |
| +void Assembler::clz(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(!vd.Is1D() && !vd.Is2D()); |
| + Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::cnt(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is8B() || vd.Is16B()); |
| + Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FRINTP); |
| +void Assembler::rev16(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is8B() || vd.Is16B()); |
| + Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::rev32(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H()); |
| + Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::frintz(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - FPDataProcessing1Source(fd, fn, FRINTZ); |
| +void Assembler::rev64(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(!vd.Is1D() && !vd.Is2D()); |
| + Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is2S() || vd.Is4S()); |
| + Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::fcmp(const FPRegister& fn, |
| - const FPRegister& fm) { |
| - DCHECK(fn.SizeInBits() == fm.SizeInBits()); |
| - Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); |
| +void Assembler::urecpe(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is2S() || vd.Is4S()); |
| + Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn, |
| + NEON2RegMiscOp op) { |
| + DCHECK((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) || |
| + (op == NEON_UADALP)); |
| -void Assembler::fcmp(const FPRegister& fn, |
| - double value) { |
| - USE(value); |
| - // Although the fcmp instruction can strictly only take an immediate value of |
| - // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't |
| - // affect the result of the comparison. |
| - DCHECK(value == 0.0); |
| - Emit(FPType(fn) | FCMP_zero | Rn(fn)); |
| + DCHECK((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) || |
| + (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) || |
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::saddlp(const VRegister& vd, const VRegister& vn) { |
| + NEONAddlp(vd, vn, NEON_SADDLP); |
| +} |
| -void Assembler::fccmp(const FPRegister& fn, |
| - const FPRegister& fm, |
| - StatusFlags nzcv, |
| - Condition cond) { |
| - DCHECK(fn.SizeInBits() == fm.SizeInBits()); |
| - Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); |
| +void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) { |
| + NEONAddlp(vd, vn, NEON_UADDLP); |
| } |
| +void Assembler::sadalp(const VRegister& vd, const VRegister& vn) { |
| + NEONAddlp(vd, vn, NEON_SADALP); |
| +} |
| -void Assembler::fcsel(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - Condition cond) { |
| - DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| - DCHECK(fd.SizeInBits() == fm.SizeInBits()); |
| - Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); |
| +void Assembler::uadalp(const VRegister& vd, const VRegister& vn) { |
| + NEONAddlp(vd, vn, NEON_UADALP); |
| } |
| +void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn, |
| + NEONAcrossLanesOp op) { |
| + DCHECK((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) || |
| + (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) || |
| + (vn.Is4S() && vd.Is1D())); |
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::FPConvertToInt(const Register& rd, |
| - const FPRegister& fn, |
| - FPIntegerConvertOp op) { |
| - Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd)); |
| +void Assembler::saddlv(const VRegister& vd, const VRegister& vn) { |
| + NEONAcrossLanesL(vd, vn, NEON_SADDLV); |
| } |
| +void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) { |
| + NEONAcrossLanesL(vd, vn, NEON_UADDLV); |
| +} |
| -void Assembler::fcvt(const FPRegister& fd, |
| - const FPRegister& fn) { |
| - if (fd.Is64Bits()) { |
| - // Convert float to double. |
| - DCHECK(fn.Is32Bits()); |
| - FPDataProcessing1Source(fd, fn, FCVT_ds); |
| +void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn, |
| + NEONAcrossLanesOp op) { |
| + DCHECK((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) || |
| + (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) || |
| + (vn.Is4S() && vd.Is1S())); |
| + if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { |
| + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } else { |
| - // Convert double to float. |
| - DCHECK(fn.Is64Bits()); |
| - FPDataProcessing1Source(fd, fn, FCVT_sd); |
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| } |
| +#define NEON_ACROSSLANES_LIST(V) \ |
| + V(fmaxv, NEON_FMAXV, vd.Is1S()) \ |
| + V(fminv, NEON_FMINV, vd.Is1S()) \ |
| + V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \ |
| + V(fminnmv, NEON_FMINNMV, vd.Is1S()) \ |
| + V(addv, NEON_ADDV, true) \ |
| + V(smaxv, NEON_SMAXV, true) \ |
| + V(sminv, NEON_SMINV, true) \ |
| + V(umaxv, NEON_UMAXV, true) \ |
| + V(uminv, NEON_UMINV, true) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| + DCHECK(AS); \ |
| + NEONAcrossLanes(vd, vn, OP); \ |
| + } |
| +NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) { |
| + ins(vd, vd_index, rn); |
| +} |
| + |
| +void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) { |
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| + // number of lanes, and T is b, h, s or d. |
| + int lane_size = vn.LaneSizeInBytes(); |
| + NEONFormatField format; |
| + Instr q = 0; |
| + switch (lane_size) { |
| + case 1: |
| + format = NEON_16B; |
| + DCHECK(rd.IsW()); |
| + break; |
| + case 2: |
| + format = NEON_8H; |
| + DCHECK(rd.IsW()); |
| + break; |
| + case 4: |
| + format = NEON_4S; |
| + DCHECK(rd.IsW()); |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 8); |
| + DCHECK(rd.IsX()); |
| + format = NEON_2D; |
| + q = NEON_Q; |
| + break; |
| + } |
| -void Assembler::fcvtau(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTAU); |
| + DCHECK((0 <= vn_index) && |
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| + Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); |
| } |
| +void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) { |
| + DCHECK(vd.IsScalar()); |
| + dup(vd, vn, vn_index); |
| +} |
| -void Assembler::fcvtas(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTAS); |
| +void Assembler::dup(const VRegister& vd, const Register& rn) { |
| + DCHECK(!vd.Is1D()); |
| + DCHECK_EQ(vd.Is2D(), rn.IsX()); |
| + Instr q = vd.IsD() ? 0 : NEON_Q; |
| + Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd)); |
| } |
| +void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn, |
| + int vn_index) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the |
| + // number of lanes, and T is b, h, s or d. |
| + int lane_size = vd.LaneSizeInBytes(); |
| + NEONFormatField format; |
| + switch (lane_size) { |
| + case 1: |
| + format = NEON_16B; |
| + break; |
| + case 2: |
| + format = NEON_8H; |
| + break; |
| + case 4: |
| + format = NEON_4S; |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 8); |
| + format = NEON_2D; |
| + break; |
| + } |
| -void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTMU); |
| + DCHECK((0 <= vd_index) && |
| + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| + DCHECK((0 <= vn_index) && |
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| + Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) | |
| + ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd)); |
| } |
| +void Assembler::NEONTable(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEONTableOp op) { |
| + DCHECK(vd.Is16B() || vd.Is8B()); |
| + DCHECK(vn.Is16B()); |
| + DCHECK(AreSameFormat(vd, vm)); |
| + Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| -void Assembler::fcvtms(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTMS); |
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONTable(vd, vn, vm, NEON_TBL_1v); |
| } |
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vm) { |
| + USE(vn2); |
| + DCHECK(AreSameFormat(vn, vn2)); |
| + DCHECK(AreConsecutive(vn, vn2)); |
| + NEONTable(vd, vn, vm, NEON_TBL_2v); |
| +} |
| -void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTNU); |
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vn3, |
| + const VRegister& vm) { |
| + USE(vn2); |
| + USE(vn3); |
| + DCHECK(AreSameFormat(vn, vn2, vn3)); |
| + DCHECK(AreConsecutive(vn, vn2, vn3)); |
| + NEONTable(vd, vn, vm, NEON_TBL_3v); |
| } |
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vn3, |
| + const VRegister& vn4, const VRegister& vm) { |
| + USE(vn2); |
| + USE(vn3); |
| + USE(vn4); |
| + DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); |
| + DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); |
| + NEONTable(vd, vn, vm, NEON_TBL_4v); |
| +} |
| -void Assembler::fcvtns(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTNS); |
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + NEONTable(vd, vn, vm, NEON_TBX_1v); |
| } |
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vm) { |
| + USE(vn2); |
| + DCHECK(AreSameFormat(vn, vn2)); |
| + DCHECK(AreConsecutive(vn, vn2)); |
| + NEONTable(vd, vn, vm, NEON_TBX_2v); |
| +} |
| -void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTZU); |
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vn3, |
| + const VRegister& vm) { |
| + USE(vn2); |
| + USE(vn3); |
| + DCHECK(AreSameFormat(vn, vn2, vn3)); |
| + DCHECK(AreConsecutive(vn, vn2, vn3)); |
| + NEONTable(vd, vn, vm, NEON_TBX_3v); |
| } |
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vn2, const VRegister& vn3, |
| + const VRegister& vn4, const VRegister& vm) { |
| + USE(vn2); |
| + USE(vn3); |
| + USE(vn4); |
| + DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); |
| + DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); |
| + NEONTable(vd, vn, vm, NEON_TBX_4v); |
| +} |
| -void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) { |
| - FPConvertToInt(rd, fn, FCVTZS); |
| +void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn, |
| + int vn_index) { |
| + ins(vd, vd_index, vn, vn_index); |
| } |
| +void Assembler::mvn(const Register& rd, const Operand& operand) { |
| + orn(rd, AppropriateZeroRegFor(rd), operand); |
| +} |
| -void Assembler::scvtf(const FPRegister& fd, |
| - const Register& rn, |
| - unsigned fbits) { |
| - if (fbits == 0) { |
| - Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd)); |
| - } else { |
| - Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| - Rd(fd)); |
| - } |
| +void Assembler::mrs(const Register& rt, SystemRegister sysreg) { |
| + DCHECK(rt.Is64Bits()); |
| + Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); |
| } |
| +void Assembler::msr(SystemRegister sysreg, const Register& rt) { |
| + DCHECK(rt.Is64Bits()); |
| + Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); |
| +} |
| -void Assembler::ucvtf(const FPRegister& fd, |
| - const Register& rn, |
| - unsigned fbits) { |
| - if (fbits == 0) { |
| - Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); |
| +void Assembler::hint(SystemHint code) { Emit(HINT | ImmHint(code) | Rt(xzr)); } |
| + |
| +// NEON structure loads and stores. |
| +Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { |
| + Instr addr_field = RnSP(addr.base()); |
| + |
| + if (addr.IsPostIndex()) { |
| + static_assert(NEONLoadStoreMultiStructPostIndex == |
| + static_cast<NEONLoadStoreMultiStructPostIndexOp>( |
| + NEONLoadStoreSingleStructPostIndex), |
| + "Opcodes must match for NEON post index memop."); |
| + |
| + addr_field |= NEONLoadStoreMultiStructPostIndex; |
| + if (addr.offset() == 0) { |
| + addr_field |= RmNot31(addr.regoffset()); |
| + } else { |
| + // The immediate post index addressing mode is indicated by rm = 31. |
| + // The immediate is implied by the number of vector registers used. |
| + addr_field |= (0x1f << Rm_offset); |
| + } |
| } else { |
| - Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| - Rd(fd)); |
| + DCHECK(addr.IsImmediateOffset() && (addr.offset() == 0)); |
| } |
| + return addr_field; |
| } |
| - |
| -void Assembler::dcptr(Label* label) { |
| - RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| - if (label->is_bound()) { |
| - // The label is bound, so it does not need to be updated and the internal |
| - // reference should be emitted. |
| - // |
| - // In this case, label->pos() returns the offset of the label from the |
| - // start of the buffer. |
| - internal_reference_positions_.push_back(pc_offset()); |
| - dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos())); |
| +void Assembler::LoadStoreStructVerify(const VRegister& vt, |
| + const MemOperand& addr, Instr op) { |
| +#ifdef DEBUG |
| + // Assert that addressing mode is either offset (with immediate 0), post |
| + // index by immediate of the size of the register list, or post index by a |
| + // value in a core register. |
| + if (addr.IsImmediateOffset()) { |
| + DCHECK_EQ(addr.offset(), 0); |
| } else { |
| - int32_t offset; |
| - if (label->is_linked()) { |
| - // The label is linked, so the internal reference should be added |
| - // onto the end of the label's link chain. |
| - // |
| - // In this case, label->pos() returns the offset of the last linked |
| - // instruction from the start of the buffer. |
| - offset = label->pos() - pc_offset(); |
| - DCHECK(offset != kStartOfLabelLinkChain); |
| - } else { |
| - // The label is unused, so it now becomes linked and the internal |
| - // reference is at the start of the new link chain. |
| - offset = kStartOfLabelLinkChain; |
| - } |
| - // The instruction at pc is now the last link in the label's chain. |
| - label->link_to(pc_offset()); |
| + int offset = vt.SizeInBytes(); |
| + switch (op) { |
| + case NEON_LD1_1v: |
| + case NEON_ST1_1v: |
| + offset *= 1; |
| + break; |
| + case NEONLoadStoreSingleStructLoad1: |
| + case NEONLoadStoreSingleStructStore1: |
| + case NEON_LD1R: |
| + offset = (offset / vt.LaneCount()) * 1; |
| + break; |
| - // Traditionally the offset to the previous instruction in the chain is |
| - // encoded in the instruction payload (e.g. branch range) but internal |
| - // references are not instructions so while unbound they are encoded as |
| - // two consecutive brk instructions. The two 16-bit immediates are used |
| - // to encode the offset. |
| - offset >>= kInstructionSizeLog2; |
| - DCHECK(is_int32(offset)); |
| - uint32_t high16 = unsigned_bitextract_32(31, 16, offset); |
| - uint32_t low16 = unsigned_bitextract_32(15, 0, offset); |
| + case NEON_LD1_2v: |
| + case NEON_ST1_2v: |
| + case NEON_LD2: |
| + case NEON_ST2: |
| + offset *= 2; |
| + break; |
| + case NEONLoadStoreSingleStructLoad2: |
| + case NEONLoadStoreSingleStructStore2: |
| + case NEON_LD2R: |
| + offset = (offset / vt.LaneCount()) * 2; |
| + break; |
| - brk(high16); |
| - brk(low16); |
| + case NEON_LD1_3v: |
| + case NEON_ST1_3v: |
| + case NEON_LD3: |
| + case NEON_ST3: |
| + offset *= 3; |
| + break; |
| + case NEONLoadStoreSingleStructLoad3: |
| + case NEONLoadStoreSingleStructStore3: |
| + case NEON_LD3R: |
| + offset = (offset / vt.LaneCount()) * 3; |
| + break; |
| + |
| + case NEON_LD1_4v: |
| + case NEON_ST1_4v: |
| + case NEON_LD4: |
| + case NEON_ST4: |
| + offset *= 4; |
| + break; |
