Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(32)

Unified Diff: generated/googleapis/lib/language/v1.dart

Issue 2571553005: Api-roll 43: 2016-12-13 (Closed)
Patch Set: Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « generated/googleapis/lib/identitytoolkit/v3.dart ('k') | generated/googleapis/lib/logging/v2.dart » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: generated/googleapis/lib/language/v1.dart
diff --git a/generated/googleapis/lib/language/v1.dart b/generated/googleapis/lib/language/v1.dart
new file mode 100644
index 0000000000000000000000000000000000000000..fc4be2b9780a72e5b44ac918593646797ae435b6
--- /dev/null
+++ b/generated/googleapis/lib/language/v1.dart
@@ -0,0 +1,1459 @@
+// This is a generated file (see the discoveryapis_generator project).
+
+library googleapis.language.v1;
+
+import 'dart:core' as core;
+import 'dart:async' as async;
+import 'dart:convert' as convert;
+
+import 'package:_discoveryapis_commons/_discoveryapis_commons.dart' as commons;
+import 'package:http/http.dart' as http;
+
+export 'package:_discoveryapis_commons/_discoveryapis_commons.dart' show
+ ApiRequestError, DetailedApiRequestError;
+
+const core.String USER_AGENT = 'dart-api-client language/v1';
+
+/**
+ * Google Cloud Natural Language API provides natural language understanding
+ * technologies to developers. Examples include sentiment analysis, entity
+ * recognition, and text annotations.
+ */
+class LanguageApi {
+ /** View and manage your data across Google Cloud Platform services */
+ static const CloudPlatformScope = "https://www.googleapis.com/auth/cloud-platform";
+
+
+ final commons.ApiRequester _requester;
+
+ DocumentsResourceApi get documents => new DocumentsResourceApi(_requester);
+
+ LanguageApi(http.Client client, {core.String rootUrl: "https://language.googleapis.com/", core.String servicePath: ""}) :
+ _requester = new commons.ApiRequester(client, rootUrl, servicePath, USER_AGENT);
+}
+
+
+class DocumentsResourceApi {
+ final commons.ApiRequester _requester;
+
+ DocumentsResourceApi(commons.ApiRequester client) :
+ _requester = client;
+
+ /**
+ * Finds named entities (currently finds proper names) in the text,
+ * entity types, salience, mentions for each entity, and other properties.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * Completes with a [AnalyzeEntitiesResponse].
+ *
+ * Completes with a [commons.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<AnalyzeEntitiesResponse> analyzeEntities(AnalyzeEntitiesRequest request) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = commons.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+
+ _url = 'v1/documents:analyzeEntities';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new AnalyzeEntitiesResponse.fromJson(data));
+ }
+
+ /**
+ * Analyzes the sentiment of the provided text.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * Completes with a [AnalyzeSentimentResponse].
+ *
+ * Completes with a [commons.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<AnalyzeSentimentResponse> analyzeSentiment(AnalyzeSentimentRequest request) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = commons.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+
+ _url = 'v1/documents:analyzeSentiment';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new AnalyzeSentimentResponse.fromJson(data));
+ }
+
+ /**
+ * Analyzes the syntax of the text and provides sentence boundaries and
+ * tokenization along with part of speech tags, dependency trees, and other
+ * properties.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * Completes with a [AnalyzeSyntaxResponse].
+ *
+ * Completes with a [commons.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<AnalyzeSyntaxResponse> analyzeSyntax(AnalyzeSyntaxRequest request) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = commons.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+
+ _url = 'v1/documents:analyzeSyntax';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new AnalyzeSyntaxResponse.fromJson(data));
+ }
+
+ /**
+ * A convenience method that provides all the features that analyzeSentiment,
+ * analyzeEntities, and analyzeSyntax provide in one call.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * Completes with a [AnnotateTextResponse].
+ *
+ * Completes with a [commons.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<AnnotateTextResponse> annotateText(AnnotateTextRequest request) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = commons.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+
+ _url = 'v1/documents:annotateText';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new AnnotateTextResponse.fromJson(data));
+ }
+
+}
+
+
+
+/** The entity analysis request message. */
+class AnalyzeEntitiesRequest {
+ /** Input document. */
+ Document document;
+ /**
+ * The encoding type used by the API to calculate offsets.
+ * Possible string values are:
+ * - "NONE" : If `EncodingType` is not specified, encoding-dependent
+ * information (such as
+ * `begin_offset`) will be set at `-1`.
+ * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-8 encoding of the input. C++ and Go are examples of languages
+ * that use this encoding natively.
+ * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-16 encoding of the input. Java and Javascript are examples of
+ * languages that use this encoding natively.
+ * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-32 encoding of the input. Python is an example of a language
+ * that uses this encoding natively.
+ */
+ core.String encodingType;
+
+ AnalyzeEntitiesRequest();
+
+ AnalyzeEntitiesRequest.fromJson(core.Map _json) {
+ if (_json.containsKey("document")) {
+ document = new Document.fromJson(_json["document"]);
+ }
+ if (_json.containsKey("encodingType")) {
+ encodingType = _json["encodingType"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (document != null) {
+ _json["document"] = (document).toJson();
+ }
+ if (encodingType != null) {
+ _json["encodingType"] = encodingType;
+ }
+ return _json;
+ }
+}
+
+/** The entity analysis response message. */
+class AnalyzeEntitiesResponse {
+ /** The recognized entities in the input document. */
+ core.List<Entity> entities;
+ /**
+ * The language of the text, which will be the same as the language specified
+ * in the request or, if not specified, the automatically-detected language.
+ * See `Document.language` field for more details.
+ */
+ core.String language;
+
+ AnalyzeEntitiesResponse();
+
+ AnalyzeEntitiesResponse.fromJson(core.Map _json) {
+ if (_json.containsKey("entities")) {
+ entities = _json["entities"].map((value) => new Entity.fromJson(value)).toList();
+ }
+ if (_json.containsKey("language")) {
+ language = _json["language"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (entities != null) {
+ _json["entities"] = entities.map((value) => (value).toJson()).toList();
+ }
+ if (language != null) {
+ _json["language"] = language;
+ }
+ return _json;
+ }
+}
+
+/** The sentiment analysis request message. */
+class AnalyzeSentimentRequest {
+ /**
+ * Input document. Currently, `analyzeSentiment` only supports English text
+ * (Document.language="EN").
+ */
+ Document document;
+ /**
+ * The encoding type used by the API to calculate sentence offsets.
+ * Possible string values are:
+ * - "NONE" : If `EncodingType` is not specified, encoding-dependent
+ * information (such as
+ * `begin_offset`) will be set at `-1`.
+ * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-8 encoding of the input. C++ and Go are examples of languages
+ * that use this encoding natively.
+ * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-16 encoding of the input. Java and Javascript are examples of
+ * languages that use this encoding natively.
+ * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-32 encoding of the input. Python is an example of a language
+ * that uses this encoding natively.
+ */
+ core.String encodingType;
+
+ AnalyzeSentimentRequest();
+
+ AnalyzeSentimentRequest.fromJson(core.Map _json) {
+ if (_json.containsKey("document")) {
+ document = new Document.fromJson(_json["document"]);
+ }
+ if (_json.containsKey("encodingType")) {
+ encodingType = _json["encodingType"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (document != null) {
+ _json["document"] = (document).toJson();
+ }
+ if (encodingType != null) {
+ _json["encodingType"] = encodingType;
+ }
+ return _json;
+ }
+}
+
+/** The sentiment analysis response message. */
+class AnalyzeSentimentResponse {
+ /** The overall sentiment of the input document. */
+ Sentiment documentSentiment;
+ /**
+ * The language of the text, which will be the same as the language specified
+ * in the request or, if not specified, the automatically-detected language.
+ * See `Document.language` field for more details.
+ */
+ core.String language;
+ /** The sentiment for all the sentences in the document. */
+ core.List<Sentence> sentences;
+
+ AnalyzeSentimentResponse();
+
+ AnalyzeSentimentResponse.fromJson(core.Map _json) {
+ if (_json.containsKey("documentSentiment")) {
+ documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]);
+ }
+ if (_json.containsKey("language")) {
+ language = _json["language"];
+ }
+ if (_json.containsKey("sentences")) {
+ sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (documentSentiment != null) {
+ _json["documentSentiment"] = (documentSentiment).toJson();
+ }
+ if (language != null) {
+ _json["language"] = language;
+ }
+ if (sentences != null) {
+ _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
+ }
+ return _json;
+ }
+}
+
+/** The syntax analysis request message. */
+class AnalyzeSyntaxRequest {
+ /** Input document. */
+ Document document;
+ /**
+ * The encoding type used by the API to calculate offsets.
