| OLD | NEW |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 51 | 51 |
| 52 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { | 52 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { |
| 53 if (result != expected) { | 53 if (result != expected) { |
| 54 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", | 54 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
| 55 expected, result); | 55 expected, result); |
| 56 } | 56 } |
| 57 | 57 |
| 58 return expected == result; | 58 return expected == result; |
| 59 } | 59 } |
| 60 | 60 |
| 61 bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) { |
| 62 if ((result.h != expected.h) || (result.l != expected.l)) { |
| 63 printf("Expected 0x%016" PRIx64 "%016" PRIx64 |
| 64 "\t " |
| 65 "Found 0x%016" PRIx64 "%016" PRIx64 "\n", |
| 66 expected.h, expected.l, result.h, result.l); |
| 67 } |
| 68 |
| 69 return ((expected.h == result.h) && (expected.l == result.l)); |
| 70 } |
| 61 | 71 |
| 62 bool EqualFP32(float expected, const RegisterDump*, float result) { | 72 bool EqualFP32(float expected, const RegisterDump*, float result) { |
| 63 if (float_to_rawbits(expected) == float_to_rawbits(result)) { | 73 if (bit_cast<uint32_t>(expected) == bit_cast<uint32_t>(result)) { |
| 64 return true; | 74 return true; |
| 65 } else { | 75 } else { |
| 66 if (std::isnan(expected) || (expected == 0.0)) { | 76 if (std::isnan(expected) || (expected == 0.0)) { |
| 67 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", | 77 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", |
| 68 float_to_rawbits(expected), float_to_rawbits(result)); | 78 bit_cast<uint32_t>(expected), bit_cast<uint32_t>(result)); |
| 69 } else { | 79 } else { |
| 70 printf("Expected %.9f (0x%08" PRIx32 ")\t " | 80 printf("Expected %.9f (0x%08" PRIx32 |
| 81 ")\t " |
| 71 "Found %.9f (0x%08" PRIx32 ")\n", | 82 "Found %.9f (0x%08" PRIx32 ")\n", |
| 72 expected, float_to_rawbits(expected), | 83 expected, bit_cast<uint32_t>(expected), result, |
| 73 result, float_to_rawbits(result)); | 84 bit_cast<uint32_t>(result)); |
| 74 } | 85 } |
| 75 return false; | 86 return false; |
| 76 } | 87 } |
| 77 } | 88 } |
| 78 | 89 |
| 79 | 90 |
| 80 bool EqualFP64(double expected, const RegisterDump*, double result) { | 91 bool EqualFP64(double expected, const RegisterDump*, double result) { |
| 81 if (double_to_rawbits(expected) == double_to_rawbits(result)) { | 92 if (bit_cast<uint64_t>(expected) == bit_cast<uint64_t>(result)) { |
| 82 return true; | 93 return true; |
| 83 } | 94 } |
| 84 | 95 |
| 85 if (std::isnan(expected) || (expected == 0.0)) { | 96 if (std::isnan(expected) || (expected == 0.0)) { |
| 86 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", | 97 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
| 87 double_to_rawbits(expected), double_to_rawbits(result)); | 98 bit_cast<uint64_t>(expected), bit_cast<uint64_t>(result)); |
| 88 } else { | 99 } else { |
| 89 printf("Expected %.17f (0x%016" PRIx64 ")\t " | 100 printf("Expected %.17f (0x%016" PRIx64 |
| 101 ")\t " |
| 90 "Found %.17f (0x%016" PRIx64 ")\n", | 102 "Found %.17f (0x%016" PRIx64 ")\n", |
| 91 expected, double_to_rawbits(expected), | 103 expected, bit_cast<uint64_t>(expected), result, |
| 92 result, double_to_rawbits(result)); | 104 bit_cast<uint64_t>(result)); |
| 93 } | 105 } |
| 94 return false; | 106 return false; |
| 95 } | 107 } |
| 96 | 108 |
| 97 | 109 |
| 98 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { | 110 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { |
| 99 CHECK(reg.Is32Bits()); | 111 CHECK(reg.Is32Bits()); |
| 100 // Retrieve the corresponding X register so we can check that the upper part | 112 // Retrieve the corresponding X register so we can check that the upper part |
| 101 // was properly cleared. | 113 // was properly cleared. |
| 102 int64_t result_x = core->xreg(reg.code()); | 114 int64_t result_x = core->xreg(reg.code()); |
