OLD | NEW |
| (Empty) |
1 // Copyright 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "base/memory/discardable_memory_ashmem_allocator.h" | |
6 | |
7 #include <sys/mman.h> | |
8 #include <unistd.h> | |
9 | |
10 #include <algorithm> | |
11 #include <cmath> | |
12 #include <limits> | |
13 #include <set> | |
14 #include <utility> | |
15 | |
16 #include "base/basictypes.h" | |
17 #include "base/containers/hash_tables.h" | |
18 #include "base/file_util.h" | |
19 #include "base/files/scoped_file.h" | |
20 #include "base/logging.h" | |
21 #include "base/memory/scoped_vector.h" | |
22 #include "third_party/ashmem/ashmem.h" | |
23 | |
24 // The allocator consists of three parts (classes): | |
25 // - DiscardableMemoryAshmemAllocator: entry point of all allocations (through | |
26 // its Allocate() method) that are dispatched to the AshmemRegion instances | |
27 // (which it owns). | |
28 // - AshmemRegion: manages allocations and destructions inside a single large | |
29 // (e.g. 32 MBytes) ashmem region. | |
30 // - DiscardableAshmemChunk: class mimicking the DiscardableMemory interface | |
31 // whose instances are returned to the client. | |
32 | |
33 namespace base { | |
34 namespace { | |
35 | |
36 // Only tolerate fragmentation in used chunks *caused by the client* (as opposed | |
37 // to the allocator when a free chunk is reused). The client can cause such | |
38 // fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to | |
39 // 8192 by the allocator which would cause 4095 bytes of fragmentation (which is | |
40 // currently the maximum allowed). If the client requests 4096 bytes and a free | |
41 // chunk of 8192 bytes is available then the free chunk gets splitted into two | |
42 // pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater | |
43 // than 4095). | |
44 // TODO(pliard): tune this if splitting chunks too often leads to performance | |
45 // issues. | |
46 const size_t kMaxChunkFragmentationBytes = 4096 - 1; | |
47 | |
48 const size_t kMinAshmemRegionSize = 32 * 1024 * 1024; | |
49 | |
50 // Returns 0 if the provided size is too high to be aligned. | |
51 size_t AlignToNextPage(size_t size) { | |
52 const size_t kPageSize = 4096; | |
53 DCHECK_EQ(static_cast<int>(kPageSize), getpagesize()); | |
54 if (size > std::numeric_limits<size_t>::max() - kPageSize + 1) | |
55 return 0; | |
56 const size_t mask = ~(kPageSize - 1); | |
57 return (size + kPageSize - 1) & mask; | |
58 } | |
59 | |
60 bool CreateAshmemRegion(const char* name, | |
61 size_t size, | |
62 int* out_fd, | |
63 void** out_address) { | |
64 base::ScopedFD fd(ashmem_create_region(name, size)); | |
65 if (!fd.is_valid()) { | |
66 DLOG(ERROR) << "ashmem_create_region() failed"; | |
67 return false; | |
68 } | |
69 | |
70 const int err = ashmem_set_prot_region(fd.get(), PROT_READ | PROT_WRITE); | |
71 if (err < 0) { | |
72 DLOG(ERROR) << "Error " << err << " when setting protection of ashmem"; | |
73 return false; | |
74 } | |
75 | |
76 // There is a problem using MAP_PRIVATE here. As we are constantly calling | |
77 // Lock() and Unlock(), data could get lost if they are not written to the | |
78 // underlying file when Unlock() gets called. | |
79 void* const address = mmap( | |
80 NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0); | |
81 if (address == MAP_FAILED) { | |
82 DPLOG(ERROR) << "Failed to map memory."; | |
83 return false; | |
84 } | |
85 | |
86 *out_fd = fd.release(); | |
87 *out_address = address; | |
88 return true; | |
89 } | |
90 | |
91 bool CloseAshmemRegion(int fd, size_t size, void* address) { | |
92 if (munmap(address, size) == -1) { | |
93 DPLOG(ERROR) << "Failed to unmap memory."; | |
