| OLD | NEW |
| (Empty) |
| 1 <!doctype html> | |
| 2 <html> | |
| 3 <head> | |
| 4 <script src="../resources/js-test.js"></script> | |
| 5 <script src="resources/compatibility.js"></script> | |
| 6 <script src="resources/audit-util.js"></script> | |
| 7 <script src="resources/audio-testing.js"></script> | |
| 8 <script src="resources/panner-formulas.js"></script> | |
| 9 <title>Test Automation of PannerNode Positions</title> | |
| 10 </head> | |
| 11 | |
| 12 <body> | |
| 13 <script> | |
| 14 description("Test Automation of PannerNode Positions."); | |
| 15 window.jsTestIsAsync = true; | |
| 16 | |
| 17 var sampleRate = 48000; | |
| 18 // These tests are quite slow, so don't run for many frames. 256 frames s
hould be enough to | |
| 19 // demonstrate that automations are working. | |
| 20 var renderFrames = 256; | |
| 21 var renderDuration = renderFrames / sampleRate; | |
| 22 | |
| 23 var context; | |
| 24 var panner; | |
| 25 | |
| 26 var audit = Audit.createTaskRunner(); | |
| 27 | |
| 28 // Set of tests for the panner node with automations applied to the positi
on of the source. | |
| 29 var testConfigs = [{ | |
| 30 // Distance model parameters for the panner | |
| 31 distanceModel: { | |
| 32 model: "inverse", | |
| 33 rolloff: 1 | |
| 34 }, | |
| 35 // Initial location of the source | |
| 36 startPosition: [0, 0, 1], | |
| 37 // Final position of the source. For this test, we only want to move on
the z axis which | |
| 38 // doesn't change the azimuth angle. | |
| 39 endPosition: [0, 0, 10000], | |
| 40 }, { | |
| 41 distanceModel: { | |
| 42 model: "inverse", | |
| 43 rolloff: 1 | |
| 44 }, | |
| 45 startPosition: [0, 0, 1], | |
| 46 // An essentially random end position, but it should be such that azimut
h angle changes as | |
| 47 // we move from the start to the end. | |
| 48 endPosition: [20000, 30000, 10000], | |
| 49 errorThreshold: [{ | |
| 50 // Error threshold for 1-channel case | |
| 51 relativeThreshold: 4.8124e-7 | |
| 52 }, { | |
| 53 // Error threshold for 2-channel case | |
| 54 relativeThreshold: 4.3267e-7 | |
| 55 }], | |
| 56 }, { | |
| 57 distanceModel: { | |
| 58 model: "exponential", | |
| 59 rolloff: 1.5 | |
| 60 }, | |
| 61 startPosition: [0, 0, 1], | |
| 62 endPosition: [20000, 30000, 10000], | |
| 63 errorThreshold: [{ | |
| 64 relativeThreshold: 5.0783e-7 | |
| 65 }, { | |
| 66 relativeThreshold: 5.2180e-7 | |
| 67 }] | |
| 68 }, { | |
| 69 distanceModel: { | |
| 70 model: "linear", | |
| 71 rolloff: 1 | |
| 72 }, | |
| 73 startPosition: [0, 0, 1], | |
| 74 endPosition: [20000, 30000, 10000], | |
| 75 errorThreshold: [{ | |
| 76 relativeThreshold: 6.5324e-6 | |
| 77 }, { | |
| 78 relativeThreshold: 6.5756e-6 | |
| 79 }] | |
| 80 }]; | |
| 81 | |
| 82 for (var k = 0; k < testConfigs.length; ++k) { | |
| 83 var config = testConfigs[k]; | |
| 84 var tester = function (c, channelCount) { | |
| 85 return function (done) { | |
| 86 runTest(c, channelCount).then(done); | |
| 87 } | |
| 88 }; | |
| 89 | |
| 90 var baseTestName = config.distanceModel.model + " rolloff: " + config.di
stanceModel.rolloff; | |
| 91 | |
| 92 // Define tasks for both 1-channel and 2-channel | |
| 93 audit.defineTask(k + ": 1-channel " + baseTestName, tester(config, 1)); | |
| 94 audit.defineTask(k + ": 2-channel " + baseTestName, tester(config, 2)); | |
| 95 } | |
| 96 | |
| 97 audit.defineTask("finish", function (done) { | |
| 98 finishJSTest(); | |
| 99 done(); | |
| 100 }); | |
| 101 | |
| 102 audit.runTasks(); | |
| 103 | |
| 104 function runTest(options, channelCount) { | |
| 105 // Output has 5 channels: channels 0 and 1 are for the stereo output of