| 103 if ((result_x & 0xffffffff00000000L) != 0) { | 115 if ((result_x & 0xffffffff00000000L) != 0) { |
| 104 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", | 116 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", |
| 105 expected, result_x); | 117 expected, result_x); |
| 106 return false; | 118 return false; |
| 107 } | 119 } |
| 108 uint32_t result_w = core->wreg(reg.code()); | 120 uint32_t result_w = core->wreg(reg.code()); |
| 109 return Equal32(expected, core, result_w); | 121 return Equal32(expected, core, result_w); |
| 110 } | 122 } |
| 111 | 123 |
| 112 | 124 |
| 113 bool Equal64(uint64_t expected, | 125 bool Equal64(uint64_t expected, |
| 114 const RegisterDump* core, | 126 const RegisterDump* core, |
| 115 const Register& reg) { | 127 const Register& reg) { |
| 116 CHECK(reg.Is64Bits()); | 128 CHECK(reg.Is64Bits()); |
| 117 uint64_t result = core->xreg(reg.code()); | 129 uint64_t result = core->xreg(reg.code()); |
| 118 return Equal64(expected, core, result); | 130 return Equal64(expected, core, result); |
| 119 } | 131 } |
| 120 | 132 |
| 133 bool Equal128(uint64_t expected_h, uint64_t expected_l, |
| 134 const RegisterDump* core, const VRegister& vreg) { |
| 135 CHECK(vreg.Is128Bits()); |
| 136 vec128_t expected = {expected_l, expected_h}; |
| 137 vec128_t result = core->qreg(vreg.code()); |
| 138 return Equal128(expected, core, result); |
| 139 } |
| 121 | 140 |
| 122 bool EqualFP32(float expected, | 141 bool EqualFP32(float expected, const RegisterDump* core, |
| 123 const RegisterDump* core, | 142 const VRegister& fpreg) { |
| 124 const FPRegister& fpreg) { | |
| 125 CHECK(fpreg.Is32Bits()); | 143 CHECK(fpreg.Is32Bits()); |
| 126 // Retrieve the corresponding D register so we can check that the upper part | 144 // Retrieve the corresponding D register so we can check that the upper part |
| 127 // was properly cleared. | 145 // was properly cleared. |
| 128 uint64_t result_64 = core->dreg_bits(fpreg.code()); | 146 uint64_t result_64 = core->dreg_bits(fpreg.code()); |
| 129 if ((result_64 & 0xffffffff00000000L) != 0) { | 147 if ((result_64 & 0xffffffff00000000L) != 0) { |
| 130 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", | 148 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", |
| 131 float_to_rawbits(expected), expected, result_64); | 149 bit_cast<uint32_t>(expected), expected, result_64); |
| 132 return false; | 150 return false; |
| 133 } | 151 } |
| 134 | 152 |
| 135 return EqualFP32(expected, core, core->sreg(fpreg.code())); | 153 return EqualFP32(expected, core, core->sreg(fpreg.code())); |
| 136 } | 154 } |
| 137 | 155 |
| 138 | 156 bool EqualFP64(double expected, const RegisterDump* core, |
| 139 bool EqualFP64(double expected, | 157 const VRegister& fpreg) { |
| 140 const RegisterDump* core, | |
| 141 const FPRegister& fpreg) { | |
| 142 CHECK(fpreg.Is64Bits()); | 158 CHECK(fpreg.Is64Bits()); |
| 143 return EqualFP64(expected, core, core->dreg(fpreg.code())); | 159 return EqualFP64(expected, core, core->dreg(fpreg.code())); |
| 144 } | 160 } |
| 145 | 161 |
| 146 | 162 |
| 147 bool Equal64(const Register& reg0, | 163 bool Equal64(const Register& reg0, |
| 148 const RegisterDump* core, | 164 const RegisterDump* core, |
| 149 const Register& reg1) { | 165 const Register& reg1) { |
| 150 CHECK(reg0.Is64Bits() && reg1.Is64Bits()); | 166 CHECK(reg0.Is64Bits() && reg1.Is64Bits()); |
| 151 int64_t expected = core->xreg(reg0.code()); | 167 int64_t expected = core->xreg(reg0.code()); |
| (...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 190 | 206 |
| 191 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { | 207 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { |
| 192 for (unsigned i = 0; i < kNumberOfRegisters; i++) { | 208 for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
| 193 if (a->xreg(i) != b->xreg(i)) { | 209 if (a->xreg(i) != b->xreg(i)) { |