+ * Possible string values are:
+ * - "NONE" : If `EncodingType` is not specified, encoding-dependent
+ * information (such as
+ * `begin_offset`) will be set at `-1`.
+ * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-8 encoding of the input. C++ and Go are examples of languages
+ * that use this encoding natively.
+ * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-16 encoding of the input. Java and Javascript are examples of
+ * languages that use this encoding natively.
+ * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-32 encoding of the input. Python is an example of a language
+ * that uses this encoding natively.
+ */
+ core.String encodingType;
+
+ AnalyzeSyntaxRequest();
+
+ AnalyzeSyntaxRequest.fromJson(core.Map _json) {
+ if (_json.containsKey("document")) {
+ document = new Document.fromJson(_json["document"]);
+ }
+ if (_json.containsKey("encodingType")) {
+ encodingType = _json["encodingType"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (document != null) {
+ _json["document"] = (document).toJson();
+ }
+ if (encodingType != null) {
+ _json["encodingType"] = encodingType;
+ }
+ return _json;
+ }
+}
+
+/** The syntax analysis response message. */
+class AnalyzeSyntaxResponse {
+ /**
+ * The language of the text, which will be the same as the language specified
+ * in the request or, if not specified, the automatically-detected language.
+ * See `Document.language` field for more details.
+ */
+ core.String language;
+ /** Sentences in the input document. */
+ core.List<Sentence> sentences;
+ /** Tokens, along with their syntactic information, in the input document. */
+ core.List<Token> tokens;
+
+ AnalyzeSyntaxResponse();
+
+ AnalyzeSyntaxResponse.fromJson(core.Map _json) {
+ if (_json.containsKey("language")) {
+ language = _json["language"];
+ }
+ if (_json.containsKey("sentences")) {
+ sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
+ }
+ if (_json.containsKey("tokens")) {
+ tokens = _json["tokens"].map((value) => new Token.fromJson(value)).toList();
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (language != null) {
+ _json["language"] = language;
+ }
+ if (sentences != null) {
+ _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
+ }
+ if (tokens != null) {
+ _json["tokens"] = tokens.map((value) => (value).toJson()).toList();
+ }
+ return _json;
+ }
+}
+
+/**
+ * The request message for the text annotation API, which can perform multiple
+ * analysis types (sentiment, entities, and syntax) in one call.
+ */
+class AnnotateTextRequest {
+ /** Input document. */
+ Document document;
+ /**
+ * The encoding type used by the API to calculate offsets.
+ * Possible string values are:
+ * - "NONE" : If `EncodingType` is not specified, encoding-dependent
+ * information (such as
+ * `begin_offset`) will be set at `-1`.
+ * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-8 encoding of the input. C++ and Go are examples of languages
+ * that use this encoding natively.
+ * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-16 encoding of the input. Java and Javascript are examples of
+ * languages that use this encoding natively.
+ * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
+ * calculated based
+ * on the UTF-32 encoding of the input. Python is an example of a language
+ * that uses this encoding natively.
+ */
+ core.String encodingType;
+ /** The enabled features. */
+ Features features;
+
+ AnnotateTextRequest();
+
+ AnnotateTextRequest.fromJson(core.Map _json) {
+ if (_json.containsKey("document")) {
+ document = new Document.fromJson(_json["document"]);
+ }
+ if (_json.containsKey("encodingType")) {
+ encodingType = _json["encodingType"];
+ }
+ if (_json.containsKey("features")) {
+ features = new Features.fromJson(_json["features"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (document != null) {
+ _json["document"] = (document).toJson();
+ }
+ if (encodingType != null) {
+ _json["encodingType"] = encodingType;
+ }
+ if (features != null) {
+ _json["features"] = (features).toJson();
+ }
+ return _json;
+ }
+}
+
+/** The text annotations response message. */
+class AnnotateTextResponse {
+ /**
+ * The overall sentiment for the document. Populated if the user enables
+ * AnnotateTextRequest.Features.extract_document_sentiment.
+ */
+ Sentiment documentSentiment;
+ /**
+ * Entities, along with their semantic information, in the input document.
+ * Populated if the user enables
+ * AnnotateTextRequest.Features.extract_entities.
+ */
+ core.List<Entity> entities;
+ /**
+ * The language of the text, which will be the same as the language specified
+ * in the request or, if not specified, the automatically-detected language.
+ * See `Document.language` field for more details.