the panner node. | |
| 106 // Channels 2-5 are the for automation of the x,y,z coordinate so that w
e have actual | |
| 107 // coordinates used for the panner automation. | |
| 108 context = new OfflineAudioContext(5, renderFrames, sampleRate); | |
| 109 | |
| 110 // Stereo source for the panner. | |
| 111 var source = context.createBufferSource(); | |
| 112 source.buffer = createConstantBuffer(context, renderFrames, channelCount
== 1 ? 1 : [1, 2]); | |
| 113 | |
| 114 panner = context.createPanner(); | |
| 115 panner.distanceModel = options.distanceModel.model; | |
| 116 panner.rolloffFactor = options.distanceModel.rolloff; | |
| 117 panner.panningModel = "equalpower"; | |
| 118 | |
| 119 // Source and gain node for the z-coordinate calculation. | |
| 120 var dist = context.createBufferSource(); | |
| 121 dist.buffer = createConstantBuffer(context, 1, 1); | |
| 122 dist.loop = true; | |
| 123 var gainX = context.createGain(); | |
| 124 var gainY = context.createGain(); | |
| 125 var gainZ = context.createGain(); | |
| 126 dist.connect(gainX); | |
| 127 dist.connect(gainY); | |
| 128 dist.connect(gainZ); | |
| 129 | |
| 130 // Set the gain automation to match the z-coordinate automation of the p
anner. | |
| 131 | |
| 132 // End the automation some time before the end of the rendering so we ca
n verify that | |
| 133 // automation has the correct end time and value. | |
| 134 var endAutomationTime = 0.75 * renderDuration; | |
| 135 | |
| 136 gainX.gain.setValueAtTime(options.startPosition[0], 0); | |
| 137 gainX.gain.linearRampToValueAtTime(options.endPosition[0], endAutomation
Time); | |
| 138 gainY.gain.setValueAtTime(options.startPosition[1], 0); | |
| 139 gainY.gain.linearRampToValueAtTime(options.endPosition[1], endAutomation
Time); | |
| 140 gainZ.gain.setValueAtTime(options.startPosition[2], 0); | |
| 141 gainZ.gain.linearRampToValueAtTime(options.endPosition[2], endAutomation
Time); | |
| 142 | |
| 143 dist.start(); | |
| 144 | |
| 145 // Splitter and merger to map the panner output and the z-coordinate aut
omation to the | |
| 146 // correct channels in the destination. | |
| 147 var splitter = context.createChannelSplitter(2); | |
| 148 var merger = context.createChannelMerger(5); | |
| 149 | |
| 150 source.connect(panner); | |
| 151 // Split the output of the panner to separate channels | |
| 152 panner.connect(splitter); | |
| 153 | |
| 154 // Merge the panner outputs and the z-coordinate output to the correct d
estination channels. | |
| 155 splitter.connect(merger, 0, 0); | |
| 156 splitter.connect(merger, 1, 1); | |
| 157 gainX.connect(merger, 0, 2); | |
| 158 gainY.connect(merger, 0, 3); | |
| 159 gainZ.connect(merger, 0, 4); | |
| 160 | |
| 161 merger.connect(context.destination); | |
| 162 | |
| 163 // Initialize starting point of the panner. | |
| 164 panner.positionX.setValueAtTime(options.startPosition[0], 0); | |
| 165 panner.positionY.setValueAtTime(options.startPosition[1], 0); | |
| 166 panner.positionZ.setValueAtTime(options.startPosition[2], 0); | |
| 167 | |
| 168 // Automate z coordinate to move away from the listener | |
| 169 panner.positionX.linearRampToValueAtTime(options.endPosition[0], 0.75 *
renderDuration); | |
| 170 panner.positionY.linearRampToValueAtTime(options.endPosition[1], 0.75 *
renderDuration); | |
| 171 panner.positionZ.linearRampToValueAtTime(options.endPosition[2], 0.75 *
renderDuration); | |
| 172 | |
| 173 source.start(); | |
| 174 | |
| 175 // Go! | |
| 176 return context.startRendering() | |
| 177 .then(function (renderedBuffer) { | |
| 178 // Get the panner outputs | |
| 179 var data0 = renderedBuffer.getChannelData(0); | |