| 194 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", | 210 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
| 195 i, a->xreg(i), b->xreg(i)); | 211 i, a->xreg(i), b->xreg(i)); |
| 196 return false; | 212 return false; |
| 197 } | 213 } |
| 198 } | 214 } |
| 199 | 215 |
| 200 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { | 216 for (unsigned i = 0; i < kNumberOfVRegisters; i++) { |
| 201 uint64_t a_bits = a->dreg_bits(i); | 217 uint64_t a_bits = a->dreg_bits(i); |
| 202 uint64_t b_bits = b->dreg_bits(i); | 218 uint64_t b_bits = b->dreg_bits(i); |
| 203 if (a_bits != b_bits) { | 219 if (a_bits != b_bits) { |
| 204 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", | 220 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", |
| 205 i, a_bits, b_bits); | 221 i, a_bits, b_bits); |
| 206 return false; | 222 return false; |
| 207 } | 223 } |
| 208 } | 224 } |
| 209 | 225 |
| 210 return true; | 226 return true; |
| (...skipping 19 matching lines...) Expand all Loading... |
| 230 list |= (1UL << n); | 246 list |= (1UL << n); |
| 231 i++; | 247 i++; |
| 232 } | 248 } |
| 233 } | 249 } |
| 234 // Check that we got enough registers. | 250 // Check that we got enough registers. |
| 235 CHECK(CountSetBits(list, kNumberOfRegisters) == reg_count); | 251 CHECK(CountSetBits(list, kNumberOfRegisters) == reg_count); |
| 236 | 252 |
| 237 return list; | 253 return list; |
| 238 } | 254 } |
| 239 | 255 |
| 240 | 256 RegList PopulateVRegisterArray(VRegister* s, VRegister* d, VRegister* v, |
| 241 RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, | 257 int reg_size, int reg_count, RegList allowed) { |
| 242 int reg_size, int reg_count, RegList allowed) { | |
| 243 RegList list = 0; | 258 RegList list = 0; |
| 244 int i = 0; | 259 int i = 0; |
| 245 for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) { | 260 for (unsigned n = 0; (n < kNumberOfVRegisters) && (i < reg_count); n++) { |
| 246 if (((1UL << n) & allowed) != 0) { | 261 if (((1UL << n) & allowed) != 0) { |
| 247 // Only assigned allowed registers. | 262 // Only assigned allowed registers. |
| 248 if (v) { | 263 if (v) { |
| 249 v[i] = FPRegister::Create(n, reg_size); | 264 v[i] = VRegister::Create(n, reg_size); |
| 250 } | 265 } |
| 251 if (d) { | 266 if (d) { |
| 252 d[i] = FPRegister::Create(n, kDRegSizeInBits); | 267 d[i] = VRegister::Create(n, kDRegSizeInBits); |
| 253 } | 268 } |
| 254 if (s) { | 269 if (s) { |
| 255 s[i] = FPRegister::Create(n, kSRegSizeInBits); | 270 s[i] = VRegister::Create(n, kSRegSizeInBits); |
| 256 } | 271 } |
| 257 list |= (1UL << n); | 272 list |= (1UL << n); |
| 258 i++; | 273 i++; |
| 259 } | 274 } |
| 260 } | 275 } |
| 261 // Check that we got enough registers. | 276 // Check that we got enough registers. |
| 262 CHECK(CountSetBits(list, kNumberOfFPRegisters) == reg_count); | 277 CHECK(CountSetBits(list, kNumberOfVRegisters) == reg_count); |
| 263 | 278 |
| 264 return list; | 279 return list; |
| 265 } | 280 } |
| 266 | 281 |
| 267 | 282 |
| 268 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { | 283 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { |
| 269 Register first = NoReg; | 284 Register first = NoReg; |
| 270 for (unsigned i = 0; i < kNumberOfRegisters; i++) { | 285 for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
| 271 if (reg_list & (1UL << i)) { | 286 if (reg_list & (1UL << i)) { |
| 272 Register xn = Register::Create(i, kXRegSizeInBits); | 287 Register xn = Register::Create(i, kXRegSizeInBits); |
| 273 // We should never write into csp here. | 288 // We should never write into csp here. |
| 274 CHECK(!xn.Is(csp)); | 289 CHECK(!xn.Is(csp)); |
| 275 if (!xn.IsZero()) { | 290 if (!xn.IsZero()) { |
| 276 if (!first.IsValid()) { | 291 if (!first.IsValid()) { |
| 277 // This is the first register we've hit, so construct the literal. | 292 // This is the first register we've hit, so construct the literal. |
| 278 __ Mov(xn, value); | 293 __ Mov(xn, value); |
