Index: src/gpu/GrDistanceFieldGenFromVector.cpp |
diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp |
deleted file mode 100644 |
index 0874616f93256f556fc5505783ab26d018211d8c..0000000000000000000000000000000000000000 |
--- a/src/gpu/GrDistanceFieldGenFromVector.cpp |
+++ /dev/null |
@@ -1,849 +0,0 @@ |
-/* |
- * Copyright 2016 ARM Ltd. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "GrDistanceFieldGenFromVector.h" |
-#include "SkPoint.h" |
-#include "SkGeometry.h" |
-#include "SkPathOps.h" |
-#include "GrPathUtils.h" |
-#include "GrConfig.h" |
- |
-/** |
- * If a scanline (a row of texel) cross from the kRight_SegSide |
- * of a segment to the kLeft_SegSide, the winding score should |
- * add 1. |
- * And winding score should subtract 1 if the scanline cross |
- * from kLeft_SegSide to kRight_SegSide. |
- * Always return kNA_SegSide if the scanline does not cross over |
- * the segment. Winding score should be zero in this case. |
- * You can get the winding number for each texel of the scanline |
- * by adding the winding score from left to right. |
- * Assuming we always start from outside, so the winding number |
- * should always start from zero. |
- * ________ ________ |
- * | | | | |
- * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
- * |+1 |-1 |-1 |+1 <= Winding score |
- * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
- * |________| |________| |
- * |
- * .......NA................NA.......... |
- * 0 0 |
- */ |
-enum SegSide { |
- kLeft_SegSide = -1, |
- kOn_SegSide = 0, |
- kRight_SegSide = 1, |
- kNA_SegSide = 2, |
-}; |
- |
-struct DFData { |
- float fDistSq; // distance squared to nearest (so far) edge |
- int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
-}; |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/* |
- * Type definition for double precision DPoint and DAffineMatrix |
- */ |
- |
-// Point with double precision |
-struct DPoint { |
- double fX, fY; |
- |
- static DPoint Make(double x, double y) { |
- DPoint pt; |
- pt.set(x, y); |
- return pt; |
- } |
- |
- double x() const { return fX; } |
- double y() const { return fY; } |
- |
- void set(double x, double y) { fX = x; fY = y; } |
- |
- /** Returns the euclidian distance from (0,0) to (x,y) |
- */ |
- static double Length(double x, double y) { |
- return sqrt(x * x + y * y); |
- } |
- |
- /** Returns the euclidian distance between a and b |
- */ |
- static double Distance(const DPoint& a, const DPoint& b) { |
- return Length(a.fX - b.fX, a.fY - b.fY); |
- } |
- |
- double distanceToSqd(const DPoint& pt) const { |
- double dx = fX - pt.fX; |
- double dy = fY - pt.fY; |
- return dx * dx + dy * dy; |
- } |
-}; |
- |
-// Matrix with double precision for affine transformation. |
-// We don't store row 3 because its always (0, 0, 1). |
-class DAffineMatrix { |
-public: |
- double operator[](int index) const { |
- SkASSERT((unsigned)index < 6); |
- return fMat[index]; |
- } |
- |
- double& operator[](int index) { |
- SkASSERT((unsigned)index < 6); |
- return fMat[index]; |
- } |
- |
- void setAffine(double m11, double m12, double m13, |
- double m21, double m22, double m23) { |
- fMat[0] = m11; |
- fMat[1] = m12; |
- fMat[2] = m13; |
- fMat[3] = m21; |
- fMat[4] = m22; |
- fMat[5] = m23; |
- } |
- |
- /** Set the matrix to identity |
- */ |
- void reset() { |
- fMat[0] = fMat[4] = 1.0; |
- fMat[1] = fMat[3] = |
- fMat[2] = fMat[5] = 0.0; |
- } |
- |
- // alias for reset() |
- void setIdentity() { this->reset(); } |
- |
- DPoint mapPoint(const SkPoint& src) const { |
- DPoint pt = DPoint::Make(src.x(), src.y()); |
- return this->mapPoint(pt); |
- } |
- |
- DPoint mapPoint(const DPoint& src) const { |
- return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], |
- fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); |
- } |
-private: |
- double fMat[6]; |
-}; |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-static const double kClose = (SK_Scalar1 / 16.0); |
-static const double kCloseSqd = SkScalarMul(kClose, kClose); |
-static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); |
-static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); |
-static const float kConicTolerance = 0.25f; |
- |
-static inline bool between_closed_open(double a, double b, double c, |
- double tolerance = 0.0, |
- bool xformToleranceToX = false) { |
- SkASSERT(tolerance >= 0.0); |
- double tolB = tolerance; |
- double tolC = tolerance; |
- |
