Index: third_party/WebKit/LayoutTests/webaudio/biquad-automation.html |
diff --git a/third_party/WebKit/LayoutTests/webaudio/biquad-automation.html b/third_party/WebKit/LayoutTests/webaudio/biquad-automation.html |
deleted file mode 100644 |
index 4d630ea8ad2b715c439fc7faf3d34315e786915a..0000000000000000000000000000000000000000 |
--- a/third_party/WebKit/LayoutTests/webaudio/biquad-automation.html |
+++ /dev/null |
@@ -1,374 +0,0 @@ |
-<!doctype html> |
-<html> |
- <head> |
- <title>Biquad Automation Test</title> |
- <script src="../resources/js-test.js"></script> |
- <script src="resources/compatibility.js"></script> |
- <script src="resources/audit-util.js"></script> |
- <script src="resources/audio-testing.js"></script> |
- <script src="resources/biquad-filters.js"></script> |
- <script src="resources/audioparam-testing.js"></script> |
- </head> |
- <body> |
- <script> |
- description("Test Automation of Biquad Filters"); |
- |
- window.jsTestIsAsync = true; |
- |
- // Don't need to run these tests at high sampling rate, so just use a low one to reduce memory |
- // usage and complexity. |
- var sampleRate = 16000; |
- |
- // How long to render for each test. |
- var renderDuration = 1; |
- // Where to end the automations. Fairly arbitrary, but must end before |
- // the renderDuration. |
- var automationEndTime = renderDuration / 2; |
- |
- var audit = Audit.createTaskRunner(); |
- |
- // The definition of the linear ramp automation function. |
- function linearRamp(t, v0, v1, t0, t1) { |
- return v0 + (v1 - v0) * (t - t0) / (t1 - t0); |
- } |
- |
- // Generate the filter coefficients for the specified filter using the given parameters for |
- // the given duration. |filterTypeFunction| is a function that returns the filter |
- // coefficients for one set of parameters. |parameters| is a property bag that contains the |
- // start and end values (as an array) for each of the biquad attributes. The properties are |
- // |freq|, |Q|, |gain|, and |detune|. |duration| is the number of seconds for which the |
- // coefficients are generated. |
- // |
- // A property bag with properties |b0|, |b1|, |b2|, |a1|, |a2|. Each propery is an array |
- // consisting of the coefficients for the time-varying biquad filter. |
- function generateFilterCoefficients(filterTypeFunction, parameters, duration) { |
- var renderEndFrame = Math.ceil(renderDuration * sampleRate); |
- var endFrame = Math.ceil(duration * sampleRate); |
- var nCoef = renderEndFrame; |
- var b0 = new Float64Array(nCoef); |
- var b1 = new Float64Array(nCoef); |
- var b2 = new Float64Array(nCoef); |
- var a1 = new Float64Array(nCoef); |
- var a2 = new Float64Array(nCoef); |
- |
- var k = 0; |
- // If the property is not given, use the defaults. |
- var freqs = parameters.freq || [350, 350]; |
- var qs = parameters.Q || [1, 1]; |
- var gains = parameters.gain || [0, 0]; |
- var detunes = parameters.detune || [0, 0]; |
- |
- for (var frame = 0; frame <= endFrame; ++frame) { |
- // Apply linear ramp at frame |frame|. |
- var f = linearRamp(frame / sampleRate, freqs[0], freqs[1], 0, duration); |
- var q = linearRamp(frame / sampleRate, qs[0], qs[1], 0, duration); |
- var g = linearRamp(frame / sampleRate, gains[0], gains[1], 0, duration); |
- var d = linearRamp(frame / sampleRate, detunes[0], detunes[1], 0, duration); |
- |
- // Compute actual frequency parameter |
- f = f * Math.pow(2, d / 1200); |
- |
- // Compute filter coefficients |
- var coef = filterTypeFunction(f / (sampleRate / 2), q, g); |
- b0[k] = coef.b0; |
- b1[k] = coef.b1; |
- b2[k] = coef.b2; |
- a1[k] = coef.a1; |
- a2[k] = coef.a2; |
- ++k; |
- } |
- |
- // Fill the rest of the arrays with the constant value to the end of |
- // the rendering duration. |