| + case NEONLoadStoreSingleStructLoad4: |
| + case NEONLoadStoreSingleStructStore4: |
| + case NEON_LD4R: |
| + offset = (offset / vt.LaneCount()) * 4; |
| + break; |
| + default: |
| + UNREACHABLE(); |
| + } |
| + DCHECK(!addr.regoffset().Is(NoReg) || addr.offset() == offset); |
| } |
| +#else |
| + USE(vt); |
| + USE(addr); |
| + USE(op); |
| +#endif |
| } |
| +void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr, |
| + NEONLoadStoreMultiStructOp op) { |
| + LoadStoreStructVerify(vt, addr, op); |
| + DCHECK(vt.IsVector() || vt.Is1D()); |
| + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); |
| +} |
| -// Note: |
| -// Below, a difference in case for the same letter indicates a |
| -// negated bit. |
| -// If b is 1, then B is 0. |
| -Instr Assembler::ImmFP32(float imm) { |
| - DCHECK(IsImmFP32(imm)); |
| - // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| - uint32_t bits = float_to_rawbits(imm); |
| - // bit7: a000.0000 |
| - uint32_t bit7 = ((bits >> 31) & 0x1) << 7; |
| - // bit6: 0b00.0000 |
| - uint32_t bit6 = ((bits >> 29) & 0x1) << 6; |
| - // bit5_to_0: 00cd.efgh |
| - uint32_t bit5_to_0 = (bits >> 19) & 0x3f; |
| +void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt, |
| + const MemOperand& addr, |
| + NEONLoadStoreSingleStructOp op) { |
| + LoadStoreStructVerify(vt, addr, op); |
| + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); |
| +} |
| - return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; |
| +void Assembler::ld1(const VRegister& vt, const MemOperand& src) { |
| + LoadStoreStruct(vt, src, NEON_LD1_1v); |
| } |
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStruct(vt, src, NEON_LD1_2v); |
| +} |
| -Instr Assembler::ImmFP64(double imm) { |
| - DCHECK(IsImmFP64(imm)); |
| - // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| - // 0000.0000.0000.0000.0000.0000.0000.0000 |
| - uint64_t bits = double_to_rawbits(imm); |
| - // bit7: a000.0000 |
| - uint64_t bit7 = ((bits >> 63) & 0x1) << 7; |
| - // bit6: 0b00.0000 |
| - uint64_t bit6 = ((bits >> 61) & 0x1) << 6; |
| - // bit5_to_0: 00cd.efgh |
| - uint64_t bit5_to_0 = (bits >> 48) & 0x3f; |
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStruct(vt, src, NEON_LD1_3v); |
| +} |
| - return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset); |
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStruct(vt, src, NEON_LD1_4v); |
| } |
| +void Assembler::ld2(const VRegister& vt, const VRegister& vt2, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStruct(vt, src, NEON_LD2); |
| +} |
| -// Code generation helpers. |
| -void Assembler::MoveWide(const Register& rd, |
| - uint64_t imm, |
| - int shift, |
| - MoveWideImmediateOp mov_op) { |
| - // Ignore the top 32 bits of an immediate if we're moving to a W register. |
| - if (rd.Is32Bits()) { |
| - // Check that the top 32 bits are zero (a positive 32-bit number) or top |
| - // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). |
| - DCHECK(((imm >> kWRegSizeInBits) == 0) || |
| - ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff)); |
| - imm &= kWRegMask; |
| +void Assembler::ld2(const VRegister& vt, const VRegister& vt2, int lane, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2); |
| +} |
| + |
| +void Assembler::ld2r(const VRegister& vt, const VRegister& vt2, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R); |
| +} |
| + |
| +void Assembler::ld3(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStruct(vt, src, NEON_LD3); |
| +} |
| + |
| +void Assembler::ld3(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, int lane, const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3); |
| +} |
| + |
| +void Assembler::ld3r(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R); |
| +} |
| + |
| +void Assembler::ld4(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStruct(vt, src, NEON_LD4); |
| +} |
| + |
| +void Assembler::ld4(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, int lane, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4); |
| +} |
| + |
| +void Assembler::ld4r(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R); |
| +} |
| + |
| +void Assembler::st1(const VRegister& vt, const MemOperand& src) { |
| + LoadStoreStruct(vt, src, NEON_ST1_1v); |
| +} |
| + |
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStruct(vt, src, NEON_ST1_2v); |
| +} |
| + |
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStruct(vt, src, NEON_ST1_3v); |
| +} |
| + |
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, |
| + const MemOperand& src) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStruct(vt, src, NEON_ST1_4v); |
| +} |
| + |
| +void Assembler::st2(const VRegister& vt, const VRegister& vt2, |
| + const MemOperand& dst) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStruct(vt, dst, NEON_ST2); |
| +} |
| + |
| +void Assembler::st2(const VRegister& vt, const VRegister& vt2, int lane, |
| + const MemOperand& dst) { |
| + USE(vt2); |
| + DCHECK(AreSameFormat(vt, vt2)); |
| + DCHECK(AreConsecutive(vt, vt2)); |
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2); |
| +} |
| + |
| +void Assembler::st3(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const MemOperand& dst) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStruct(vt, dst, NEON_ST3); |
| +} |
| + |
| +void Assembler::st3(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, int lane, const MemOperand& dst) { |
| + USE(vt2); |
| + USE(vt3); |
| + DCHECK(AreSameFormat(vt, vt2, vt3)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3)); |
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3); |
| +} |
| + |
| +void Assembler::st4(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, |
| + const MemOperand& dst) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStruct(vt, dst, NEON_ST4); |
| +} |
| + |
| +void Assembler::st4(const VRegister& vt, const VRegister& vt2, |
| + const VRegister& vt3, const VRegister& vt4, int lane, |
| + const MemOperand& dst) { |
| + USE(vt2); |
| + USE(vt3); |
| + USE(vt4); |
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4); |
| +} |
| + |
| +void Assembler::LoadStoreStructSingle(const VRegister& vt, uint32_t lane, |
| + const MemOperand& addr, |
| + NEONLoadStoreSingleStructOp op) { |
| + LoadStoreStructVerify(vt, addr, op); |
| + |
| + // We support vt arguments of the form vt.VxT() or vt.T(), where x is the |
| + // number of lanes, and T is b, h, s or d. |
| + unsigned lane_size = vt.LaneSizeInBytes(); |
| + DCHECK_LT(lane, kQRegSize / lane_size); |
| + |
| + // Lane size is encoded in the opcode field. Lane index is encoded in the Q, |
| + // S and size fields. |
| + lane *= lane_size; |
| + |
| + // Encodings for S[0]/D[0] and S[2]/D[1] are distinguished using the least- |
| + // significant bit of the size field, so we increment lane here to account for |
| + // that. |
| + if (lane_size == 8) lane++; |
| + |
| + Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask; |
| + Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask; |
| + Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask; |
| + |
| + Instr instr = op; |
| + switch (lane_size) { |
| + case 1: |
| + instr |= NEONLoadStoreSingle_b; |
| + break; |
| + case 2: |
| + instr |= NEONLoadStoreSingle_h; |
| + break; |
| + case 4: |
| + instr |= NEONLoadStoreSingle_s; |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 8U); |
| + instr |= NEONLoadStoreSingle_d; |
| + } |
| + |
| + Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt)); |
| +} |
| + |