- if (xformToleranceToX) { |
- // Canonical space is y = x^2 and the derivative of x^2 is 2x. |
- // So the slope of the tangent line at point (x, x^2) is 2x. |
- // |
- // /| |
- // sqrt(2x * 2x + 1 * 1) / | 2x |
- // /__| |
- // 1 |
- tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
- tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
- } |
- return b < c ? (a >= b - tolB && a < c - tolC) : |
- (a >= c - tolC && a < b - tolB); |
-} |
- |
-static inline bool between_closed(double a, double b, double c, |
- double tolerance = 0.0, |
- bool xformToleranceToX = false) { |
- SkASSERT(tolerance >= 0.0); |
- double tolB = tolerance; |
- double tolC = tolerance; |
- |
- if (xformToleranceToX) { |
- tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
- tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
- } |
- return b < c ? (a >= b - tolB && a <= c + tolC) : |
- (a >= c - tolC && a <= b + tolB); |
-} |
- |
-static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
- SkASSERT(tolerance >= 0.0); |
- return fabs(x) <= tolerance; |
-} |
- |
-static inline bool nearly_equal(double x, double y, |
- double tolerance = kNearlyZero, |
- bool xformToleranceToX = false) { |
- SkASSERT(tolerance >= 0.0); |
- if (xformToleranceToX) { |
- tolerance = tolerance / sqrt(4.0 * y * y + 1.0); |
- } |
- return fabs(x - y) <= tolerance; |
-} |
- |
-static inline double sign_of(const double &val) { |
- return (val < 0.0) ? -1.0 : 1.0; |
-} |
- |
-static bool is_colinear(const SkPoint pts[3]) { |
- return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
- (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd); |
-} |
- |
-class PathSegment { |
-public: |
- enum { |
- // These enum values are assumed in member functions below. |
- kLine = 0, |
- kQuad = 1, |
- } fType; |
- |
- // line uses 2 pts, quad uses 3 pts |
- SkPoint fPts[3]; |
- |
- DPoint fP0T, fP2T; |
- DAffineMatrix fXformMatrix; |
- double fScalingFactor; |
- double fScalingFactorSqd; |
- double fNearlyZeroScaled; |
- double fTangentTolScaledSqd; |
- SkRect fBoundingBox; |
- |
- void init(); |
- |
- int countPoints() { |
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
- return fType + 2; |
- } |
- |
- const SkPoint& endPt() const { |
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
- return fPts[fType + 1]; |
- } |
-}; |
- |
-typedef SkTArray<PathSegment, true> PathSegmentArray; |
- |
-void PathSegment::init() { |
- const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); |
- const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
- const double p0x = p0.x(); |
- const double p0y = p0.y(); |
- const double p2x = p2.x(); |
- const double p2y = p2.y(); |
- |
- fBoundingBox.set(fPts[0], this->endPt()); |
- |
- if (fType == PathSegment::kLine) { |
- fScalingFactorSqd = fScalingFactor = 1.0; |
- double hypotenuse = DPoint::Distance(p0, p2); |
- |
- const double cosTheta = (p2x - p0x) / hypotenuse; |
- const double sinTheta = (p2y - p0y) / hypotenuse; |
- |
- fXformMatrix.setAffine( |
- cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
- -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
- ); |
- } else { |
- SkASSERT(fType == PathSegment::kQuad); |
- |
- // Calculate bounding box |
- const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
- SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
- t.fX = _P1mP0.x() / t.x(); |
- t.fY = _P1mP0.y() / t.y(); |
- t.fX = SkScalarClampMax(t.x(), 1.0); |
- t.fY = SkScalarClampMax(t.y(), 1.0); |
- t.fX = _P1mP0.x() * t.x(); |
- t.fY = _P1mP0.y() * t.y(); |
- const SkPoint m = fPts[0] + t; |
- fBoundingBox.growToInclude(&m, 1); |
- |
- const double p1x = fPts[1].x(); |
- const double p1y = fPts[1].y(); |
- |
- const double p0xSqd = p0x * p0x; |
- const double p0ySqd = p0y * p0y; |
- const double p2xSqd = p2x * p2x; |
- const double p2ySqd = p2y * p2y; |
- const double p1xSqd = p1x * p1x; |
- const double p1ySqd = p1y * p1y; |
- |
- const double p01xProd = p0x * p1x; |
- const double p02xProd = p0x * p2x; |
- const double b12xProd = p1x * p2x; |
- const double p01yProd = p0y * p1y; |
- const double p02yProd = p0y * p2y; |
- const double b12yProd = p1y * p2y; |
- |
- const double sqrtA = p0y - (2.0 * p1y) + p2y; |
- const double a = sqrtA * sqrtA; |
- const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
- const double sqrtB = p0x - (2.0 * p1x) + p2x; |
- const double b = sqrtB * sqrtB; |
- const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
- - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
- + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
- + (p2xSqd * p0ySqd); |
- const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
- + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
- + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
- + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
- + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
- - (2.0 * p2x * p1ySqd); |
- const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
- - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
- + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
- + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
- - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
- + (p2xSqd * p0y)); |
- |
- const double cosTheta = sqrt(a / (a + b)); |
- const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
- |
- const double gDef = cosTheta * g - sinTheta * f; |
- const double fDef = sinTheta * g + cosTheta * f; |
- |
- |
- const double x0 = gDef / (a + b); |
- const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
- |
- |
- const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
- fScalingFactor = fabs(1.0 / lambda); |
- fScalingFactorSqd = fScalingFactor * fScalingFactor; |
- |
- const double lambda_cosTheta = lambda * cosTheta; |
- const double lambda_sinTheta = lambda * sinTheta; |
- |
- fXformMatrix.setAffine( |
- lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
- lambda_sinTheta, lambda_cosTheta, lambda * y0 |
- ); |
- } |
- |
- fNearlyZeroScaled = kNearlyZero / fScalingFactor; |
- fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; |
- |
- fP0T = fXformMatrix.mapPoint(p0); |
- fP2T = fXformMatrix.mapPoint(p2); |
-} |
- |
-static void init_distances(DFData* data, int size) { |
- DFData* currData = data; |
- |
- for (int i = 0; i < size; ++i) { |
- // init distance to "far away" |
- currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
- currData->fDeltaWindingScore = 0; |
- ++currData; |
- } |
-} |
- |
-static inline void add_line_to_segment(const SkPoint pts[2], |
- PathSegmentArray* segments) { |
- segments->push_back(); |
- segments->back().fType = PathSegment::kLine; |
- segments->back().fPts[0] = pts[0]; |
- segments->back().fPts[1] = pts[1]; |
- |
- segments->back().init(); |
-} |
- |
-static inline void add_quad_segment(const SkPoint pts[3], |
- PathSegmentArray* segments) { |
- if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || |
- pts[1].distanceToSqd(pts[2]) < kCloseSqd || |
- is_colinear(pts)) { |
- if (pts[0] != pts[2]) { |
- SkPoint line_pts[2]; |
- line_pts[0] = pts[0]; |
- line_pts[1] = pts[2]; |
- add_line_to_segment(line_pts, segments); |
- } |
- } else { |
- segments->push_back(); |
- segments->back().fType = PathSegment::kQuad; |
- segments->back().fPts[0] = pts[0]; |
- segments->back().fPts[1] = pts[1]; |
- segments->back().fPts[2] = pts[2]; |
- |
- segments->back().init(); |
- } |
-} |
- |
-static inline void add_cubic_segments(const SkPoint pts[4], |
- PathSegmentArray* segments) { |
- SkSTArray<15, SkPoint, true> quads; |
- GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); |
- int count = quads.count(); |
- for (int q = 0; q < count; q += 3) { |
- add_quad_segment(&quads[q], segments); |
- } |
-} |
- |
-static float calculate_nearest_point_for_quad( |
- const PathSegment& segment, |
- const DPoint &xFormPt) { |
- static const float kThird = 0.33333333333f; |
- static const float kTwentySeventh = 0.037037037f; |
- |
- const float a = 0.5f - (float)xFormPt.y(); |
- const float b = -0.5f * (float)xFormPt.x(); |
- |
- const float a3 = a * a * a; |
- const float b2 = b * b; |
- |
- const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
- |
- if (c >= 0.f) { |
- const float sqrtC = sqrt(c); |
- const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
- return result; |
- } else { |
- const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
- const float phi = (float)acos(cosPhi); |
- float result; |
- if (xFormPt.x() > 0.f) { |
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
- if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
- } |
- } else { |
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
- if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
- } |
- } |
- return result; |
- } |
-} |
- |
-// This structure contains some intermediate values shared by the same row. |