94 close(fd); | |
95 return false; | |
96 } | |
97 return close(fd) == 0; | |
98 } | |
99 | |
100 bool LockAshmemRegion(int fd, size_t off, size_t size) { | |
101 return ashmem_pin_region(fd, off, size) != ASHMEM_WAS_PURGED; | |
102 } | |
103 | |
104 bool UnlockAshmemRegion(int fd, size_t off, size_t size) { | |
105 const int failed = ashmem_unpin_region(fd, off, size); | |
106 if (failed) | |
107 DLOG(ERROR) << "Failed to unpin memory."; | |
108 return !failed; | |
109 } | |
110 | |
111 } // namespace | |
112 | |
113 namespace internal { | |
114 | |
115 class AshmemRegion { | |
116 public: | |
117 // Note that |allocator| must outlive |this|. | |
118 static scoped_ptr<AshmemRegion> Create( | |
119 size_t size, | |
120 const std::string& name, | |
121 DiscardableMemoryAshmemAllocator* allocator) { | |
122 DCHECK_EQ(size, AlignToNextPage(size)); | |
123 int fd; | |
124 void* base; | |
125 if (!CreateAshmemRegion(name.c_str(), size, &fd, &base)) | |
126 return scoped_ptr<AshmemRegion>(); | |
127 return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator)); | |
128 } | |
129 | |
130 ~AshmemRegion() { | |
131 const bool result = CloseAshmemRegion(fd_, size_, base_); | |
132 DCHECK(result); | |
133 DCHECK(!highest_allocated_chunk_); | |
134 } | |
135 | |
136 // Returns a new instance of DiscardableAshmemChunk whose size is greater or | |
137 // equal than |actual_size| (which is expected to be greater or equal than | |
138 // |client_requested_size|). | |
139 // Allocation works as follows: | |
140 // 1) Reuse a previously freed chunk and return it if it succeeded. See | |
141 // ReuseFreeChunk_Locked() below for more information. | |
142 // 2) If no free chunk could be reused and the region is not big enough for | |
143 // the requested size then NULL is returned. | |
144 // 3) If there is enough room in the ashmem region then a new chunk is | |
145 // returned. This new chunk starts at |offset_| which is the end of the | |
146 // previously highest chunk in the region. | |
147 scoped_ptr<DiscardableAshmemChunk> Allocate_Locked( | |
148 size_t client_requested_size, | |
149 size_t actual_size) { | |
150 DCHECK_LE(client_requested_size, actual_size); | |
151 allocator_->lock_.AssertAcquired(); | |
152 | |
153 // Check that the |highest_allocated_chunk_| field doesn't contain a stale | |
154 // pointer. It should point to either a free chunk or a used chunk. | |
155 DCHECK(!highest_allocated_chunk_ || | |
156 address_to_free_chunk_map_.find(highest_allocated_chunk_) != | |
157 address_to_free_chunk_map_.end() || | |
158 used_to_previous_chunk_map_.find(highest_allocated_chunk_) != | |
159 used_to_previous_chunk_map_.end()); | |
160 | |
161 scoped_ptr<DiscardableAshmemChunk> memory = ReuseFreeChunk_Locked( | |
162 client_requested_size, actual_size); | |
163 if (memory) | |
164 return memory.Pass(); | |
165 | |
166 if (size_ - offset_ < actual_size) { | |
167 // This region does not have enough space left to hold the requested size. | |
168 return scoped_ptr<DiscardableAshmemChunk>(); | |
169 } | |
170 | |
171 void* const address = static_cast<char*>(base_) + offset_; | |
172 memory.reset( | |
173 new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size)); | |
174 | |
175 used_to_previous_chunk_map_.insert( | |
176 std::make_pair(address, highest_allocated_chunk_)); | |
177 highest_allocated_chunk_ = address; | |
178 offset_ += actual_size; | |
179 DCHECK_LE(offset_, size_); | |
180 return memory.Pass(); | |
181 } | |
182 | |
183 void OnChunkDeletion(void* chunk, size_t size) { | |
184 AutoLock auto_lock(allocator_->lock_); | |
185 MergeAndAddFreeChunk_Locked(chunk, size); | |
186 // Note that |this| might be deleted beyond this point. | |
