OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "base/memory/discardable_memory_allocator_android.h" |
| 6 |
| 7 #include <sys/mman.h> |
| 8 #include <unistd.h> |
| 9 |
| 10 #include <algorithm> |
| 11 #include <cmath> |
| 12 #include <limits> |
| 13 #include <set> |
| 14 #include <utility> |
| 15 |
| 16 #include "base/basictypes.h" |
| 17 #include "base/containers/hash_tables.h" |
| 18 #include "base/file_util.h" |
| 19 #include "base/files/scoped_file.h" |
| 20 #include "base/logging.h" |
| 21 #include "base/memory/discardable_memory.h" |
| 22 #include "base/memory/scoped_vector.h" |
| 23 #include "base/synchronization/lock.h" |
| 24 #include "base/threading/thread_checker.h" |
| 25 #include "third_party/ashmem/ashmem.h" |
| 26 |
| 27 // The allocator consists of three parts (classes): |
| 28 // - DiscardableMemoryAllocator: entry point of all allocations (through its |
| 29 // Allocate() method) that are dispatched to the AshmemRegion instances (which |
| 30 // it owns). |
| 31 // - AshmemRegion: manages allocations and destructions inside a single large |
| 32 // (e.g. 32 MBytes) ashmem region. |
| 33 // - DiscardableAshmemChunk: class implementing the DiscardableMemory interface |
| 34 // whose instances are returned to the client. DiscardableAshmemChunk lets the |
| 35 // client seamlessly operate on a subrange of the ashmem region managed by |
| 36 // AshmemRegion. |
| 37 |
| 38 namespace base { |
| 39 namespace { |
| 40 |
| 41 // Only tolerate fragmentation in used chunks *caused by the client* (as opposed |
| 42 // to the allocator when a free chunk is reused). The client can cause such |
| 43 // fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to |
| 44 // 8192 by the allocator which would cause 4095 bytes of fragmentation (which is |
| 45 // currently the maximum allowed). If the client requests 4096 bytes and a free |
| 46 // chunk of 8192 bytes is available then the free chunk gets splitted into two |
| 47 // pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater |
| 48 // than 4095). |
| 49 // TODO(pliard): tune this if splitting chunks too often leads to performance |
| 50 // issues. |
| 51 const size_t kMaxChunkFragmentationBytes = 4096 - 1; |
| 52 |
| 53 const size_t kMinAshmemRegionSize = 32 * 1024 * 1024; |
| 54 |
| 55 // Returns 0 if the provided size is too high to be aligned. |
| 56 size_t AlignToNextPage(size_t size) { |
| 57 const size_t kPageSize = 4096; |
| 58 DCHECK_EQ(static_cast<int>(kPageSize), getpagesize()); |
| 59 if (size > std::numeric_limits<size_t>::max() - kPageSize + 1) |
| 60 return 0; |
| 61 const size_t mask = ~(kPageSize - 1); |
| 62 return (size + kPageSize - 1) & mask; |
| 63 } |
| 64 |
| 65 bool CreateAshmemRegion(const char* name, |
| 66 size_t size, |
| 67 int* out_fd, |
| 68 void** out_address) { |
| 69 base::ScopedFD fd(ashmem_create_region(name, size)); |
| 70 if (!fd.is_valid()) { |
| 71 DLOG(ERROR) << "ashmem_create_region() failed"; |
| 72 return false; |
| 73 } |
| 74 |
| 75 const int err = ashmem_set_prot_region(fd.get(), PROT_READ | PROT_WRITE); |
| 76 if (err < 0) { |
| 77 DLOG(ERROR) << "Error " << err << " when setting protection of ashmem"; |
| 78 return false; |
| 79 } |
| 80 |
| 81 // There is a problem using MAP_PRIVATE here. As we are constantly calling |
| 82 // Lock() and Unlock(), data could get lost if they are not written to the |
| 83 // underlying file when Unlock() gets called. |
| 84 void* const address = mmap( |
| 85 NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0); |
| 86 if (address == MAP_FAILED) { |
| 87 DPLOG(ERROR) << "Failed to map memory."; |
| 88 return false; |
| 89 } |
| 90 |
| 91 *out_fd = fd.release(); |
| 92 *out_address = address; |
| 93 return true; |
| 94 } |
| 95 |
| 96 bool CloseAshmemRegion(int fd, size_t size, void* address) { |