-// It is used to calculate segment side of a quadratic bezier. |
-struct RowData { |
- // The intersection type of a scanline and y = x * x parabola in canonical space. |
- enum IntersectionType { |
- kNoIntersection, |
- kVerticalLine, |
- kTangentLine, |
- kTwoPointsIntersect |
- } fIntersectionType; |
- |
- // The direction of the quadratic segment/scanline in the canonical space. |
- // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. |
- // 0: The scanline is a vertical line in the canonical space. |
- // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. |
- int fQuadXDirection; |
- int fScanlineXDirection; |
- |
- // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
- double fYAtIntersection; |
- |
- // The x-value for two intersection points. |
- double fXAtIntersection1; |
- double fXAtIntersection2; |
-}; |
- |
-void precomputation_for_row( |
- RowData *rowData, |
- const PathSegment& segment, |
- const SkPoint& pointLeft, |
- const SkPoint& pointRight |
- ) { |
- if (segment.fType != PathSegment::kQuad) { |
- return; |
- } |
- |
- const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
- const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);; |
- |
- rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()); |
- rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x()); |
- |
- const double x1 = xFormPtLeft.x(); |
- const double y1 = xFormPtLeft.y(); |
- const double x2 = xFormPtRight.x(); |
- const double y2 = xFormPtRight.y(); |
- |
- if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { |
- rowData->fIntersectionType = RowData::kVerticalLine; |
- rowData->fYAtIntersection = x1 * x1; |
- rowData->fScanlineXDirection = 0; |
- return; |
- } |
- |
- // Line y = mx + b |
- const double m = (y2 - y1) / (x2 - x1); |
- const double b = -m * x1 + y1; |
- |
- const double m2 = m * m; |
- const double c = m2 + 4.0 * b; |
- |
- const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); |
- |
- // Check if the scanline is the tangent line of the curve, |
- // and the curve start or end at the same y-coordinate of the scanline |
- if ((rowData->fScanlineXDirection == 1 && |
- (segment.fPts[0].y() == pointLeft.y() || |
- segment.fPts[2].y() == pointLeft.y())) && |
- nearly_zero(c, tol)) { |
- rowData->fIntersectionType = RowData::kTangentLine; |
- rowData->fXAtIntersection1 = m / 2.0; |
- rowData->fXAtIntersection2 = m / 2.0; |
- } else if (c <= 0.0) { |
- rowData->fIntersectionType = RowData::kNoIntersection; |
- return; |
- } else { |
- rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
- const double d = sqrt(c); |
- rowData->fXAtIntersection1 = (m + d) / 2.0; |
- rowData->fXAtIntersection2 = (m - d) / 2.0; |
- } |
-} |
- |
-SegSide calculate_side_of_quad( |
- const PathSegment& segment, |
- const SkPoint& point, |
- const DPoint& xFormPt, |
- const RowData& rowData) { |
- SegSide side = kNA_SegSide; |
- |
- if (RowData::kVerticalLine == rowData.fIntersectionType) { |
- side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection); |
- } |
- else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { |
- const double p1 = rowData.fXAtIntersection1; |
- const double p2 = rowData.fXAtIntersection2; |
- |
- int signP1 = (int)sign_of(p1 - xFormPt.x()); |
- bool includeP1 = true; |
- bool includeP2 = true; |
- |
- if (rowData.fScanlineXDirection == 1) { |
- if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() && |
- nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) || |
- (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() && |
- nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) { |
- includeP1 = false; |
- } |
- if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() && |
- nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) || |
- (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() && |
- nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) { |
- includeP2 = false; |
- } |
- } |
- |
- if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(), |
- segment.fNearlyZeroScaled, true)) { |
- side = (SegSide)(signP1 * rowData.fQuadXDirection); |
- } |
- if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(), |
- segment.fNearlyZeroScaled, true)) { |
- int signP2 = (int)sign_of(p2 - xFormPt.x()); |
- if (side == kNA_SegSide || signP2 == 1) { |
- side = (SegSide)(-signP2 * rowData.fQuadXDirection); |
- } |
- } |
- } else if (RowData::kTangentLine == rowData.fIntersectionType) { |
- // The scanline is the tangent line of current quadratic segment. |