187 } | |
188 | |
189 private: | |
190 struct FreeChunk { | |
191 FreeChunk() : previous_chunk(NULL), start(NULL), size(0) {} | |
192 | |
193 explicit FreeChunk(size_t size) | |
194 : previous_chunk(NULL), | |
195 start(NULL), | |
196 size(size) { | |
197 } | |
198 | |
199 FreeChunk(void* previous_chunk, void* start, size_t size) | |
200 : previous_chunk(previous_chunk), | |
201 start(start), | |
202 size(size) { | |
203 DCHECK_LT(previous_chunk, start); | |
204 } | |
205 | |
206 void* const previous_chunk; | |
207 void* const start; | |
208 const size_t size; | |
209 | |
210 bool is_null() const { return !start; } | |
211 | |
212 bool operator<(const FreeChunk& other) const { | |
213 return size < other.size; | |
214 } | |
215 }; | |
216 | |
217 // Note that |allocator| must outlive |this|. | |
218 AshmemRegion(int fd, | |
219 size_t size, | |
220 void* base, | |
221 DiscardableMemoryAshmemAllocator* allocator) | |
222 : fd_(fd), | |
223 size_(size), | |
224 base_(base), | |
225 allocator_(allocator), | |
226 highest_allocated_chunk_(NULL), | |
227 offset_(0) { | |
228 DCHECK_GE(fd_, 0); | |
229 DCHECK_GE(size, kMinAshmemRegionSize); | |
230 DCHECK(base); | |
231 DCHECK(allocator); | |
232 } | |
233 | |
234 // Tries to reuse a previously freed chunk by doing a closest size match. | |
235 scoped_ptr<DiscardableAshmemChunk> ReuseFreeChunk_Locked( | |
236 size_t client_requested_size, | |
237 size_t actual_size) { | |
238 allocator_->lock_.AssertAcquired(); | |
239 const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked( | |
240 free_chunks_.lower_bound(FreeChunk(actual_size))); | |
241 if (reused_chunk.is_null()) | |
242 return scoped_ptr<DiscardableAshmemChunk>(); | |
243 | |
244 used_to_previous_chunk_map_.insert( | |
245 std::make_pair(reused_chunk.start, reused_chunk.previous_chunk)); | |
246 size_t reused_chunk_size = reused_chunk.size; | |
247 // |client_requested_size| is used below rather than |actual_size| to | |
248 // reflect the amount of bytes that would not be usable by the client (i.e. | |
249 // wasted). Using |actual_size| instead would not allow us to detect | |
250 // fragmentation caused by the client if he did misaligned allocations. | |
251 DCHECK_GE(reused_chunk.size, client_requested_size); | |
252 const size_t fragmentation_bytes = | |
253 reused_chunk.size - client_requested_size; | |
254 | |
255 if (fragmentation_bytes > kMaxChunkFragmentationBytes) { | |
256 // Split the free chunk being recycled so that its unused tail doesn't get | |
257 // reused (i.e. locked) which would prevent it from being evicted under | |
258 // memory pressure. | |
259 reused_chunk_size = actual_size; | |
260 void* const new_chunk_start = | |
261 static_cast<char*>(reused_chunk.start) + actual_size; | |
262 if (reused_chunk.start == highest_allocated_chunk_) { | |
263 // We also need to update the pointer to the highest allocated chunk in | |
264 // case we are splitting the highest chunk. | |
265 highest_allocated_chunk_ = new_chunk_start; | |
266 } | |
267 DCHECK_GT(reused_chunk.size, actual_size); | |
268 const size_t new_chunk_size = reused_chunk.size - actual_size; | |
269 // Note that merging is not needed here since there can't be contiguous | |
270 // free chunks at this point. | |
271 AddFreeChunk_Locked( | |
272 FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size)); | |
273 } | |
274 | |
275 const size_t offset = | |
276 static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_); | |
277 LockAshmemRegion(fd_, offset, reused_chunk_size); | |
278 scoped_ptr<DiscardableAshmemChunk> memory( | |
279 new DiscardableAshmemChunk( | |