| 97 if (munmap(address, size) == -1) { |
| 98 DPLOG(ERROR) << "Failed to unmap memory."; |
| 99 close(fd); |
| 100 return false; |
| 101 } |
| 102 return close(fd) == 0; |
| 103 } |
| 104 |
| 105 DiscardableMemoryLockStatus LockAshmemRegion(int fd, size_t off, size_t size) { |
| 106 const int result = ashmem_pin_region(fd, off, size); |
| 107 return result == ASHMEM_WAS_PURGED ? DISCARDABLE_MEMORY_LOCK_STATUS_PURGED |
| 108 : DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS; |
| 109 } |
| 110 |
| 111 bool UnlockAshmemRegion(int fd, size_t off, size_t size) { |
| 112 const int failed = ashmem_unpin_region(fd, off, size); |
| 113 if (failed) |
| 114 DLOG(ERROR) << "Failed to unpin memory."; |
| 115 return !failed; |
| 116 } |
| 117 |
| 118 } // namespace |
| 119 |
| 120 namespace internal { |
| 121 |
| 122 class DiscardableMemoryAllocator::DiscardableAshmemChunk |
| 123 : public DiscardableMemory { |
| 124 public: |
| 125 // Note that |ashmem_region| must outlive |this|. |
| 126 DiscardableAshmemChunk(AshmemRegion* ashmem_region, |
| 127 int fd, |
| 128 void* address, |
| 129 size_t offset, |
| 130 size_t size) |
| 131 : ashmem_region_(ashmem_region), |
| 132 fd_(fd), |
| 133 address_(address), |
| 134 offset_(offset), |
| 135 size_(size), |
| 136 locked_(true) { |
| 137 } |
| 138 |
| 139 // Implemented below AshmemRegion since this requires the full definition of |
| 140 // AshmemRegion. |
| 141 virtual ~DiscardableAshmemChunk(); |
| 142 |
| 143 // DiscardableMemory: |
| 144 virtual DiscardableMemoryLockStatus Lock() OVERRIDE { |
| 145 DCHECK(!locked_); |
| 146 locked_ = true; |
| 147 return LockAshmemRegion(fd_, offset_, size_); |
| 148 } |
| 149 |
| 150 virtual void Unlock() OVERRIDE { |
| 151 DCHECK(locked_); |
| 152 locked_ = false; |
| 153 UnlockAshmemRegion(fd_, offset_, size_); |
| 154 } |
| 155 |
| 156 virtual void* Memory() const OVERRIDE { |
| 157 return address_; |
| 158 } |
| 159 |
| 160 private: |
| 161 AshmemRegion* const ashmem_region_; |
| 162 const int fd_; |
| 163 void* const address_; |
| 164 const size_t offset_; |
| 165 const size_t size_; |
| 166 bool locked_; |
| 167 |
| 168 DISALLOW_COPY_AND_ASSIGN(DiscardableAshmemChunk); |
| 169 }; |
| 170 |
| 171 class DiscardableMemoryAllocator::AshmemRegion { |
| 172 public: |
| 173 // Note that |allocator| must outlive |this|. |
| 174 static scoped_ptr<AshmemRegion> Create( |
| 175 size_t size, |
| 176 const std::string& name, |
| 177 DiscardableMemoryAllocator* allocator) { |
| 178 DCHECK_EQ(size, AlignToNextPage(size)); |
| 179 int fd; |
| 180 void* base; |
| 181 if (!CreateAshmemRegion(name.c_str(), size, &fd, &base)) |
| 182 return scoped_ptr<AshmemRegion>(); |
| 183 return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator)); |
| 184 } |
| 185 |
| 186 ~AshmemRegion() { |
| 187 const bool result = CloseAshmemRegion(fd_, size_, base_); |
| 188 DCHECK(result); |
| 189 DCHECK(!highest_allocated_chunk_); |
| 190 } |
| 191 |
| 192 // Returns a new instance of DiscardableMemory whose size is greater or equal |
| 193 // than |actual_size| (which is expected to be greater or equal than |
| 194 // |client_requested_size|). |
| 195 // Allocation works as follows: |
| 196 // 1) Reuse a previously freed chunk and return it if it succeeded. See |
| 197 // ReuseFreeChunk_Locked() below for more information. |
| 198 // 2) If no free chunk could be reused and the region is not big enough for |
| 199 // the requested size then NULL is returned. |
| 200 // 3) If there is enough room in the ashmem region then a new chunk is |
| 201 // returned. This new chunk starts at |offset_| which is the end of the |
| 202 // previously highest chunk in the region. |
| 203 scoped_ptr<DiscardableMemory> Allocate_Locked(size_t client_requested_size, |
| 204 size_t actual_size) { |
| 205 DCHECK_LE(client_requested_size, actual_size); |