- |
- const double p = rowData.fXAtIntersection1; |
- int signP = (int)sign_of(p - xFormPt.x()); |
- if (rowData.fScanlineXDirection == 1) { |
- // The path start or end at the tangent point. |
- if (segment.fPts[0].y() == point.y()) { |
- side = (SegSide)(signP); |
- } else if (segment.fPts[2].y() == point.y()) { |
- side = (SegSide)(-signP); |
- } |
- } |
- } |
- |
- return side; |
-} |
- |
-static float distance_to_segment(const SkPoint& point, |
- const PathSegment& segment, |
- const RowData& rowData, |
- SegSide* side) { |
- SkASSERT(side); |
- |
- const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
- |
- if (segment.fType == PathSegment::kLine) { |
- float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
- |
- if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { |
- result = (float)(xformPt.y() * xformPt.y()); |
- } else if (xformPt.x() < segment.fP0T.x()) { |
- result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); |
- } else { |
- result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) |
- + xformPt.y() * xformPt.y()); |
- } |
- |
- if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
- segment.fBoundingBox.bottom())) { |
- *side = (SegSide)(int)sign_of(xformPt.y()); |
- } else { |
- *side = kNA_SegSide; |
- } |
- return result; |
- } else { |
- SkASSERT(segment.fType == PathSegment::kQuad); |
- |
- const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
- |
- float dist; |
- |
- if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { |
- DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
- dist = (float)xformPt.distanceToSqd(x); |
- } else { |
- const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T); |
- const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T); |
- |
- if (distToB0T < distToB2T) { |
- dist = distToB0T; |
- } else { |
- dist = distToB2T; |
- } |
- } |
- |
- if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
- segment.fBoundingBox.bottom())) { |
- *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
- } else { |
- *side = kNA_SegSide; |
- } |
- |
- return (float)(dist * segment.fScalingFactorSqd); |
- } |
-} |
- |
-static void calculate_distance_field_data(PathSegmentArray* segments, |
- DFData* dataPtr, |
- int width, int height) { |
- int count = segments->count(); |
- for (int a = 0; a < count; ++a) { |
- PathSegment& segment = (*segments)[a]; |
- const SkRect& segBB = segment.fBoundingBox.makeOutset( |
- SK_DistanceFieldPad, SK_DistanceFieldPad); |
- int startColumn = (int)segBB.left(); |
- int endColumn = SkScalarCeilToInt(segBB.right()); |
- |
- int startRow = (int)segBB.top(); |
- int endRow = SkScalarCeilToInt(segBB.bottom()); |
- |
- SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
- SkASSERT((endColumn <= width) && "endColumn > width!"); |
- SkASSERT((startRow >= 0) && "StartRow < 0!"); |
- SkASSERT((endRow <= height) && "EndRow > height!"); |
- |
- for (int row = startRow; row < endRow; ++row) { |
- SegSide prevSide = kNA_SegSide; |
- const float pY = row + 0.5f; |
- RowData rowData; |
- |
- const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); |
- const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); |
- |
- if (between_closed_open(pY, segment.fBoundingBox.top(), |
- segment.fBoundingBox.bottom())) { |
- precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
- } |
- |
- for (int col = startColumn; col < endColumn; ++col) { |
- int idx = (row * width) + col; |
- |
- const float pX = col + 0.5f; |
- const SkPoint point = SkPoint::Make(pX, pY); |
- |
- const float distSq = dataPtr[idx].fDistSq; |
- int dilation = distSq < 1.5 * 1.5 ? 1 : |
- distSq < 2.5 * 2.5 ? 2 : |
- distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
- if (dilation > SK_DistanceFieldPad) { |
- dilation = SK_DistanceFieldPad; |
- } |
- |
- // Optimisation for not calculating some points. |
- if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() |
- .makeOutset(dilation, dilation).contains(col, row)) { |
- continue; |
- } |
- |
- SegSide side = kNA_SegSide; |
- int deltaWindingScore = 0; |
- float currDistSq = distance_to_segment(point, segment, rowData, &side); |
- if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
- deltaWindingScore = -1; |
- } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
- deltaWindingScore = 1; |
- } |
- |
- prevSide = side; |
- |
- if (currDistSq < distSq) { |
- dataPtr[idx].fDistSq = currDistSq; |
- } |