| +void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) { |
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1); |
| +} |
| + |
| +void Assembler::ld1r(const VRegister& vt, const MemOperand& src) { |
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R); |
| +} |
| + |
| +void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) { |
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1); |
| +} |
| + |
| +void Assembler::dmb(BarrierDomain domain, BarrierType type) { |
| + Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| +} |
| + |
| +void Assembler::dsb(BarrierDomain domain, BarrierType type) { |
| + Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| +} |
| + |
| +void Assembler::isb() { |
| + Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); |
| +} |
| + |
| +void Assembler::fmov(const VRegister& vd, double imm) { |
| + if (vd.IsScalar()) { |
| + DCHECK(vd.Is1D()); |
| + Emit(FMOV_d_imm | Rd(vd) | ImmFP(imm)); |
| + } else { |
| + DCHECK(vd.Is2D()); |
| + Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit; |
| + Emit(NEON_Q | op | ImmNEONFP(imm) | NEONCmode(0xf) | Rd(vd)); |
| + } |
| +} |
| + |
| +void Assembler::fmov(const VRegister& vd, float imm) { |
| + if (vd.IsScalar()) { |
| + DCHECK(vd.Is1S()); |
| + Emit(FMOV_s_imm | Rd(vd) | ImmFP(imm)); |
| + } else { |
| + DCHECK(vd.Is2S() | vd.Is4S()); |
| + Instr op = NEONModifiedImmediate_MOVI; |
| + Instr q = vd.Is4S() ? NEON_Q : 0; |
| + Emit(q | op | ImmNEONFP(imm) | NEONCmode(0xf) | Rd(vd)); |
| + } |
| +} |
| + |
| +void Assembler::fmov(const Register& rd, const VRegister& fn) { |
| + DCHECK_EQ(rd.SizeInBits(), fn.SizeInBits()); |
| + FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; |
| + Emit(op | Rd(rd) | Rn(fn)); |
| +} |
| + |
| +void Assembler::fmov(const VRegister& vd, const Register& rn) { |
| + DCHECK_EQ(vd.SizeInBits(), rn.SizeInBits()); |
| + FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx; |
| + Emit(op | Rd(vd) | Rn(rn)); |
| +} |
| + |
| +void Assembler::fmov(const VRegister& vd, const VRegister& vn) { |
| + DCHECK_EQ(vd.SizeInBits(), vn.SizeInBits()); |
| + Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn)); |
| +} |
| + |
| +void Assembler::fmov(const VRegister& vd, int index, const Register& rn) { |
| + DCHECK((index == 1) && vd.Is1D() && rn.IsX()); |
| + USE(index); |
| + Emit(FMOV_d1_x | Rd(vd) | Rn(rn)); |
| +} |
| + |
| +void Assembler::fmov(const Register& rd, const VRegister& vn, int index) { |
| + DCHECK((index == 1) && vn.Is1D() && rd.IsX()); |
| + USE(index); |
| + Emit(FMOV_x_d1 | Rd(rd) | Rn(vn)); |
| +} |
| + |
| +void Assembler::fmadd(const VRegister& fd, const VRegister& fn, |
| + const VRegister& fm, const VRegister& fa) { |
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); |
| +} |
| + |
| +void Assembler::fmsub(const VRegister& fd, const VRegister& fn, |
| + const VRegister& fm, const VRegister& fa) { |
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); |
| +} |
| + |
| +void Assembler::fnmadd(const VRegister& fd, const VRegister& fn, |
| + const VRegister& fm, const VRegister& fa) { |
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); |
| +} |
| + |
| +void Assembler::fnmsub(const VRegister& fd, const VRegister& fn, |
| + const VRegister& fm, const VRegister& fa) { |
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); |
| +} |
| + |
| +void Assembler::fnmul(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm) { |
| + DCHECK(AreSameSizeAndType(vd, vn, vm)); |
| + Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d; |
| + Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcmp(const VRegister& fn, const VRegister& fm) { |
| + DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); |
| + Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); |
| +} |
| + |
| +void Assembler::fcmp(const VRegister& fn, double value) { |
| + USE(value); |
| + // Although the fcmp instruction can strictly only take an immediate value of |
| + // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't |
| + // affect the result of the comparison. |
| + DCHECK_EQ(value, 0.0); |
| + Emit(FPType(fn) | FCMP_zero | Rn(fn)); |
| +} |
| + |
| +void Assembler::fccmp(const VRegister& fn, const VRegister& fm, |
| + StatusFlags nzcv, Condition cond) { |
| + DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); |
| + Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); |
| +} |
| + |
| +void Assembler::fcsel(const VRegister& fd, const VRegister& fn, |
| + const VRegister& fm, Condition cond) { |
| + DCHECK_EQ(fd.SizeInBits(), fn.SizeInBits()); |
| + DCHECK_EQ(fd.SizeInBits(), fm.SizeInBits()); |
| + Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); |
| +} |
| + |
| +void Assembler::NEONFPConvertToInt(const Register& rd, const VRegister& vn, |
| + Instr op) { |
| + Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd)); |
| +} |
| + |
| +void Assembler::NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, |
| + Instr op) { |
| + if (vn.IsScalar()) { |
| + DCHECK((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D())); |
| + op |= NEON_Q | NEONScalar; |
| + } |
| + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvt(const VRegister& vd, const VRegister& vn) { |
| + FPDataProcessing1SourceOp op; |
| + if (vd.Is1D()) { |
| + DCHECK(vn.Is1S() || vn.Is1H()); |
| + op = vn.Is1S() ? FCVT_ds : FCVT_dh; |
| + } else if (vd.Is1S()) { |
| + DCHECK(vn.Is1D() || vn.Is1H()); |
| + op = vn.Is1D() ? FCVT_sd : FCVT_sh; |
| + } else { |
| + DCHECK(vd.Is1H()); |
| + DCHECK(vn.Is1D() || vn.Is1S()); |
| + op = vn.Is1D() ? FCVT_hd : FCVT_hs; |
| + } |
| + FPDataProcessing1Source(vd, vn, op); |
| +} |
| + |
| +void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S())); |
| + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; |
| + Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S())); |
| + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; |
| + Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S())); |
| + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; |
| + Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S())); |
| + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; |
| + Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) { |
| + Instr format = 1 << NEONSize_offset; |
| + if (vd.IsScalar()) { |
| + DCHECK(vd.Is1S() && vn.Is1D()); |
| + Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd)); |
| + } else { |
| + DCHECK(vd.Is2S() && vn.Is2D()); |
| + Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd)); |
| + } |
| +} |
| + |
| +void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.Is4S() && vn.Is2D()); |
| + Instr format = 1 << NEONSize_offset; |
| + Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +#define NEON_FP2REGMISC_FCVT_LIST(V) \ |
| + V(fcvtnu, NEON_FCVTNU, FCVTNU) \ |
| + V(fcvtns, NEON_FCVTNS, FCVTNS) \ |
| + V(fcvtpu, NEON_FCVTPU, FCVTPU) \ |
| + V(fcvtps, NEON_FCVTPS, FCVTPS) \ |
| + V(fcvtmu, NEON_FCVTMU, FCVTMU) \ |
| + V(fcvtms, NEON_FCVTMS, FCVTMS) \ |
| + V(fcvtau, NEON_FCVTAU, FCVTAU) \ |
| + V(fcvtas, NEON_FCVTAS, FCVTAS) |
| + |
| +#define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \ |
| + void Assembler::FN(const Register& rd, const VRegister& vn) { \ |
| + NEONFPConvertToInt(rd, vn, SCA_OP); \ |
| + } \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| + NEONFPConvertToInt(vd, vn, VEC_OP); \ |
| + } |
| +NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS) |
| +#undef DEFINE_ASM_FUNCS |
| + |
| +void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + NEONFP2RegMisc(vd, vn, NEON_SCVTF); |