| 206 allocator_->lock_.AssertAcquired(); |
| 207 |
| 208 // Check that the |highest_allocated_chunk_| field doesn't contain a stale |
| 209 // pointer. It should point to either a free chunk or a used chunk. |
| 210 DCHECK(!highest_allocated_chunk_ || |
| 211 address_to_free_chunk_map_.find(highest_allocated_chunk_) != |
| 212 address_to_free_chunk_map_.end() || |
| 213 used_to_previous_chunk_map_.find(highest_allocated_chunk_) != |
| 214 used_to_previous_chunk_map_.end()); |
| 215 |
| 216 scoped_ptr<DiscardableMemory> memory = ReuseFreeChunk_Locked( |
| 217 client_requested_size, actual_size); |
| 218 if (memory) |
| 219 return memory.Pass(); |
| 220 |
| 221 if (size_ - offset_ < actual_size) { |
| 222 // This region does not have enough space left to hold the requested size. |
| 223 return scoped_ptr<DiscardableMemory>(); |
| 224 } |
| 225 |
| 226 void* const address = static_cast<char*>(base_) + offset_; |
| 227 memory.reset( |
| 228 new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size)); |
| 229 |
| 230 used_to_previous_chunk_map_.insert( |
| 231 std::make_pair(address, highest_allocated_chunk_)); |
| 232 highest_allocated_chunk_ = address; |
| 233 offset_ += actual_size; |
| 234 DCHECK_LE(offset_, size_); |
| 235 return memory.Pass(); |
| 236 } |
| 237 |
| 238 void OnChunkDeletion(void* chunk, size_t size) { |
| 239 AutoLock auto_lock(allocator_->lock_); |
| 240 MergeAndAddFreeChunk_Locked(chunk, size); |
| 241 // Note that |this| might be deleted beyond this point. |
| 242 } |
| 243 |
| 244 private: |
| 245 struct FreeChunk { |
| 246 FreeChunk() : previous_chunk(NULL), start(NULL), size(0) {} |
| 247 |
| 248 explicit FreeChunk(size_t size) |
| 249 : previous_chunk(NULL), |
| 250 start(NULL), |
| 251 size(size) { |
| 252 } |
| 253 |
| 254 FreeChunk(void* previous_chunk, void* start, size_t size) |
| 255 : previous_chunk(previous_chunk), |
| 256 start(start), |
| 257 size(size) { |
| 258 DCHECK_LT(previous_chunk, start); |
| 259 } |
| 260 |
| 261 void* const previous_chunk; |
| 262 void* const start; |
| 263 const size_t size; |
| 264 |
| 265 bool is_null() const { return !start; } |
| 266 |
| 267 bool operator<(const FreeChunk& other) const { |
| 268 return size < other.size; |
| 269 } |
| 270 }; |
| 271 |
| 272 // Note that |allocator| must outlive |this|. |
| 273 AshmemRegion(int fd, |
| 274 size_t size, |
| 275 void* base, |
| 276 DiscardableMemoryAllocator* allocator) |
| 277 : fd_(fd), |
| 278 size_(size), |
| 279 base_(base), |
| 280 allocator_(allocator), |
| 281 highest_allocated_chunk_(NULL), |
| 282 offset_(0) { |
| 283 DCHECK_GE(fd_, 0); |
| 284 DCHECK_GE(size, kMinAshmemRegionSize); |
| 285 DCHECK(base); |
| 286 DCHECK(allocator); |
| 287 } |
| 288 |
| 289 // Tries to reuse a previously freed chunk by doing a closest size match. |
| 290 scoped_ptr<DiscardableMemory> ReuseFreeChunk_Locked( |
| 291 size_t client_requested_size, |
| 292 size_t actual_size) { |
| 293 allocator_->lock_.AssertAcquired(); |
| 294 const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked( |
| 295 free_chunks_.lower_bound(FreeChunk(actual_size))); |
| 296 if (reused_chunk.is_null()) |
| 297 return scoped_ptr<DiscardableMemory>(); |
| 298 |
| 299 used_to_previous_chunk_map_.insert( |
| 300 std::make_pair(reused_chunk.start, reused_chunk.previous_chunk)); |
| 301 size_t reused_chunk_size = reused_chunk.size; |
| 302 // |client_requested_size| is used below rather than |actual_size| to |
| 303 // reflect the amount of bytes that would not be usable by the client (i.e. |
| 304 // wasted). Using |actual_size| instead would not allow us to detect |
| 305 // fragmentation caused by the client if he did misaligned allocations. |
| 306 DCHECK_GE(reused_chunk.size, client_requested_size); |
| 307 const size_t fragmentation_bytes = |
| 308 reused_chunk.size - client_requested_size; |