+ */
+ core.String language;
+ /**
+ * Sentences in the input document. Populated if the user enables
+ * AnnotateTextRequest.Features.extract_syntax.
+ */
+ core.List<Sentence> sentences;
+ /**
+ * Tokens, along with their syntactic information, in the input document.
+ * Populated if the user enables
+ * AnnotateTextRequest.Features.extract_syntax.
+ */
+ core.List<Token> tokens;
+
+ AnnotateTextResponse();
+
+ AnnotateTextResponse.fromJson(core.Map _json) {
+ if (_json.containsKey("documentSentiment")) {
+ documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]);
+ }
+ if (_json.containsKey("entities")) {
+ entities = _json["entities"].map((value) => new Entity.fromJson(value)).toList();
+ }
+ if (_json.containsKey("language")) {
+ language = _json["language"];
+ }
+ if (_json.containsKey("sentences")) {
+ sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
+ }
+ if (_json.containsKey("tokens")) {
+ tokens = _json["tokens"].map((value) => new Token.fromJson(value)).toList();
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (documentSentiment != null) {
+ _json["documentSentiment"] = (documentSentiment).toJson();
+ }
+ if (entities != null) {
+ _json["entities"] = entities.map((value) => (value).toJson()).toList();
+ }
+ if (language != null) {
+ _json["language"] = language;
+ }
+ if (sentences != null) {
+ _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
+ }
+ if (tokens != null) {
+ _json["tokens"] = tokens.map((value) => (value).toJson()).toList();
+ }
+ return _json;
+ }
+}
+
+/**
+ * Represents dependency parse tree information for a token. (For more
+ * information on dependency labels, see
+ * http://www.aclweb.org/anthology/P13-2017
+ */
+class DependencyEdge {
+ /**
+ * Represents the head of this token in the dependency tree.
+ * This is the index of the token which has an arc going to this token.
+ * The index is the position of the token in the array of tokens returned
+ * by the API method. If this token is a root token, then the
+ * `head_token_index` is its own index.
+ */
+ core.int headTokenIndex;
+ /**
+ * The parse label for the token.
+ * Possible string values are:
+ * - "UNKNOWN" : Unknown
+ * - "ABBREV" : Abbreviation modifier
+ * - "ACOMP" : Adjectival complement
+ * - "ADVCL" : Adverbial clause modifier
+ * - "ADVMOD" : Adverbial modifier
+ * - "AMOD" : Adjectival modifier of an NP
+ * - "APPOS" : Appositional modifier of an NP
+ * - "ATTR" : Attribute dependent of a copular verb
+ * - "AUX" : Auxiliary (non-main) verb
+ * - "AUXPASS" : Passive auxiliary
+ * - "CC" : Coordinating conjunction
+ * - "CCOMP" : Clausal complement of a verb or adjective
+ * - "CONJ" : Conjunct
+ * - "CSUBJ" : Clausal subject
+ * - "CSUBJPASS" : Clausal passive subject
+ * - "DEP" : Dependency (unable to determine)
+ * - "DET" : Determiner
+ * - "DISCOURSE" : Discourse
+ * - "DOBJ" : Direct object
+ * - "EXPL" : Expletive
+ * - "GOESWITH" : Goes with (part of a word in a text not well edited)
+ * - "IOBJ" : Indirect object
+ * - "MARK" : Marker (word introducing a subordinate clause)
+ * - "MWE" : Multi-word expression
+ * - "MWV" : Multi-word verbal expression
+ * - "NEG" : Negation modifier
+ * - "NN" : Noun compound modifier
+ * - "NPADVMOD" : Noun phrase used as an adverbial modifier
+ * - "NSUBJ" : Nominal subject
+ * - "NSUBJPASS" : Passive nominal subject
+ * - "NUM" : Numeric modifier of a noun
+ * - "NUMBER" : Element of compound number
+ * - "P" : Punctuation mark
+ * - "PARATAXIS" : Parataxis relation
+ * - "PARTMOD" : Participial modifier
+ * - "PCOMP" : The complement of a preposition is a clause
+ * - "POBJ" : Object of a preposition
+ * - "POSS" : Possession modifier
+ * - "POSTNEG" : Postverbal negative particle
+ * - "PRECOMP" : Predicate complement
+ * - "PRECONJ" : Preconjunt
+ * - "PREDET" : Predeterminer
+ * - "PREF" : Prefix
+ * - "PREP" : Prepositional modifier