- b0.fill(b0[endFrame], endFrame + 1); |
- b1.fill(b1[endFrame], endFrame + 1); |
- b2.fill(b2[endFrame], endFrame + 1); |
- a1.fill(a1[endFrame], endFrame + 1); |
- a2.fill(a2[endFrame], endFrame + 1); |
- |
- return {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2}; |
- } |
- |
- // Apply the given time-varying biquad filter to the given signal, |signal|. |coef| should be |
- // the time-varying coefficients of the filter, as returned by |generateFilterCoefficients|. |
- function timeVaryingFilter(signal, coef) { |
- var length = signal.length; |
- // Use double precision for the internal computations. |
- var y = new Float64Array(length); |
- |
- // Prime the pump. (Assumes the signal has length >= 2!) |
- y[0] = coef.b0[0] * signal[0]; |
- y[1] = coef.b0[1] * signal[1] + coef.b1[1] * signal[0] - coef.a1[1] * y[0]; |
- |
- for (var n = 2; n < length; ++n) { |
- y[n] = coef.b0[n] * signal[n] + coef.b1[n] * signal[n-1] + coef.b2[n] * signal[n-2]; |
- y[n] -= coef.a1[n] * y[n-1] + coef.a2[n] * y[n-2]; |
- } |
- |
- // But convert the result to single precision for comparison. |
- return y.map(Math.fround); |
- } |
- |
- // Configure the audio graph using |context|. Returns the biquad filter node and the |
- // AudioBuffer used for the source. |
- function configureGraph(context, toneFrequency) { |
- // The source is just a simple sine wave. |
- var src = context.createBufferSource(); |
- var b = context.createBuffer(1, renderDuration * sampleRate, sampleRate); |
- var data = b.getChannelData(0); |
- var omega = 2 * Math.PI * toneFrequency / sampleRate; |
- for (var k = 0; k < data.length; ++k) { |
- data[k] = Math.sin(omega * k); |
- } |
- src.buffer = b; |
- var f = context.createBiquadFilter(); |
- src.connect(f); |
- f.connect(context.destination); |
- |
- src.start(); |
- |
- return {filter: f, source: b}; |
- } |
- |
- function createFilterVerifier(filterCreator, threshold, parameters, input, message) { |
- return function (resultBuffer) { |
- var actual = resultBuffer.getChannelData(0); |
- var coefs = generateFilterCoefficients(filterCreator, parameters, automationEndTime); |
- |
- reference = timeVaryingFilter(input, coefs); |
- |
- Should(message, actual, { |
- verbose: true |
- }).beCloseToArray(reference, threshold); |
- }; |
- } |
- |
- // Automate just the frequency parameter. A bandpass filter is used where the center |
- // frequency is swept across the source (which is a simple tone). |
- audit.defineTask("automate-freq", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- |
- // Center frequency of bandpass filter and also the frequency of the test tone. |
- var centerFreq = 10*440; |
- |
- // Sweep the frequency +/- 5*440 Hz from the center. This should cause |
- // the output to be low at the beginning and end of the test where the |
- // tone is outside the pass band of the filter, but high in the middle |
- // of the automation time where the tone is near the center of the pass |
- // band. Make sure the frequency sweep stays inside the Nyquist |
- // frequency. |
- var parameters = { |
- freq: [centerFreq - 5*440, centerFreq + 5*440] |
- } |
- var graph = configureGraph(context, centerFreq); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- f.type = "bandpass"; |
- f.frequency.setValueAtTime(parameters.freq[0], 0); |
- f.frequency.linearRampToValueAtTime(parameters.freq[1], automationEndTime); |
- |
- context.startRendering() |
- .then(createFilterVerifier(createBandpassFilter, 4.8429e-6, parameters, b.getChannelData(0), |
- "Output of bandpass filter with frequency automation")) |
- .then(done); |
- }); |
- |
- // Automate just the Q parameter. A bandpass filter is used where the Q of the filter is |
- // swept. |