| 309 |
| 310 if (fragmentation_bytes > kMaxChunkFragmentationBytes) { |
| 311 // Split the free chunk being recycled so that its unused tail doesn't get |
| 312 // reused (i.e. locked) which would prevent it from being evicted under |
| 313 // memory pressure. |
| 314 reused_chunk_size = actual_size; |
| 315 void* const new_chunk_start = |
| 316 static_cast<char*>(reused_chunk.start) + actual_size; |
| 317 if (reused_chunk.start == highest_allocated_chunk_) { |
| 318 // We also need to update the pointer to the highest allocated chunk in |
| 319 // case we are splitting the highest chunk. |
| 320 highest_allocated_chunk_ = new_chunk_start; |
| 321 } |
| 322 DCHECK_GT(reused_chunk.size, actual_size); |
| 323 const size_t new_chunk_size = reused_chunk.size - actual_size; |
| 324 // Note that merging is not needed here since there can't be contiguous |
| 325 // free chunks at this point. |
| 326 AddFreeChunk_Locked( |
| 327 FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size)); |
| 328 } |
| 329 |
| 330 const size_t offset = |
| 331 static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_); |
| 332 LockAshmemRegion(fd_, offset, reused_chunk_size); |
| 333 scoped_ptr<DiscardableMemory> memory( |
| 334 new DiscardableAshmemChunk(this, fd_, reused_chunk.start, offset, |
| 335 reused_chunk_size)); |
| 336 return memory.Pass(); |
| 337 } |
| 338 |
| 339 // Makes the chunk identified with the provided arguments free and possibly |
| 340 // merges this chunk with the previous and next contiguous ones. |
| 341 // If the provided chunk is the only one used (and going to be freed) in the |
| 342 // region then the internal ashmem region is closed so that the underlying |
| 343 // physical pages are immediately released. |
| 344 // Note that free chunks are unlocked therefore they can be reclaimed by the |
| 345 // kernel if needed (under memory pressure) but they are not immediately |
| 346 // released unfortunately since madvise(MADV_REMOVE) and |
| 347 // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might |
| 348 // change in versions of kernel >=3.5 though. The fact that free chunks are |
| 349 // not immediately released is the reason why we are trying to minimize |
| 350 // fragmentation in order not to cause "artificial" memory pressure. |
| 351 void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) { |
| 352 allocator_->lock_.AssertAcquired(); |
| 353 size_t new_free_chunk_size = size; |
| 354 // Merge with the previous chunk. |
| 355 void* first_free_chunk = chunk; |
| 356 DCHECK(!used_to_previous_chunk_map_.empty()); |
| 357 const hash_map<void*, void*>::iterator previous_chunk_it = |
| 358 used_to_previous_chunk_map_.find(chunk); |
| 359 DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end()); |
| 360 void* previous_chunk = previous_chunk_it->second; |
| 361 used_to_previous_chunk_map_.erase(previous_chunk_it); |
| 362 |
| 363 if (previous_chunk) { |
| 364 const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk); |
| 365 if (!free_chunk.is_null()) { |
| 366 new_free_chunk_size += free_chunk.size; |
| 367 first_free_chunk = previous_chunk; |
| 368 if (chunk == highest_allocated_chunk_) |
| 369 highest_allocated_chunk_ = previous_chunk; |
| 370 |
| 371 // There should not be more contiguous previous free chunks. |
| 372 previous_chunk = free_chunk.previous_chunk; |
| 373 DCHECK(!address_to_free_chunk_map_.count(previous_chunk)); |
| 374 } |
| 375 } |
| 376 |
| 377 // Merge with the next chunk if free and present. |
| 378 void* next_chunk = static_cast<char*>(chunk) + size; |
| 379 const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk); |
| 380 if (!next_free_chunk.is_null()) { |
| 381 new_free_chunk_size += next_free_chunk.size; |
| 382 if (next_free_chunk.start == highest_allocated_chunk_) |
| 383 highest_allocated_chunk_ = first_free_chunk; |