+ * - "PRONL" : The relationship between a verb and verbal morpheme
+ * - "PRT" : Particle
+ * - "PS" : Associative or possessive marker
+ * - "QUANTMOD" : Quantifier phrase modifier
+ * - "RCMOD" : Relative clause modifier
+ * - "RCMODREL" : Complementizer in relative clause
+ * - "RDROP" : Ellipsis without a preceding predicate
+ * - "REF" : Referent
+ * - "REMNANT" : Remnant
+ * - "REPARANDUM" : Reparandum
+ * - "ROOT" : Root
+ * - "SNUM" : Suffix specifying a unit of number
+ * - "SUFF" : Suffix
+ * - "TMOD" : Temporal modifier
+ * - "TOPIC" : Topic marker
+ * - "VMOD" : Clause headed by an infinite form of the verb that modifies a
+ * noun
+ * - "VOCATIVE" : Vocative
+ * - "XCOMP" : Open clausal complement
+ * - "SUFFIX" : Name suffix
+ * - "TITLE" : Name title
+ * - "ADVPHMOD" : Adverbial phrase modifier
+ * - "AUXCAUS" : Causative auxiliary
+ * - "AUXVV" : Helper auxiliary
+ * - "DTMOD" : Rentaishi (Prenominal modifier)
+ * - "FOREIGN" : Foreign words
+ * - "KW" : Keyword
+ * - "LIST" : List for chains of comparable items
+ * - "NOMC" : Nominalized clause
+ * - "NOMCSUBJ" : Nominalized clausal subject
+ * - "NOMCSUBJPASS" : Nominalized clausal passive
+ * - "NUMC" : Compound of numeric modifier
+ * - "COP" : Copula
+ * - "DISLOCATED" : Dislocated relation (for fronted/topicalized elements)
+ */
+ core.String label;
+
+ DependencyEdge();
+
+ DependencyEdge.fromJson(core.Map _json) {
+ if (_json.containsKey("headTokenIndex")) {
+ headTokenIndex = _json["headTokenIndex"];
+ }
+ if (_json.containsKey("label")) {
+ label = _json["label"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (headTokenIndex != null) {
+ _json["headTokenIndex"] = headTokenIndex;
+ }
+ if (label != null) {
+ _json["label"] = label;
+ }
+ return _json;
+ }
+}
+
+/**
+ * ################################################################ #
+ *
+ * Represents the input to API methods.
+ */
+class Document {
+ /** The content of the input in string format. */
+ core.String content;
+ /**
+ * The Google Cloud Storage URI where the file content is located.
+ * This URI must be of the form: gs://bucket_name/object_name. For more
+ * details, see https://cloud.google.com/storage/docs/reference-uris.
+ * NOTE: Cloud Storage object versioning is not supported.
+ */
+ core.String gcsContentUri;
+ /**
+ * The language of the document (if not specified, the language is
+ * automatically detected). Both ISO and BCP-47 language codes are
+ * accepted.<br>
+ * **Current Language Restrictions:**
+ *
+ * * Only English, Spanish, and Japanese textual content are supported.
+ * If the language (either specified by the caller or automatically detected)
+ * is not supported by the called API method, an `INVALID_ARGUMENT` error
+ * is returned.
+ */
+ core.String language;
+ /**
+ * Required. If the type is not set or is `TYPE_UNSPECIFIED`,
+ * returns an `INVALID_ARGUMENT` error.
+ * Possible string values are:
+ * - "TYPE_UNSPECIFIED" : The content type is not specified.
+ * - "PLAIN_TEXT" : Plain text
+ * - "HTML" : HTML
+ */
+ core.String type;
+
+ Document();
+
+ Document.fromJson(core.Map _json) {
+ if (_json.containsKey("content")) {
+ content = _json["content"];
+ }
+ if (_json.containsKey("gcsContentUri")) {
+ gcsContentUri = _json["gcsContentUri"];
+ }
+ if (_json.containsKey("language")) {
+ language = _json["language"];
+ }
+ if (_json.containsKey("type")) {
+ type = _json["type"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (content != null) {
+ _json["content"] = content;
+ }
+ if (gcsContentUri != null) {
+ _json["gcsContentUri"] = gcsContentUri;
+ }
+ if (language != null) {
+ _json["language"] = language;
+ }
+ if (type != null) {
+ _json["type"] = type;
+ }
+ return _json;
+ }
+}
+
+/**
+ * Represents a phrase in the text that is a known entity, such as
+ * a person, an organization, or location. The API associates information, such
+ * as salience and mentions, with entities.