- audit.defineTask("automate-q", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- |
- // The frequency of the test tone. |
- var centerFreq = 440; |
- |
- // Sweep the Q paramter between 1 and 200. This will cause the output of the filter to pass |
- // most of the tone at the beginning to passing less of the tone at the end. This is |
- // because we set center frequency of the bandpass filter to be slightly off from the actual |
- // tone. |
- var parameters = { |
- Q: [1, 200], |
- // Center frequency of the bandpass filter is just 25 Hz above the tone frequency. |
- freq: [centerFreq + 25, centerFreq + 25] |
- }; |
- var graph = configureGraph(context, centerFreq); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- f.type = "bandpass"; |
- f.frequency.value = parameters.freq[0]; |
- f.Q.setValueAtTime(parameters.Q[0], 0); |
- f.Q.linearRampToValueAtTime(parameters.Q[1], automationEndTime); |
- |
- context.startRendering() |
- .then(createFilterVerifier(createBandpassFilter, 1.1062e-6, parameters, b.getChannelData(0), |
- "Output of bandpass filter with Q automation")) |
- .then(done); |
- }); |
- |
- // Automate just the gain of the lowshelf filter. A test tone will be in the lowshelf part of |
- // the filter. The output will vary as the gain of the lowshelf is changed. |
- audit.defineTask("automate-gain", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- |
- // Frequency of the test tone. |
- var centerFreq = 440; |
- |
- // Set the cutoff frequency of the lowshelf to be significantly higher than the test tone. |
- // Sweep the gain from 20 dB to -20 dB. (We go from 20 to -20 to easily verify that the |
- // filter didn't go unstable.) |
- var parameters = { |
- freq: [3500, 3500], |
- gain: [20, -20] |
- } |
- var graph = configureGraph(context, centerFreq); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- f.type = "lowshelf"; |
- f.frequency.value = parameters.freq[0]; |
- f.gain.setValueAtTime(parameters.gain[0], 0); |
- f.gain.linearRampToValueAtTime(parameters.gain[1], automationEndTime); |
- |
- context.startRendering() |
- .then(createFilterVerifier(createLowShelfFilter, 1.4306e-5, parameters, b.getChannelData(0), |
- "Output of lowshelf filter with gain automation")) |
- .then(done); |
- }); |
- |
- // Automate just the detune parameter. Basically the same test as for the frequncy parameter |
- // but we just use the detune parameter to modulate the frequency parameter. |
- audit.defineTask("automate-detune", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- var centerFreq = 10*440; |
- var parameters = { |
- freq: [centerFreq, centerFreq], |
- detune: [-10*1200, 10*1200] |
- }; |
- var graph = configureGraph(context, centerFreq); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- f.type = "bandpass"; |
- f.frequency.value = parameters.freq[0]; |
- f.detune.setValueAtTime(parameters.detune[0], 0); |
- f.detune.linearRampToValueAtTime(parameters.detune[1], automationEndTime); |
- |
- context.startRendering() |
- .then(createFilterVerifier(createBandpassFilter, 2.9535e-5, parameters, b.getChannelData(0), |
- "Output of bandpass filter with detune automation")) |
- .then(done); |
- }); |
- |
- // Automate all of the filter parameters at once. This is a basic check that everything is |
- // working. A peaking filter is used because it uses all of the parameters. |
- audit.defineTask("automate-all", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- var graph = configureGraph(context, 10*440); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- // Sweep all of the filter parameters. These are pretty much arbitrary. |
- var parameters = { |
- freq: [8000, 100], |
- Q: [f.Q.value, .0001], |
- gain: [f.gain.value, 20], |
- detune: [2400, -2400] |