| 384 |
| 385 // Same as above. |
| 386 DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) + |
| 387 next_free_chunk.size)); |
| 388 } |
| 389 |
| 390 const bool whole_ashmem_region_is_free = |
| 391 used_to_previous_chunk_map_.empty(); |
| 392 if (!whole_ashmem_region_is_free) { |
| 393 AddFreeChunk_Locked( |
| 394 FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size)); |
| 395 return; |
| 396 } |
| 397 |
| 398 // The whole ashmem region is free thus it can be deleted. |
| 399 DCHECK_EQ(base_, first_free_chunk); |
| 400 DCHECK_EQ(base_, highest_allocated_chunk_); |
| 401 DCHECK(free_chunks_.empty()); |
| 402 DCHECK(address_to_free_chunk_map_.empty()); |
| 403 DCHECK(used_to_previous_chunk_map_.empty()); |
| 404 highest_allocated_chunk_ = NULL; |
| 405 allocator_->DeleteAshmemRegion_Locked(this); // Deletes |this|. |
| 406 } |
| 407 |
| 408 void AddFreeChunk_Locked(const FreeChunk& free_chunk) { |
| 409 allocator_->lock_.AssertAcquired(); |
| 410 const std::multiset<FreeChunk>::iterator it = free_chunks_.insert( |
| 411 free_chunk); |
| 412 address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it)); |
| 413 // Update the next used contiguous chunk, if any, since its previous chunk |
| 414 // may have changed due to free chunks merging/splitting. |
| 415 void* const next_used_contiguous_chunk = |
| 416 static_cast<char*>(free_chunk.start) + free_chunk.size; |
| 417 hash_map<void*, void*>::iterator previous_it = |
| 418 used_to_previous_chunk_map_.find(next_used_contiguous_chunk); |
| 419 if (previous_it != used_to_previous_chunk_map_.end()) |
| 420 previous_it->second = free_chunk.start; |
| 421 } |
| 422 |
| 423 // Finds and removes the free chunk, if any, whose start address is |
| 424 // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk |
| 425 // whose content is null if it was not found. |
| 426 FreeChunk RemoveFreeChunk_Locked(void* chunk_start) { |
| 427 allocator_->lock_.AssertAcquired(); |
| 428 const hash_map< |
| 429 void*, std::multiset<FreeChunk>::iterator>::iterator it = |
| 430 address_to_free_chunk_map_.find(chunk_start); |
| 431 if (it == address_to_free_chunk_map_.end()) |
| 432 return FreeChunk(); |
| 433 return RemoveFreeChunkFromIterator_Locked(it->second); |
| 434 } |
| 435 |
| 436 // Same as above but takes an iterator in. |
| 437 FreeChunk RemoveFreeChunkFromIterator_Locked( |
| 438 std::multiset<FreeChunk>::iterator free_chunk_it) { |
| 439 allocator_->lock_.AssertAcquired(); |
| 440 if (free_chunk_it == free_chunks_.end()) |
| 441 return FreeChunk(); |
| 442 DCHECK(free_chunk_it != free_chunks_.end()); |
| 443 const FreeChunk free_chunk(*free_chunk_it); |
| 444 address_to_free_chunk_map_.erase(free_chunk_it->start); |
| 445 free_chunks_.erase(free_chunk_it); |
| 446 return free_chunk; |
| 447 } |
| 448 |
| 449 const int fd_; |
| 450 const size_t size_; |
| 451 void* const base_; |
| 452 DiscardableMemoryAllocator* const allocator_; |
| 453 // Points to the chunk with the highest address in the region. This pointer |
| 454 // needs to be carefully updated when chunks are merged/split. |
| 455 void* highest_allocated_chunk_; |
| 456 // Points to the end of |highest_allocated_chunk_|. |
| 457 size_t offset_; |
| 458 // Allows free chunks recycling (lookup, insertion and removal) in O(log N). |
| 459 // Note that FreeChunk values are indexed by their size and also note that |
| 460 // multiple free chunks can have the same size (which is why multiset<> is |
| 461 // used instead of e.g. set<>). |
| 462 std::multiset<FreeChunk> free_chunks_; |
| 463 // Used while merging free contiguous chunks to erase free chunks (from their |
| 464 // start address) in constant time. Note that multiset<>::{insert,erase}() |
| 465 // don't invalidate iterators (except the one for the element being removed |