280 this, fd_, reused_chunk.start, offset, reused_chunk_size)); | |
281 return memory.Pass(); | |
282 } | |
283 | |
284 // Makes the chunk identified with the provided arguments free and possibly | |
285 // merges this chunk with the previous and next contiguous ones. | |
286 // If the provided chunk is the only one used (and going to be freed) in the | |
287 // region then the internal ashmem region is closed so that the underlying | |
288 // physical pages are immediately released. | |
289 // Note that free chunks are unlocked therefore they can be reclaimed by the | |
290 // kernel if needed (under memory pressure) but they are not immediately | |
291 // released unfortunately since madvise(MADV_REMOVE) and | |
292 // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might | |
293 // change in versions of kernel >=3.5 though. The fact that free chunks are | |
294 // not immediately released is the reason why we are trying to minimize | |
295 // fragmentation in order not to cause "artificial" memory pressure. | |
296 void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) { | |
297 allocator_->lock_.AssertAcquired(); | |
298 size_t new_free_chunk_size = size; | |
299 // Merge with the previous chunk. | |
300 void* first_free_chunk = chunk; | |
301 DCHECK(!used_to_previous_chunk_map_.empty()); | |
302 const hash_map<void*, void*>::iterator previous_chunk_it = | |
303 used_to_previous_chunk_map_.find(chunk); | |
304 DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end()); | |
305 void* previous_chunk = previous_chunk_it->second; | |
306 used_to_previous_chunk_map_.erase(previous_chunk_it); | |
307 | |
308 if (previous_chunk) { | |
309 const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk); | |
310 if (!free_chunk.is_null()) { | |
311 new_free_chunk_size += free_chunk.size; | |
312 first_free_chunk = previous_chunk; | |
313 if (chunk == highest_allocated_chunk_) | |
314 highest_allocated_chunk_ = previous_chunk; | |
315 | |
316 // There should not be more contiguous previous free chunks. | |
317 previous_chunk = free_chunk.previous_chunk; | |
318 DCHECK(!address_to_free_chunk_map_.count(previous_chunk)); | |
319 } | |
320 } | |
321 | |
322 // Merge with the next chunk if free and present. | |
323 void* next_chunk = static_cast<char*>(chunk) + size; | |
324 const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk); | |
325 if (!next_free_chunk.is_null()) { | |
326 new_free_chunk_size += next_free_chunk.size; | |
327 if (next_free_chunk.start == highest_allocated_chunk_) | |
328 highest_allocated_chunk_ = first_free_chunk; | |
329 | |
330 // Same as above. | |
331 DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) + | |
332 next_free_chunk.size)); | |
333 } | |
334 | |
335 const bool whole_ashmem_region_is_free = | |
336 used_to_previous_chunk_map_.empty(); | |
337 if (!whole_ashmem_region_is_free) { | |
338 AddFreeChunk_Locked( | |
339 FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size)); | |
340 return; | |
341 } | |
342 | |
343 // The whole ashmem region is free thus it can be deleted. | |
344 DCHECK_EQ(base_, first_free_chunk); | |
345 DCHECK_EQ(base_, highest_allocated_chunk_); | |
346 DCHECK(free_chunks_.empty()); | |
347 DCHECK(address_to_free_chunk_map_.empty()); | |
348 DCHECK(used_to_previous_chunk_map_.empty()); | |
349 highest_allocated_chunk_ = NULL; | |
350 allocator_->DeleteAshmemRegion_Locked(this); // Deletes |this|. | |
351 } | |
352 | |
353 void AddFreeChunk_Locked(const FreeChunk& free_chunk) { | |
354 allocator_->lock_.AssertAcquired(); | |
355 const std::multiset<FreeChunk>::iterator it = free_chunks_.insert( | |
356 free_chunk); | |
357 address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it)); | |