| + } else { |
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm); |
| + } |
| +} |
| + |
| +void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + NEONFP2RegMisc(vd, vn, NEON_UCVTF); |
| + } else { |
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm); |
| + } |
| +} |
| + |
| +void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd)); |
| + } else { |
| + Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| + Rd(vd)); |
| + } |
| +} |
| + |
| +void Assembler::ucvtf(const VRegister& fd, const Register& rn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); |
| + } else { |
| + Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| + Rd(fd)); |
| + } |
| +} |
| + |
| +void Assembler::NEON3Same(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, NEON3SameOp vop) { |
| + DCHECK(AreSameFormat(vd, vn, vm)); |
| + DCHECK(vd.IsVector() || !vd.IsQ()); |
| + |
| + Instr format, op = vop; |
| + if (vd.IsScalar()) { |
| + op |= NEON_Q | NEONScalar; |
| + format = SFormat(vd); |
| + } else { |
| + format = VFormat(vd); |
| + } |
| + |
| + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONFP3Same(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, Instr op) { |
| + DCHECK(AreSameFormat(vd, vn, vm)); |
| + Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +#define NEON_FP2REGMISC_LIST(V) \ |
| + V(fabs, NEON_FABS, FABS) \ |
| + V(fneg, NEON_FNEG, FNEG) \ |
| + V(fsqrt, NEON_FSQRT, FSQRT) \ |
| + V(frintn, NEON_FRINTN, FRINTN) \ |
| + V(frinta, NEON_FRINTA, FRINTA) \ |
| + V(frintp, NEON_FRINTP, FRINTP) \ |
| + V(frintm, NEON_FRINTM, FRINTM) \ |
| + V(frintx, NEON_FRINTX, FRINTX) \ |
| + V(frintz, NEON_FRINTZ, FRINTZ) \ |
| + V(frinti, NEON_FRINTI, FRINTI) \ |
| + V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \ |
| + V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar) |
| + |
| +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| + Instr op; \ |
| + if (vd.IsScalar()) { \ |
| + DCHECK(vd.Is1S() || vd.Is1D()); \ |
| + op = SCA_OP; \ |
| + } else { \ |
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ |
| + op = VEC_OP; \ |
| + } \ |
| + NEONFP2RegMisc(vd, vn, op); \ |
| + } |
| +NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) { |
| + DCHECK((vd.Is8H() && vn.Is8B() && shift == 8) || |
| + (vd.Is4S() && vn.Is4H() && shift == 16) || |
| + (vd.Is2D() && vn.Is2S() && shift == 32)); |
| + USE(shift); |
| + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) { |
| + USE(shift); |
| + DCHECK((vd.Is8H() && vn.Is16B() && shift == 8) || |
| + (vd.Is4S() && vn.Is8H() && shift == 16) || |
| + (vd.Is2D() && vn.Is4S() && shift == 32)); |
| + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, |
| + NEON2RegMiscOp vop, double value) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK_EQ(value, 0.0); |
| + USE(value); |
| + |
| + Instr op = vop; |
| + if (vd.IsScalar()) { |
| + DCHECK(vd.Is1S() || vd.Is1D()); |
| + op |= NEON_Q | NEONScalar; |
| + } else { |
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); |
| + } |
| + |
| + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value); |
| +} |
| + |
| +void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value); |
| +} |
| + |
| +void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value); |
| +} |
| + |
| +void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value); |
| +} |
| + |
| +void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value); |
| +} |
| + |
| +void Assembler::frecpx(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsScalar()); |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is1S() || vd.Is1D()); |
| + Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) { |
| + DCHECK(vn.Is1S() || vn.Is1D()); |
| + DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); |
| + if (fbits == 0) { |
| + Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd)); |
| + } else { |
| + Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) | |
| + Rd(rd)); |
| + } |
| +} |
| + |
| +void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCVTZS); |
| + } else { |
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm); |
| + } |
| +} |
| + |
| +void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) { |
| + DCHECK(vn.Is1S() || vn.Is1D()); |
| + DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); |
| + if (fbits == 0) { |
| + Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd)); |
| + } else { |
| + Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) | |
| + Rd(rd)); |
| + } |
| +} |
| + |
| +void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) { |
| + DCHECK_GE(fbits, 0); |
| + if (fbits == 0) { |
| + NEONFP2RegMisc(vd, vn, NEON_FCVTZU); |
| + } else { |
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm); |
| + } |
| +} |
| + |
| +void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, |
| + Instr op) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEON2RegMisc(const VRegister& vd, const VRegister& vn, |
| + NEON2RegMiscOp vop, int value) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK_EQ(value, 0); |
| + USE(value); |
| + |
| + Instr format, op = vop; |
| + if (vd.IsScalar()) { |
| + op |= NEON_Q | NEONScalar; |
| + format = SFormat(vd); |
| + } else { |
| + format = VFormat(vd); |
| + } |
| + |
| + Emit(format | op | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value); |
| +} |
| + |
| +void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_CMGE_zero, value); |
| +} |
| + |
| +void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_CMGT_zero, value); |
| +} |
| + |
| +void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_CMLE_zero, value); |
| +} |
| + |
| +void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_CMLT_zero, value); |
| +} |
| + |
| +#define NEON_3SAME_LIST(V) \ |
| + V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \ |
| + V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \ |
| + V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \ |
| + V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \ |
| + V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \ |
| + V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \ |
| + V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \ |
| + V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \ |
| + V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \ |
| + V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \ |
| + V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \ |
| + V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \ |
| + V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \ |
| + V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ |
| + V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ |
| + V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| + V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \ |
| + V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \ |
| + V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \ |
| + V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \ |
| + V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \ |
| + V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \ |
| + V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \ |
| + V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \ |
| + V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \ |
| + V(uqadd, NEON_UQADD, true) \ |
| + V(sqadd, NEON_SQADD, true) \ |
| + V(uqsub, NEON_UQSUB, true) \ |
| + V(sqsub, NEON_SQSUB, true) \ |
| + V(sqshl, NEON_SQSHL, true) \ |
| + V(uqshl, NEON_UQSHL, true) \ |