| 466 // obviously). |
| 467 hash_map< |
| 468 void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_; |
| 469 // Maps the address of *used* chunks to the address of their previous |
| 470 // contiguous chunk. |
| 471 hash_map<void*, void*> used_to_previous_chunk_map_; |
| 472 |
| 473 DISALLOW_COPY_AND_ASSIGN(AshmemRegion); |
| 474 }; |
| 475 |
| 476 DiscardableMemoryAllocator::DiscardableAshmemChunk::~DiscardableAshmemChunk() { |
| 477 if (locked_) |
| 478 UnlockAshmemRegion(fd_, offset_, size_); |
| 479 ashmem_region_->OnChunkDeletion(address_, size_); |
| 480 } |
| 481 |
| 482 DiscardableMemoryAllocator::DiscardableMemoryAllocator( |
| 483 const std::string& name, |
| 484 size_t ashmem_region_size) |
| 485 : name_(name), |
| 486 ashmem_region_size_( |
| 487 std::max(kMinAshmemRegionSize, AlignToNextPage(ashmem_region_size))), |
| 488 last_ashmem_region_size_(0) { |
| 489 DCHECK_GE(ashmem_region_size_, kMinAshmemRegionSize); |
| 490 } |
| 491 |
| 492 DiscardableMemoryAllocator::~DiscardableMemoryAllocator() { |
| 493 DCHECK(thread_checker_.CalledOnValidThread()); |
| 494 DCHECK(ashmem_regions_.empty()); |
| 495 } |
| 496 |
| 497 scoped_ptr<DiscardableMemory> DiscardableMemoryAllocator::Allocate( |
| 498 size_t size) { |
| 499 const size_t aligned_size = AlignToNextPage(size); |
| 500 if (!aligned_size) |
| 501 return scoped_ptr<DiscardableMemory>(); |
| 502 // TODO(pliard): make this function less naive by e.g. moving the free chunks |
| 503 // multiset to the allocator itself in order to decrease even more |
| 504 // fragmentation/speedup allocation. Note that there should not be more than a |
| 505 // couple (=5) of AshmemRegion instances in practice though. |
| 506 AutoLock auto_lock(lock_); |
| 507 DCHECK_LE(ashmem_regions_.size(), 5U); |
| 508 for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin(); |
| 509 it != ashmem_regions_.end(); ++it) { |
| 510 scoped_ptr<DiscardableMemory> memory( |
| 511 (*it)->Allocate_Locked(size, aligned_size)); |
| 512 if (memory) |
| 513 return memory.Pass(); |
| 514 } |
| 515 // The creation of the (large) ashmem region might fail if the address space |
| 516 // is too fragmented. In case creation fails the allocator retries by |
| 517 // repetitively dividing the size by 2. |
| 518 const size_t min_region_size = std::max(kMinAshmemRegionSize, aligned_size); |
| 519 for (size_t region_size = std::max(ashmem_region_size_, aligned_size); |
| 520 region_size >= min_region_size; |
| 521 region_size = AlignToNextPage(region_size / 2)) { |
| 522 scoped_ptr<AshmemRegion> new_region( |
| 523 AshmemRegion::Create(region_size, name_.c_str(), this)); |
| 524 if (!new_region) |
| 525 continue; |
| 526 last_ashmem_region_size_ = region_size; |
| 527 ashmem_regions_.push_back(new_region.release()); |
| 528 return ashmem_regions_.back()->Allocate_Locked(size, aligned_size); |
| 529 } |
| 530 // TODO(pliard): consider adding an histogram to see how often this happens. |
| 531 return scoped_ptr<DiscardableMemory>(); |
| 532 } |
| 533 |
| 534 size_t DiscardableMemoryAllocator::last_ashmem_region_size() const { |
| 535 AutoLock auto_lock(lock_); |
| 536 return last_ashmem_region_size_; |
| 537 } |
| 538 |
| 539 void DiscardableMemoryAllocator::DeleteAshmemRegion_Locked( |
| 540 AshmemRegion* region) { |
| 541 lock_.AssertAcquired(); |
| 542 // Note that there should not be more than a couple of ashmem region instances |
| 543 // in |ashmem_regions_|. |
| 544 DCHECK_LE(ashmem_regions_.size(), 5U); |
| 545 const ScopedVector<AshmemRegion>::iterator it = std::find( |
| 546 ashmem_regions_.begin(), ashmem_regions_.end(), region); |
| 547 DCHECK_NE(ashmem_regions_.end(), it); |
| 548 std::swap(*it, ashmem_regions_.back()); |
| 549 ashmem_regions_.pop_back(); |
| 550 } |
| 551 |
| 552 } // namespace internal |
| 553 } // namespace base |
OLD | NEW |