358 // Update the next used contiguous chunk, if any, since its previous chunk | |
359 // may have changed due to free chunks merging/splitting. | |
360 void* const next_used_contiguous_chunk = | |
361 static_cast<char*>(free_chunk.start) + free_chunk.size; | |
362 hash_map<void*, void*>::iterator previous_it = | |
363 used_to_previous_chunk_map_.find(next_used_contiguous_chunk); | |
364 if (previous_it != used_to_previous_chunk_map_.end()) | |
365 previous_it->second = free_chunk.start; | |
366 } | |
367 | |
368 // Finds and removes the free chunk, if any, whose start address is | |
369 // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk | |
370 // whose content is null if it was not found. | |
371 FreeChunk RemoveFreeChunk_Locked(void* chunk_start) { | |
372 allocator_->lock_.AssertAcquired(); | |
373 const hash_map< | |
374 void*, std::multiset<FreeChunk>::iterator>::iterator it = | |
375 address_to_free_chunk_map_.find(chunk_start); | |
376 if (it == address_to_free_chunk_map_.end()) | |
377 return FreeChunk(); | |
378 return RemoveFreeChunkFromIterator_Locked(it->second); | |
379 } | |
380 | |
381 // Same as above but takes an iterator in. | |
382 FreeChunk RemoveFreeChunkFromIterator_Locked( | |
383 std::multiset<FreeChunk>::iterator free_chunk_it) { | |
384 allocator_->lock_.AssertAcquired(); | |
385 if (free_chunk_it == free_chunks_.end()) | |
386 return FreeChunk(); | |
387 DCHECK(free_chunk_it != free_chunks_.end()); | |
388 const FreeChunk free_chunk(*free_chunk_it); | |
389 address_to_free_chunk_map_.erase(free_chunk_it->start); | |
390 free_chunks_.erase(free_chunk_it); | |
391 return free_chunk; | |
392 } | |
393 | |
394 const int fd_; | |
395 const size_t size_; | |
396 void* const base_; | |
397 DiscardableMemoryAshmemAllocator* const allocator_; | |
398 // Points to the chunk with the highest address in the region. This pointer | |
399 // needs to be carefully updated when chunks are merged/split. | |
400 void* highest_allocated_chunk_; | |
401 // Points to the end of |highest_allocated_chunk_|. | |
402 size_t offset_; | |
403 // Allows free chunks recycling (lookup, insertion and removal) in O(log N). | |
404 // Note that FreeChunk values are indexed by their size and also note that | |
405 // multiple free chunks can have the same size (which is why multiset<> is | |
406 // used instead of e.g. set<>). | |
407 std::multiset<FreeChunk> free_chunks_; | |
408 // Used while merging free contiguous chunks to erase free chunks (from their | |
409 // start address) in constant time. Note that multiset<>::{insert,erase}() | |
410 // don't invalidate iterators (except the one for the element being removed | |
411 // obviously). | |
412 hash_map< | |
413 void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_; | |
414 // Maps the address of *used* chunks to the address of their previous | |
415 // contiguous chunk. | |
416 hash_map<void*, void*> used_to_previous_chunk_map_; | |
417 | |
418 DISALLOW_COPY_AND_ASSIGN(AshmemRegion); | |
419 }; | |
420 | |
421 DiscardableAshmemChunk::~DiscardableAshmemChunk() { | |
422 if (locked_) | |
423 UnlockAshmemRegion(fd_, offset_, size_); | |
424 ashmem_region_->OnChunkDeletion(address_, size_); | |
425 } | |
426 | |
427 bool DiscardableAshmemChunk::Lock() { | |
428 DCHECK(!locked_); | |
429 locked_ = true; | |
430 return LockAshmemRegion(fd_, offset_, size_); | |
431 } | |
432 | |
433 void DiscardableAshmemChunk::Unlock() { | |
434 DCHECK(locked_); | |
435 locked_ = false; | |
436 UnlockAshmemRegion(fd_, offset_, size_); | |
437 } | |
438 | |
439 void* DiscardableAshmemChunk::Memory() const { | |
440 return address_; | |
441 } | |