| + V(sqrshl, NEON_SQRSHL, true) \ |
| + V(uqrshl, NEON_UQRSHL, true) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm) { \ |
| + DCHECK(AS); \ |
| + NEON3Same(vd, vn, vm, OP); \ |
| + } |
| +NEON_3SAME_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +#define NEON_FP3SAME_LIST(V) \ |
| + V(fadd, NEON_FADD, FADD) \ |
| + V(fsub, NEON_FSUB, FSUB) \ |
| + V(fmul, NEON_FMUL, FMUL) \ |
| + V(fdiv, NEON_FDIV, FDIV) \ |
| + V(fmax, NEON_FMAX, FMAX) \ |
| + V(fmaxnm, NEON_FMAXNM, FMAXNM) \ |
| + V(fmin, NEON_FMIN, FMIN) \ |
| + V(fminnm, NEON_FMINNM, FMINNM) \ |
| + V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \ |
| + V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \ |
| + V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \ |
| + V(fabd, NEON_FABD, NEON_FABD_scalar) \ |
| + V(fmla, NEON_FMLA, 0) \ |
| + V(fmls, NEON_FMLS, 0) \ |
| + V(facge, NEON_FACGE, NEON_FACGE_scalar) \ |
| + V(facgt, NEON_FACGT, NEON_FACGT_scalar) \ |
| + V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \ |
| + V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \ |
| + V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \ |
| + V(faddp, NEON_FADDP, 0) \ |
| + V(fmaxp, NEON_FMAXP, 0) \ |
| + V(fminp, NEON_FMINP, 0) \ |
| + V(fmaxnmp, NEON_FMAXNMP, 0) \ |
| + V(fminnmp, NEON_FMINNMP, 0) |
| + |
| +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm) { \ |
| + Instr op; \ |
| + if ((SCA_OP != 0) && vd.IsScalar()) { \ |
| + DCHECK(vd.Is1S() || vd.Is1D()); \ |
| + op = SCA_OP; \ |
| + } else { \ |
| + DCHECK(vd.IsVector()); \ |
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ |
| + op = VEC_OP; \ |
| + } \ |
| + NEONFP3Same(vd, vn, vm, op); \ |
| + } |
| +NEON_FP3SAME_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +void Assembler::addp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1D() && vn.Is2D())); |
| + Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::faddp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| + Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| + Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fminp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| + Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| + Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) { |
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| + Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) { |
| + NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR); |
| +} |
| + |
| +void Assembler::mov(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + if (vd.IsD()) { |
| + orr(vd.V8B(), vn.V8B(), vn.V8B()); |
| + } else { |
| + DCHECK(vd.IsQ()); |
| + orr(vd.V16B(), vn.V16B(), vn.V16B()); |
| + } |
| +} |
| + |
| +void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) { |
| + NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC); |
| +} |
| + |
| +void Assembler::movi(const VRegister& vd, const uint64_t imm, Shift shift, |
| + const int shift_amount) { |
| + DCHECK((shift == LSL) || (shift == MSL)); |
| + if (vd.Is2D() || vd.Is1D()) { |
| + DCHECK_EQ(shift_amount, 0); |
| + int imm8 = 0; |
| + for (int i = 0; i < 8; ++i) { |
| + int byte = (imm >> (i * 8)) & 0xff; |
| + DCHECK((byte == 0) || (byte == 0xff)); |
| + if (byte == 0xff) { |
| + imm8 |= (1 << i); |
| + } |
| + } |
| + Instr q = vd.Is2D() ? NEON_Q : 0; |
| + Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI | |
| + ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd)); |
| + } else if (shift == LSL) { |
| + NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount, |
| + NEONModifiedImmediate_MOVI); |
| + } else { |
| + NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount, |
| + NEONModifiedImmediate_MOVI); |
| + } |
| +} |
| + |
| +void Assembler::mvn(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + if (vd.IsD()) { |
| + not_(vd.V8B(), vn.V8B()); |
| + } else { |
| + DCHECK(vd.IsQ()); |
| + not_(vd.V16B(), vn.V16B()); |
| + } |
| +} |
| + |
| +void Assembler::mvni(const VRegister& vd, const int imm8, Shift shift, |
| + const int shift_amount) { |
| + DCHECK((shift == LSL) || (shift == MSL)); |
| + if (shift == LSL) { |
| + NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); |
| + } else { |
| + NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); |
| + } |
| +} |
| + |
| +void Assembler::NEONFPByElement(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, int vm_index, |
| + NEONByIndexedElementOp vop) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || |
| + (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) || |
| + (vd.Is1D() && vm.Is1D())); |
| + DCHECK((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2))); |
| + |
| + Instr op = vop; |
| + int index_num_bits = vm.Is1S() ? 2 : 1; |
| + if (vd.IsScalar()) { |
| + op |= NEON_Q | NEONScalar; |
| + } |
| + |
| + Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | |
| + Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONByElement(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, int vm_index, |
| + NEONByIndexedElementOp vop) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) || |
| + (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) || |
| + (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S())); |
| + DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || |
| + (vm.Is1S() && (vm_index < 4))); |
| + |
| + Instr format, op = vop; |
| + int index_num_bits = vm.Is1H() ? 3 : 2; |
| + if (vd.IsScalar()) { |
| + op |= NEONScalar | NEON_Q; |
| + format = SFormat(vn); |
| + } else { |
| + format = VFormat(vn); |
| + } |
| + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | |
| + Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONByElementL(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, int vm_index, |
| + NEONByIndexedElementOp vop) { |
| + DCHECK((vd.Is4S() && vn.Is4H() && vm.Is1H()) || |
| + (vd.Is4S() && vn.Is8H() && vm.Is1H()) || |
| + (vd.Is1S() && vn.Is1H() && vm.Is1H()) || |
| + (vd.Is2D() && vn.Is2S() && vm.Is1S()) || |
| + (vd.Is2D() && vn.Is4S() && vm.Is1S()) || |
| + (vd.Is1D() && vn.Is1S() && vm.Is1S())); |
| + |
| + DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || |
| + (vm.Is1S() && (vm_index < 4))); |
| + |
| + Instr format, op = vop; |
| + int index_num_bits = vm.Is1H() ? 3 : 2; |
| + if (vd.IsScalar()) { |
| + op |= NEONScalar | NEON_Q; |
| + format = SFormat(vn); |
| + } else { |
| + format = VFormat(vn); |
| + } |
| + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | |
| + Rd(vd)); |
| +} |
| + |
| +#define NEON_BYELEMENT_LIST(V) \ |
| + V(mul, NEON_MUL_byelement, vn.IsVector()) \ |
| + V(mla, NEON_MLA_byelement, vn.IsVector()) \ |
| + V(mls, NEON_MLS_byelement, vn.IsVector()) \ |
| + V(sqdmulh, NEON_SQDMULH_byelement, true) \ |
| + V(sqrdmulh, NEON_SQRDMULH_byelement, true) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm, int vm_index) { \ |
| + DCHECK(AS); \ |
| + NEONByElement(vd, vn, vm, vm_index, OP); \ |
| + } |
| +NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +#define NEON_FPBYELEMENT_LIST(V) \ |
| + V(fmul, NEON_FMUL_byelement) \ |
| + V(fmla, NEON_FMLA_byelement) \ |
| + V(fmls, NEON_FMLS_byelement) \ |
| + V(fmulx, NEON_FMULX_byelement) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm, int vm_index) { \ |
| + NEONFPByElement(vd, vn, vm, vm_index, OP); \ |
| + } |
| +NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +#define NEON_BYELEMENT_LONG_LIST(V) \ |
| + V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \ |
| + V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \ |
| + V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \ |
| + V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \ |
| + V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \ |
| + V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ()) |
| + |
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| + const VRegister& vm, int vm_index) { \ |
| + DCHECK(AS); \ |
| + NEONByElementL(vd, vn, vm, vm_index, OP); \ |
| + } |
| +NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC) |
| +#undef DEFINE_ASM_FUNC |
| + |
| +void Assembler::suqadd(const VRegister& vd, const VRegister& vn) { |
| + NEON2RegMisc(vd, vn, NEON_SUQADD); |
| +} |
| + |
| +void Assembler::usqadd(const VRegister& vd, const VRegister& vn) { |
| + NEON2RegMisc(vd, vn, NEON_USQADD); |
| +} |
| + |
| +void Assembler::abs(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_ABS); |
| +} |
| + |
| +void Assembler::sqabs(const VRegister& vd, const VRegister& vn) { |
| + NEON2RegMisc(vd, vn, NEON_SQABS); |
| +} |
| + |
| +void Assembler::neg(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() || vd.Is1D()); |
| + NEON2RegMisc(vd, vn, NEON_NEG); |
| +} |
| + |
| +void Assembler::sqneg(const VRegister& vd, const VRegister& vn) { |
| + NEON2RegMisc(vd, vn, NEON_SQNEG); |
| +} |
| + |
| +void Assembler::NEONXtn(const VRegister& vd, const VRegister& vn, |
| + NEON2RegMiscOp vop) { |
| + Instr format, op = vop; |
| + if (vd.IsScalar()) { |
| + DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || |
| + (vd.Is1S() && vn.Is1D())); |
| + op |= NEON_Q | NEONScalar; |
| + format = SFormat(vd); |
| + } else { |
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| + format = VFormat(vd); |
| + } |
| + Emit(format | op | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::xtn(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() && vd.IsD()); |
| + NEONXtn(vd, vn, NEON_XTN); |
| +} |
| + |
| +void Assembler::xtn2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() && vd.IsQ()); |
| + NEONXtn(vd, vn, NEON_XTN); |
| +} |
| + |
| +void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsScalar() || vd.IsD()); |
| + NEONXtn(vd, vn, NEON_SQXTN); |
| +} |
| + |
| +void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() && vd.IsQ()); |
| + NEONXtn(vd, vn, NEON_SQXTN); |
| +} |
| + |
| +void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsScalar() || vd.IsD()); |
| + NEONXtn(vd, vn, NEON_SQXTUN); |
| +} |
| + |
| +void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() && vd.IsQ()); |
| + NEONXtn(vd, vn, NEON_SQXTUN); |
| +} |
| + |
| +void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsScalar() || vd.IsD()); |
| + NEONXtn(vd, vn, NEON_UQXTN); |
| +} |
| + |
| +void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(vd.IsVector() && vd.IsQ()); |
| + NEONXtn(vd, vn, NEON_UQXTN); |
| +} |
| + |
| +// NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size". |
| +void Assembler::not_(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is8B() || vd.Is16B()); |
| + Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::rbit(const VRegister& vd, const VRegister& vn) { |
| + DCHECK(AreSameFormat(vd, vn)); |
| + DCHECK(vd.Is8B() || vd.Is16B()); |
| + Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::ext(const VRegister& vd, const VRegister& vn, |
| + const VRegister& vm, int index) { |
| + DCHECK(AreSameFormat(vd, vn, vm)); |
| + DCHECK(vd.Is8B() || vd.Is16B()); |
| + DCHECK((0 <= index) && (index < vd.LaneCount())); |
| + Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd)); |
| +} |
| + |
| +void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) { |
| + Instr q, scalar; |
| + |
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| + // number of lanes, and T is b, h, s or d. |
| + int lane_size = vn.LaneSizeInBytes(); |
| + NEONFormatField format; |
| + switch (lane_size) { |
| + case 1: |
| + format = NEON_16B; |
| + break; |
| + case 2: |
| + format = NEON_8H; |
| + break; |
| + case 4: |
| + format = NEON_4S; |
| + break; |
| + default: |
| + DCHECK_EQ(lane_size, 8); |
| + format = NEON_2D; |
| + break; |
| + } |
| + |
| + if (vd.IsScalar()) { |
| + q = NEON_Q; |
| + scalar = NEONScalar; |
| + } else { |
| + DCHECK(!vd.Is1D()); |
| + q = vd.IsD() ? 0 : NEON_Q; |
| + scalar = 0; |
| + } |
| + Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) | |
| + Rd(vd)); |
| +} |
| + |
| +void Assembler::dcptr(Label* label) { |
| + RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| + if (label->is_bound()) { |
| + // The label is bound, so it does not need to be updated and the internal |
| + // reference should be emitted. |
| + // |
| + // In this case, label->pos() returns the offset of the label from the |
| + // start of the buffer. |
| + internal_reference_positions_.push_back(pc_offset()); |
| + dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos())); |
| + } else { |
| + int32_t offset; |
| + if (label->is_linked()) { |
| + // The label is linked, so the internal reference should be added |
| + // onto the end of the label's link chain. |
| + // |
| + // In this case, label->pos() returns the offset of the last linked |
| + // instruction from the start of the buffer. |
| + offset = label->pos() - pc_offset(); |
| + DCHECK(offset != kStartOfLabelLinkChain); |
| + } else { |
| + // The label is unused, so it now becomes linked and the internal |
| + // reference is at the start of the new link chain. |
| + offset = kStartOfLabelLinkChain; |
| + } |
| + // The instruction at pc is now the last link in the label's chain. |
| + label->link_to(pc_offset()); |
| + |
| + // Traditionally the offset to the previous instruction in the chain is |
| + // encoded in the instruction payload (e.g. branch range) but internal |
| + // references are not instructions so while unbound they are encoded as |
| + // two consecutive brk instructions. The two 16-bit immediates are used |
| + // to encode the offset. |
| + offset >>= kInstructionSizeLog2; |
| + DCHECK(is_int32(offset)); |
| + uint32_t high16 = unsigned_bitextract_32(31, 16, offset); |
| + uint32_t low16 = unsigned_bitextract_32(15, 0, offset); |
| + |
| + brk(high16); |
| + brk(low16); |
| + } |
| +} |
| + |
| +// Below, a difference in case for the same letter indicates a |
| +// negated bit. If b is 1, then B is 0. |
| +uint32_t Assembler::FPToImm8(double imm) { |
| + DCHECK(IsImmFP64(imm)); |
| + // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| + // 0000.0000.0000.0000.0000.0000.0000.0000 |
| + uint64_t bits = bit_cast<uint64_t>(imm); |
| + // bit7: a000.0000 |
| + uint64_t bit7 = ((bits >> 63) & 0x1) << 7; |
| + // bit6: 0b00.0000 |
| + uint64_t bit6 = ((bits >> 61) & 0x1) << 6; |
| + // bit5_to_0: 00cd.efgh |
| + uint64_t bit5_to_0 = (bits >> 48) & 0x3f; |
| + |
| + return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); |
| +} |
| + |
| +Instr Assembler::ImmFP(double imm) { return FPToImm8(imm) << ImmFP_offset; } |
| +Instr Assembler::ImmNEONFP(double imm) { |
| + return ImmNEONabcdefgh(FPToImm8(imm)); |
| +} |
| + |
| +// Code generation helpers. |
| +void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift, |
| + MoveWideImmediateOp mov_op) { |
| + // Ignore the top 32 bits of an immediate if we're moving to a W register. |
| + if (rd.Is32Bits()) { |
| + // Check that the top 32 bits are zero (a positive 32-bit number) or top |
| + // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). |
| + DCHECK(((imm >> kWRegSizeInBits) == 0) || |
| + ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff)); |
| + imm &= kWRegMask; |
| } |