| 279 first = xn; | 294 first = xn; |
| 280 } else { | 295 } else { |
| 281 // We've already loaded the literal, so re-use the value already | 296 // We've already loaded the literal, so re-use the value already |
| 282 // loaded into the first register we hit. | 297 // loaded into the first register we hit. |
| 283 __ Mov(xn, first); | 298 __ Mov(xn, first); |
| 284 } | 299 } |
| 285 } | 300 } |
| 286 } | 301 } |
| 287 } | 302 } |
| 288 } | 303 } |
| 289 | 304 |
| 290 | 305 |
| 291 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { | 306 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { |
| 292 FPRegister first = NoFPReg; | 307 VRegister first = NoVReg; |
| 293 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { | 308 for (unsigned i = 0; i < kNumberOfVRegisters; i++) { |
| 294 if (reg_list & (1UL << i)) { | 309 if (reg_list & (1UL << i)) { |
| 295 FPRegister dn = FPRegister::Create(i, kDRegSizeInBits); | 310 VRegister dn = VRegister::Create(i, kDRegSizeInBits); |
| 296 if (!first.IsValid()) { | 311 if (!first.IsValid()) { |
| 297 // This is the first register we've hit, so construct the literal. | 312 // This is the first register we've hit, so construct the literal. |
| 298 __ Fmov(dn, value); | 313 __ Fmov(dn, value); |
| 299 first = dn; | 314 first = dn; |
| 300 } else { | 315 } else { |
| 301 // We've already loaded the literal, so re-use the value already loaded | 316 // We've already loaded the literal, so re-use the value already loaded |
| 302 // into the first register we hit. | 317 // into the first register we hit. |
| 303 __ Fmov(dn, first); | 318 __ Fmov(dn, first); |
| 304 } | 319 } |
| 305 } | 320 } |
| 306 } | 321 } |
| 307 } | 322 } |
| 308 | 323 |
| 309 | 324 |
| 310 void Clobber(MacroAssembler* masm, CPURegList reg_list) { | 325 void Clobber(MacroAssembler* masm, CPURegList reg_list) { |
| 311 if (reg_list.type() == CPURegister::kRegister) { | 326 if (reg_list.type() == CPURegister::kRegister) { |
| 312 // This will always clobber X registers. | 327 // This will always clobber X registers. |
| 313 Clobber(masm, reg_list.list()); | 328 Clobber(masm, reg_list.list()); |
| 314 } else if (reg_list.type() == CPURegister::kFPRegister) { | 329 } else if (reg_list.type() == CPURegister::kVRegister) { |
| 315 // This will always clobber D registers. | 330 // This will always clobber D registers. |
| 316 ClobberFP(masm, reg_list.list()); | 331 ClobberFP(masm, reg_list.list()); |
| 317 } else { | 332 } else { |
| 318 UNREACHABLE(); | 333 UNREACHABLE(); |
| 319 } | 334 } |
| 320 } | 335 } |
| 321 | 336 |
| 322 | 337 |
| 323 void RegisterDump::Dump(MacroAssembler* masm) { | 338 void RegisterDump::Dump(MacroAssembler* masm) { |
| 324 CHECK(__ StackPointer().Is(csp)); | 339 CHECK(__ StackPointer().Is(csp)); |
| (...skipping 10 matching lines...) Expand all Loading... |
| 335 Register tmp = x2; | 350 Register tmp = x2; |
| 336 Register dump_base_w = dump_base.W(); | 351 Register dump_base_w = dump_base.W(); |
| 337 Register dump_w = dump.W(); | 352 Register dump_w = dump.W(); |
| 338 Register tmp_w = tmp.W(); | 353 Register tmp_w = tmp.W(); |
| 339 | 354 |
| 340 // Offsets into the dump_ structure. | 355 // Offsets into the dump_ structure. |
| 341 const int x_offset = offsetof(dump_t, x_); | 356 const int x_offset = offsetof(dump_t, x_); |
| 342 const int w_offset = offsetof(dump_t, w_); | 357 const int w_offset = offsetof(dump_t, w_); |
| 343 const int d_offset = offsetof(dump_t, d_); | 358 const int d_offset = offsetof(dump_t, d_); |
| 344 const int s_offset = offsetof(dump_t, s_); | 359 const int s_offset = offsetof(dump_t, s_); |
| 360 const int q_offset = offsetof(dump_t, q_); |
| 345 const int sp_offset = offsetof(dump_t, sp_); | 361 const int sp_offset = offsetof(dump_t, sp_); |
| 346 const int wsp_offset = offsetof(dump_t, wsp_); | 362 const int wsp_offset = offsetof(dump_t, wsp_); |