442 | |
443 // Note that |ashmem_region| must outlive |this|. | |
444 DiscardableAshmemChunk::DiscardableAshmemChunk(AshmemRegion* ashmem_region, | |
445 int fd, | |
446 void* address, | |
447 size_t offset, | |
448 size_t size) | |
449 : ashmem_region_(ashmem_region), | |
450 fd_(fd), | |
451 address_(address), | |
452 offset_(offset), | |
453 size_(size), | |
454 locked_(true) { | |
455 } | |
456 | |
457 DiscardableMemoryAshmemAllocator::DiscardableMemoryAshmemAllocator( | |
458 const std::string& name, | |
459 size_t ashmem_region_size) | |
460 : name_(name), | |
461 ashmem_region_size_( | |
462 std::max(kMinAshmemRegionSize, AlignToNextPage(ashmem_region_size))), | |
463 last_ashmem_region_size_(0) { | |
464 DCHECK_GE(ashmem_region_size_, kMinAshmemRegionSize); | |
465 } | |
466 | |
467 DiscardableMemoryAshmemAllocator::~DiscardableMemoryAshmemAllocator() { | |
468 DCHECK(ashmem_regions_.empty()); | |
469 } | |
470 | |
471 scoped_ptr<DiscardableAshmemChunk> DiscardableMemoryAshmemAllocator::Allocate( | |
472 size_t size) { | |
473 const size_t aligned_size = AlignToNextPage(size); | |
474 if (!aligned_size) | |
475 return scoped_ptr<DiscardableAshmemChunk>(); | |
476 // TODO(pliard): make this function less naive by e.g. moving the free chunks | |
477 // multiset to the allocator itself in order to decrease even more | |
478 // fragmentation/speedup allocation. Note that there should not be more than a | |
479 // couple (=5) of AshmemRegion instances in practice though. | |
480 AutoLock auto_lock(lock_); | |
481 DCHECK_LE(ashmem_regions_.size(), 5U); | |
482 for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin(); | |
483 it != ashmem_regions_.end(); ++it) { | |
484 scoped_ptr<DiscardableAshmemChunk> memory( | |
485 (*it)->Allocate_Locked(size, aligned_size)); | |
486 if (memory) | |
487 return memory.Pass(); | |
488 } | |
489 // The creation of the (large) ashmem region might fail if the address space | |
490 // is too fragmented. In case creation fails the allocator retries by | |
491 // repetitively dividing the size by 2. | |
492 const size_t min_region_size = std::max(kMinAshmemRegionSize, aligned_size); | |
493 for (size_t region_size = std::max(ashmem_region_size_, aligned_size); | |
494 region_size >= min_region_size; | |
495 region_size = AlignToNextPage(region_size / 2)) { | |
496 scoped_ptr<AshmemRegion> new_region( | |
497 AshmemRegion::Create(region_size, name_.c_str(), this)); | |
498 if (!new_region) | |
499 continue; | |
500 last_ashmem_region_size_ = region_size; | |
501 ashmem_regions_.push_back(new_region.release()); | |
502 return ashmem_regions_.back()->Allocate_Locked(size, aligned_size); | |
503 } | |
504 // TODO(pliard): consider adding an histogram to see how often this happens. | |
505 return scoped_ptr<DiscardableAshmemChunk>(); | |
506 } | |
507 | |
508 size_t DiscardableMemoryAshmemAllocator::last_ashmem_region_size() const { | |
509 AutoLock auto_lock(lock_); | |
510 return last_ashmem_region_size_; | |
511 } | |
512 | |
513 void DiscardableMemoryAshmemAllocator::DeleteAshmemRegion_Locked( | |
514 AshmemRegion* region) { | |
515 lock_.AssertAcquired(); | |
516 // Note that there should not be more than a couple of ashmem region instances | |
517 // in |ashmem_regions_|. | |
518 DCHECK_LE(ashmem_regions_.size(), 5U); | |
519 const ScopedVector<AshmemRegion>::iterator it = std::find( | |
520 ashmem_regions_.begin(), ashmem_regions_.end(), region); | |
521 DCHECK_NE(ashmem_regions_.end(), it); | |
522 std::swap(*it, ashmem_regions_.back()); | |
523 ashmem_regions_.pop_back(); | |
524 } | |
525 | |
526 } // namespace internal | |
527 } // namespace base | |
OLD | NEW |