| if (shift >= 0) { |
| @@ -2239,13 +3987,9 @@ void Assembler::MoveWide(const Register& rd, |
| ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift)); |
| } |
| - |
| -void Assembler::AddSub(const Register& rd, |
| - const Register& rn, |
| - const Operand& operand, |
| - FlagsUpdate S, |
| - AddSubOp op) { |
| - DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| +void Assembler::AddSub(const Register& rd, const Register& rn, |
| + const Operand& operand, FlagsUpdate S, AddSubOp op) { |
| + DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); |
| DCHECK(!operand.NeedsRelocation(this)); |
| if (operand.IsImmediate()) { |
| int64_t immediate = operand.ImmediateValue(); |
| @@ -2254,8 +3998,8 @@ void Assembler::AddSub(const Register& rd, |
| Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | |
| ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn)); |
| } else if (operand.IsShiftedRegister()) { |
| - DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); |
| - DCHECK(operand.shift() != ROR); |
| + DCHECK_EQ(operand.reg().SizeInBits(), rd.SizeInBits()); |
| + DCHECK_NE(operand.shift(), ROR); |
| // For instructions of the form: |
| // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] |
| @@ -2277,39 +4021,34 @@ void Assembler::AddSub(const Register& rd, |
| } |
| } |
| - |
| -void Assembler::AddSubWithCarry(const Register& rd, |
| - const Register& rn, |
| - const Operand& operand, |
| - FlagsUpdate S, |
| +void Assembler::AddSubWithCarry(const Register& rd, const Register& rn, |
| + const Operand& operand, FlagsUpdate S, |
| AddSubWithCarryOp op) { |
| - DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| - DCHECK(rd.SizeInBits() == operand.reg().SizeInBits()); |
| + DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); |
| + DCHECK_EQ(rd.SizeInBits(), operand.reg().SizeInBits()); |
| DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); |
| DCHECK(!operand.NeedsRelocation(this)); |
| Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); |
| } |
| - |
| void Assembler::hlt(int code) { |
| DCHECK(is_uint16(code)); |
| Emit(HLT | ImmException(code)); |
| } |
| - |
| void Assembler::brk(int code) { |
| DCHECK(is_uint16(code)); |
| Emit(BRK | ImmException(code)); |
| } |
| - |
| void Assembler::EmitStringData(const char* string) { |
| size_t len = strlen(string) + 1; |
| - DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap)); |
| + DCHECK_LE(RoundUp(len, kInstructionSize), static_cast<size_t>(kGap)); |
| EmitData(string, static_cast<int>(len)); |
| // Pad with NULL characters until pc_ is aligned. |
| const char pad[] = {'\0', '\0', '\0', '\0'}; |
| - STATIC_ASSERT(sizeof(pad) == kInstructionSize); |
| + static_assert(sizeof(pad) == kInstructionSize, |
| + "Size of padding must match instruction size."); |
| EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset()); |
| } |
| @@ -2426,33 +4165,75 @@ void Assembler::DataProcessing1Source(const Register& rd, |
| Emit(SF(rn) | op | Rn(rn) | Rd(rd)); |
| } |
| - |
| -void Assembler::FPDataProcessing1Source(const FPRegister& fd, |
| - const FPRegister& fn, |
| +void Assembler::FPDataProcessing1Source(const VRegister& vd, |
| + const VRegister& vn, |
| FPDataProcessing1SourceOp op) { |
| - Emit(FPType(fn) | op | Rn(fn) | Rd(fd)); |
| + Emit(FPType(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| - |
| -void Assembler::FPDataProcessing2Source(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| +void Assembler::FPDataProcessing2Source(const VRegister& fd, |
| + const VRegister& fn, |
| + const VRegister& fm, |
| FPDataProcessing2SourceOp op) { |
| DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| DCHECK(fd.SizeInBits() == fm.SizeInBits()); |
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); |
| } |
| - |
| -void Assembler::FPDataProcessing3Source(const FPRegister& fd, |
| - const FPRegister& fn, |
| - const FPRegister& fm, |
| - const FPRegister& fa, |
| +void Assembler::FPDataProcessing3Source(const VRegister& fd, |
| + const VRegister& fn, |
| + const VRegister& fm, |
| + const VRegister& fa, |
| FPDataProcessing3SourceOp op) { |
| DCHECK(AreSameSizeAndType(fd, fn, fm, fa)); |
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); |
| } |
| +void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8, |
| + const int left_shift, |
| + NEONModifiedImmediateOp op) { |
| + DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() || |
| + vd.Is4S()); |
| + DCHECK((left_shift == 0) || (left_shift == 8) || (left_shift == 16) || |
| + (left_shift == 24)); |
| + DCHECK(is_uint8(imm8)); |
| + |
| + int cmode_1, cmode_2, cmode_3; |
| + if (vd.Is8B() || vd.Is16B()) { |
| + DCHECK_EQ(op, NEONModifiedImmediate_MOVI); |
| + cmode_1 = 1; |
| + cmode_2 = 1; |
| + cmode_3 = 1; |
| + } else { |
| + cmode_1 = (left_shift >> 3) & 1; |
| + cmode_2 = left_shift >> 4; |
| + cmode_3 = 0; |
| + if (vd.Is4H() || vd.Is8H()) { |
| + DCHECK((left_shift == 0) || (left_shift == 8)); |
| + cmode_3 = 1; |
| + } |
| + } |
| + int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1); |
| + |
| + Instr q = vd.IsQ() ? NEON_Q : 0; |
| + |
| + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); |
| +} |
| + |
| +void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8, |
| + const int shift_amount, |
| + NEONModifiedImmediateOp op) { |
| + DCHECK(vd.Is2S() || vd.Is4S()); |
| + DCHECK((shift_amount == 8) || (shift_amount == 16)); |
| + DCHECK(is_uint8(imm8)); |
| + |
| + int cmode_0 = (shift_amount >> 4) & 1; |
| + int cmode = 0xc | cmode_0; |
| + |
| + Instr q = vd.IsQ() ? NEON_Q : 0; |
| + |
| + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); |
| +} |
| void Assembler::EmitShift(const Register& rd, |
| const Register& rn, |
| @@ -2552,7 +4333,7 @@ void Assembler::LoadStore(const CPURegister& rt, |
| Instr memop = op | Rt(rt) | RnSP(addr.base()); |
| if (addr.IsImmediateOffset()) { |
| - LSDataSize size = CalcLSDataSize(op); |
| + unsigned size = CalcLSDataSize(op); |
| if (IsImmLSScaled(addr.offset(), size)) { |
| int offset = static_cast<int>(addr.offset()); |
| // Use the scaled addressing mode. |
| @@ -2605,14 +4386,12 @@ bool Assembler::IsImmLSUnscaled(int64_t offset) { |
| return is_int9(offset); |
| } |
| - |
| -bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) { |
| +bool Assembler::IsImmLSScaled(int64_t offset, unsigned size) { |
| bool offset_is_size_multiple = (((offset >> size) << size) == offset); |
| return offset_is_size_multiple && is_uint12(offset >> size); |
| } |
| - |
| -bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) { |
| +bool Assembler::IsImmLSPair(int64_t offset, unsigned size) { |
| bool offset_is_size_multiple = (((offset >> size) << size) == offset); |
| return offset_is_size_multiple && is_int7(offset >> size); |
| } |
| @@ -2843,7 +4622,7 @@ bool Assembler::IsImmConditionalCompare(int64_t immediate) { |
| bool Assembler::IsImmFP32(float imm) { |
| // Valid values will have the form: |
| // aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| - uint32_t bits = float_to_rawbits(imm); |
| + uint32_t bits = bit_cast<uint32_t>(imm); |
| // bits[19..0] are cleared. |
| if ((bits & 0x7ffff) != 0) { |
| return false; |
| @@ -2868,7 +4647,7 @@ bool Assembler::IsImmFP64(double imm) { |
| // Valid values will have the form: |
| // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 |
| - uint64_t bits = double_to_rawbits(imm); |
| + uint64_t bits = bit_cast<uint64_t>(imm); |
| // bits[47..0] are cleared. |
| if ((bits & 0xffffffffffffL) != 0) { |
| return false; |