- |
- dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
- } |
- } |
- } |
-} |
- |
-template <int distanceMagnitude> |
-static unsigned char pack_distance_field_val(float dist) { |
- // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
- // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
- // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
- dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
- |
- // Scale into the positive range for unsigned distance. |
- dist += distanceMagnitude; |
- |
- // Scale into unsigned char range. |
- // Round to place negative and positive values as equally as possible around 128 |
- // (which represents zero). |
- return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
-} |
- |
-bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
- const SkPath& path, const SkMatrix& drawMatrix, |
- int width, int height, size_t rowBytes) { |
- SkASSERT(distanceField); |
- |
- SkPath simplifiedPath; |
- SkPath workingPath; |
- if (Simplify(path, &simplifiedPath)) { |
- workingPath = simplifiedPath; |
- } else { |
- workingPath = path; |
- } |
- |
- if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { |
- return false; |
- } |
- |
- workingPath.transform(drawMatrix); |
- |
- // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) |
- SkMatrix dfMatrix; |
- dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
- workingPath.transform(dfMatrix); |
- |
- // create temp data |
- size_t dataSize = width * height * sizeof(DFData); |
- SkAutoSMalloc<1024> dfStorage(dataSize); |
- DFData* dataPtr = (DFData*) dfStorage.get(); |
- |
- // create initial distance data |
- init_distances(dataPtr, width * height); |
- |
- SkPath::Iter iter(workingPath, true); |
- SkSTArray<15, PathSegment, true> segments; |
- |
- for (;;) { |
- SkPoint pts[4]; |
- SkPath::Verb verb = iter.next(pts); |
- switch (verb) { |
- case SkPath::kMove_Verb: |
- break; |
- case SkPath::kLine_Verb: { |
- add_line_to_segment(pts, &segments); |
- break; |
- } |
- case SkPath::kQuad_Verb: |
- add_quad_segment(pts, &segments); |
- break; |
- case SkPath::kConic_Verb: { |
- SkScalar weight = iter.conicWeight(); |
- SkAutoConicToQuads converter; |
- const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance); |
- for (int i = 0; i < converter.countQuads(); ++i) { |
- add_quad_segment(quadPts + 2*i, &segments); |
- } |
- break; |
- } |
- case SkPath::kCubic_Verb: { |
- add_cubic_segments(pts, &segments); |
- break; |
- }; |
- default: |
- break; |
- } |
- if (verb == SkPath::kDone_Verb) { |
- break; |
- } |
- } |
- |
- calculate_distance_field_data(&segments, dataPtr, width, height); |
- |
- for (int row = 0; row < height; ++row) { |
- int windingNumber = 0; // Winding number start from zero for each scanline |
- for (int col = 0; col < width; ++col) { |
- int idx = (row * width) + col; |
- windingNumber += dataPtr[idx].fDeltaWindingScore; |
- |
- enum DFSign { |
- kInside = -1, |
- kOutside = 1 |
- } dfSign; |
- |
- if (workingPath.getFillType() == SkPath::kWinding_FillType) { |
- dfSign = windingNumber ? kInside : kOutside; |
- } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) { |
- dfSign = windingNumber ? kOutside : kInside; |
- } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) { |
- dfSign = (windingNumber % 2) ? kInside : kOutside; |
- } else { |
- SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType); |
- dfSign = (windingNumber % 2) ? kOutside : kInside; |
- } |
- |
- // The winding number at the end of a scanline should be zero. |
- // SkASSERT(((col != width - 1) || (windingNumber == 0)) && |
- // "Winding number should be zero at the end of a scan line."); |
- // Fallback to use SkPath::contains to determine the sign of pixel instead of assertion. |
- if (col == width - 1 && windingNumber != 0) { |
- for (int col = 0; col < width; ++col) { |
- int idx = (row * width) + col; |
- dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; |
- const float miniDist = sqrt(dataPtr[idx].fDistSq); |
- const float dist = dfSign * miniDist; |
- |
- unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
- |
- distanceField[(row * rowBytes) + col] = pixelVal; |
- } |
- continue; |
- } |
- |
- const float miniDist = sqrt(dataPtr[idx].fDistSq); |
- const float dist = dfSign * miniDist; |
- |
- unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
- |
- distanceField[(row * rowBytes) + col] = pixelVal; |
- } |
- } |
- return true; |
-} |