- }; |
- |
- f.type = "peaking"; |
- // Set starting points for all parameters of the filter. Start at 10 kHz for the center |
- // frequency, and the defaults for Q and gain. |
- f.frequency.setValueAtTime(parameters.freq[0], 0); |
- f.Q.setValueAtTime(parameters.Q[0], 0); |
- f.gain.setValueAtTime(parameters.gain[0], 0); |
- f.detune.setValueAtTime(parameters.detune[0], 0); |
- |
- // Linear ramp each parameter |
- f.frequency.linearRampToValueAtTime(parameters.freq[1], automationEndTime); |
- f.Q.linearRampToValueAtTime(parameters.Q[1], automationEndTime); |
- f.gain.linearRampToValueAtTime(parameters.gain[1], automationEndTime); |
- f.detune.linearRampToValueAtTime(parameters.detune[1], automationEndTime); |
- |
- context.startRendering() |
- .then(createFilterVerifier(createPeakingFilter, 6.2907e-4, parameters, b.getChannelData(0), |
- "Output of peaking filter with automation of all parameters")) |
- .then(done); |
- }); |
- |
- // Test that modulation of the frequency parameter of the filter works. A sinusoid of 440 Hz |
- // is the test signal that is applied to a bandpass biquad filter. The frequency parameter of |
- // the filter is modulated by a sinusoid at 103 Hz, and the frequency modulation varies from |
- // 116 to 412 Hz. (This test was taken from the description in |
- // https://github.com/WebAudio/web-audio-api/issues/509#issuecomment-94731355) |
- audit.defineTask("modulation", function (done) { |
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate); |
- |
- // Create a graph with the sinusoidal source at 440 Hz as the input to a biquad filter. |
- var graph = configureGraph(context, 440); |
- var f = graph.filter; |
- var b = graph.source; |
- |
- f.type = "bandpass"; |
- f.Q.value = 5; |
- f.frequency.value = 264; |
- |
- // Create the modulation source, a sinusoid with frequency 103 Hz and amplitude 148. (The |
- // amplitude of 148 is added to the filter's frequency value of 264 to produce a sinusoidal |
- // modulation of the frequency parameter from 116 to 412 Hz.) |
- var mod = context.createBufferSource(); |
- var mbuffer = context.createBuffer(1, renderDuration * sampleRate, sampleRate); |
- var d = mbuffer.getChannelData(0); |
- var omega = 2 * Math.PI * 103 / sampleRate; |
- for (var k = 0; k < d.length; ++k) { |
- d[k] = 148 * Math.sin(omega * k); |
- } |
- mod.buffer = mbuffer; |
- |
- mod.connect(f.frequency); |
- |
- mod.start(); |
- context.startRendering() |
- .then(function (resultBuffer) { |
- var actual = resultBuffer.getChannelData(0); |
- // Compute the filter coefficients using the mod sine wave |
- |
- var endFrame = Math.ceil(renderDuration * sampleRate); |
- var nCoef = endFrame; |
- var b0 = new Float64Array(nCoef); |
- var b1 = new Float64Array(nCoef); |
- var b2 = new Float64Array(nCoef); |
- var a1 = new Float64Array(nCoef); |
- var a2 = new Float64Array(nCoef); |
- |
- // Generate the filter coefficients when the frequency varies from 116 to 248 Hz using |
- // the 103 Hz sinusoid. |
- for (var k = 0; k < nCoef; ++k) { |
- var freq = f.frequency.value + d[k]; |
- var c = createBandpassFilter(freq / (sampleRate / 2), f.Q.value, f.gain.value); |
- b0[k] = c.b0; |
- b1[k] = c.b1; |
- b2[k] = c.b2; |
- a1[k] = c.a1; |
- a2[k] = c.a2; |
- } |
- reference = timeVaryingFilter(b.getChannelData(0), |
- {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2}); |
- |
- Should("Output of bandpass filter with sinusoidal modulation of bandpass center frequency", |
- actual) |
- .beCloseToArray(reference, 3.9787e-5); |
- }) |
- .then(done); |
- }); |
- |
- // All done! |
- audit.defineTask("finish", function (done) { |
- finishJSTest(); |
- done(); |
- }); |
- |
- audit.runTasks(); |
- </script> |
- </body> |
-</html> |