| 180 var data1 = renderedBuffer.getChannelData(1); | |
| 181 var xcoord = renderedBuffer.getChannelData(2); | |
| 182 var ycoord = renderedBuffer.getChannelData(3); | |
| 183 var zcoord = renderedBuffer.getChannelData(4); | |
| 184 | |
| 185 // We're doing a linear ramp on the Z axis with the equalpower panne
r, so the equalpower | |
| 186 // panning gain remains constant. We only need to model the distanc
e effect. | |
| 187 | |
| 188 // Compute the distance gain | |
| 189 var distanceGain = new Float32Array(xcoord.length);; | |
| 190 | |
| 191 if (panner.distanceModel === "inverse") { | |
| 192 for (var k = 0; k < distanceGain.length; ++k) { | |
| 193 distanceGain[k] = inverseDistance(panner, xcoord[k], ycoord[k],
zcoord[k]) | |
| 194 } | |
| 195 } else if (panner.distanceModel === "linear") { | |
| 196 for (var k = 0; k < distanceGain.length; ++k) { | |
| 197 distanceGain[k] = linearDistance(panner, xcoord[k], ycoord[k], z
coord[k]) | |
| 198 } | |
| 199 } else if (panner.distanceModel === "exponential") { | |
| 200 for (var k = 0; k < distanceGain.length; ++k) { | |
| 201 distanceGain[k] = exponentialDistance(panner, xcoord[k], ycoord[
k], zcoord[k]) | |
| 202 } | |
| 203 } | |
| 204 | |
| 205 // Compute the expected result. Since we're on the z-axis, the left
and right channels | |
| 206 // pass through the equalpower panner unchanged. Only need to apply
the distance gain. | |
| 207 var buffer0 = source.buffer.getChannelData(0); | |
| 208 var buffer1 = channelCount == 2 ? source.buffer.getChannelData(1) :
buffer0; | |
| 209 | |
| 210 var azimuth = new Float32Array(buffer0.length); | |
| 211 | |
| 212 for (var k = 0; k < data0.length; ++k) { | |
| 213 azimuth[k] = calculateAzimuth([ | |
| 214 xcoord[k], | |
| 215 ycoord[k], | |
| 216 zcoord[k] | |
| 217 ], [ | |
| 218 context.listener.positionX.value, | |
| 219 context.listener.positionY.value, | |
| 220 context.listener.positionZ.value | |
| 221 ], [ | |
| 222 context.listener.forwardX.value, | |
| 223 context.listener.forwardY.value, | |
| 224 context.listener.forwardZ.value | |
| 225 ], [ | |
| 226 context.listener.upX.value, | |
| 227 context.listener.upY.value, | |
| 228 context.listener.upZ.value | |
| 229 ]); | |
| 230 } | |
| 231 | |
| 232 var expected = applyPanner(azimuth, buffer0, buffer1, channelCount); | |
| 233 var expected0 = expected.left; | |
| 234 var expected1 = expected.right; | |
| 235 | |
| 236 for (var k = 0; k < expected0.length; ++k) { | |
| 237 expected0[k] *= distanceGain[k]; | |
| 238 expected1[k] *= distanceGain[k]; | |
| 239 } | |
| 240 | |
| 241 var info = options.distanceModel.model + ", rolloff: " + options.dis
tanceModel.rolloff; | |
| 242 var prefix = channelCount + "-channel " | |
| 243 + "[" + options.startPosition[0] + ", " | |
| 244 + options.startPosition[1] + ", " | |
| 245 + options.startPosition[2] + "] -> [" | |
| 246 + options.endPosition[0] + ", " | |
| 247 + options.endPosition[1] + ", " | |
| 248 + options.endPosition[2] + "]: "; | |
| 249 | |
| 250 var errorThreshold = 0; | |
| 251 | |
| 252 if (options.errorThreshold) | |
| 253 errorThreshold = options.errorThreshold[channelCount - 1] | |
| 254 | |
| 255 Should(prefix + "distanceModel: " + info + ", left channel", data0,
{ | |
| 256 precision: 5 | |
| 257 }) | |
| 258 .beCloseToArray(expected0, errorThreshold); | |
| 259 Should(prefix + "distanceModel: " + info + ", right channel", data1,
{ | |
| 260 precision: 5 | |
| 261 }) | |
| 262 .beCloseToArray(expected1, errorThreshold); | |
| 263 }); | |
| 264 } | |
| 265 </script> | |
| 266 </body> | |
| 267 </html> | |
| OLD | NEW |