| 347 const int flags_offset = offsetof(dump_t, flags_); | 363 const int flags_offset = offsetof(dump_t, flags_); |
| 348 | 364 |
| 349 __ Push(xzr, dump_base, dump, tmp); | 365 __ Push(xzr, dump_base, dump, tmp); |
| 350 | 366 |
| 351 // Load the address where we will dump the state. | 367 // Load the address where we will dump the state. |
| 352 __ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_)); | 368 __ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_)); |
| 353 | 369 |
| 354 // Dump the stack pointer (csp and wcsp). | 370 // Dump the stack pointer (csp and wcsp). |
| (...skipping 14 matching lines...) Expand all Loading... |
| 369 | 385 |
| 370 // Dump W registers. | 386 // Dump W registers. |
| 371 __ Add(dump, dump_base, w_offset); | 387 __ Add(dump, dump_base, w_offset); |
| 372 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { | 388 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { |
| 373 __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1), | 389 __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1), |
| 374 MemOperand(dump, i * kWRegSize)); | 390 MemOperand(dump, i * kWRegSize)); |
| 375 } | 391 } |
| 376 | 392 |
| 377 // Dump D registers. | 393 // Dump D registers. |
| 378 __ Add(dump, dump_base, d_offset); | 394 __ Add(dump, dump_base, d_offset); |
| 379 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { | 395 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) { |
| 380 __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1), | 396 __ Stp(VRegister::DRegFromCode(i), VRegister::DRegFromCode(i + 1), |
| 381 MemOperand(dump, i * kDRegSize)); | 397 MemOperand(dump, i * kDRegSize)); |
| 382 } | 398 } |
| 383 | 399 |
| 384 // Dump S registers. | 400 // Dump S registers. |
| 385 __ Add(dump, dump_base, s_offset); | 401 __ Add(dump, dump_base, s_offset); |
| 386 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { | 402 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) { |
| 387 __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1), | 403 __ Stp(VRegister::SRegFromCode(i), VRegister::SRegFromCode(i + 1), |
| 388 MemOperand(dump, i * kSRegSize)); | 404 MemOperand(dump, i * kSRegSize)); |
| 389 } | 405 } |
| 390 | 406 |
| 407 // Dump Q registers. |
| 408 __ Add(dump, dump_base, q_offset); |
| 409 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) { |
| 410 __ Stp(VRegister::QRegFromCode(i), VRegister::QRegFromCode(i + 1), |
| 411 MemOperand(dump, i * kQRegSize)); |
| 412 } |
| 413 |
| 391 // Dump the flags. | 414 // Dump the flags. |
| 392 __ Mrs(tmp, NZCV); | 415 __ Mrs(tmp, NZCV); |
| 393 __ Str(tmp, MemOperand(dump_base, flags_offset)); | 416 __ Str(tmp, MemOperand(dump_base, flags_offset)); |
| 394 | 417 |
| 395 // To dump the values that were in tmp amd dump, we need a new scratch | 418 // To dump the values that were in tmp amd dump, we need a new scratch |
| 396 // register. We can use any of the already dumped registers since we can | 419 // register. We can use any of the already dumped registers since we can |
| 397 // easily restore them. | 420 // easily restore them. |
| 398 Register dump2_base = x10; | 421 Register dump2_base = x10; |
| 399 Register dump2 = x11; | 422 Register dump2 = x11; |
| 400 CHECK(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); | 423 CHECK(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); |
| (...skipping 19 matching lines...) Expand all Loading... |
| 420 | 443 |
| 421 // Restore the MacroAssembler's scratch registers. | 444 // Restore the MacroAssembler's scratch registers. |
| 422 masm->TmpList()->set_list(old_tmp_list); | 445 masm->TmpList()->set_list(old_tmp_list); |
| 423 masm->FPTmpList()->set_list(old_fptmp_list); | 446 masm->FPTmpList()->set_list(old_fptmp_list); |
| 424 | 447 |
| 425 completed_ = true; | 448 completed_ = true; |
| 426 } | 449 } |
| 427 | 450 |
| 428 } // namespace internal | 451 } // namespace internal |
| 429 } // namespace v8 | 452 } // namespace v8 |
| OLD | NEW |