+ */
+class Entity {
+ /**
+ * The mentions of this entity in the input document. The API currently
+ * supports proper noun mentions.
+ */
+ core.List<EntityMention> mentions;
+ /**
+ * Metadata associated with the entity.
+ *
+ * Currently, Wikipedia URLs and Knowledge Graph MIDs are provided, if
+ * available. The associated keys are "wikipedia_url" and "mid", respectively.
+ */
+ core.Map<core.String, core.String> metadata;
+ /** The representative name for the entity. */
+ core.String name;
+ /**
+ * The salience score associated with the entity in the [0, 1.0] range.
+ *
+ * The salience score for an entity provides information about the
+ * importance or centrality of that entity to the entire document text.
+ * Scores closer to 0 are less salient, while scores closer to 1.0 are highly
+ * salient.
+ */
+ core.double salience;
+ /**
+ * The entity type.
+ * Possible string values are:
+ * - "UNKNOWN" : Unknown
+ * - "PERSON" : Person
+ * - "LOCATION" : Location
+ * - "ORGANIZATION" : Organization
+ * - "EVENT" : Event
+ * - "WORK_OF_ART" : Work of art
+ * - "CONSUMER_GOOD" : Consumer goods
+ * - "OTHER" : Other types
+ */
+ core.String type;
+
+ Entity();
+
+ Entity.fromJson(core.Map _json) {
+ if (_json.containsKey("mentions")) {
+ mentions = _json["mentions"].map((value) => new EntityMention.fromJson(value)).toList();
+ }
+ if (_json.containsKey("metadata")) {
+ metadata = _json["metadata"];
+ }
+ if (_json.containsKey("name")) {
+ name = _json["name"];
+ }
+ if (_json.containsKey("salience")) {
+ salience = _json["salience"];
+ }
+ if (_json.containsKey("type")) {
+ type = _json["type"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (mentions != null) {
+ _json["mentions"] = mentions.map((value) => (value).toJson()).toList();
+ }
+ if (metadata != null) {
+ _json["metadata"] = metadata;
+ }
+ if (name != null) {
+ _json["name"] = name;
+ }
+ if (salience != null) {
+ _json["salience"] = salience;
+ }
+ if (type != null) {
+ _json["type"] = type;
+ }
+ return _json;
+ }
+}
+
+/**
+ * Represents a mention for an entity in the text. Currently, proper noun
+ * mentions are supported.
+ */
+class EntityMention {
+ /** The mention text. */
+ TextSpan text;
+ /**
+ * The type of the entity mention.
+ * Possible string values are:
+ * - "TYPE_UNKNOWN" : Unknown
+ * - "PROPER" : Proper name
+ * - "COMMON" : Common noun (or noun compound)
+ */
+ core.String type;
+
+ EntityMention();
+
+ EntityMention.fromJson(core.Map _json) {
+ if (_json.containsKey("text")) {
+ text = new TextSpan.fromJson(_json["text"]);
+ }
+ if (_json.containsKey("type")) {
+ type = _json["type"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (text != null) {
+ _json["text"] = (text).toJson();
+ }
+ if (type != null) {
+ _json["type"] = type;
+ }
+ return _json;
+ }
+}
+
+/**
+ * All available features for sentiment, syntax, and semantic analysis.
+ * Setting each one to true will enable that specific analysis for the input.
+ */
+class Features {
+ /** Extract document-level sentiment. */
+ core.bool extractDocumentSentiment;
+ /** Extract entities. */
+ core.bool extractEntities;
+ /** Extract syntax information. */
+ core.bool extractSyntax;
+
+ Features();
+
+ Features.fromJson(core.Map _json) {
+ if (_json.containsKey("extractDocumentSentiment")) {
+ extractDocumentSentiment = _json["extractDocumentSentiment"];
+ }
+ if (_json.containsKey("extractEntities")) {
+ extractEntities = _json["extractEntities"];
+ }
+ if (_json.containsKey("extractSyntax")) {
+ extractSyntax = _json["extractSyntax"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (extractDocumentSentiment != null) {
+ _json["extractDocumentSentiment"] = extractDocumentSentiment;
+ }
+ if (extractEntities != null) {
+ _json["extractEntities"] = extractEntities;
+ }
+ if (extractSyntax != null) {
+ _json["extractSyntax"] = extractSyntax;
+ }
+ return _json;
+ }
+}
+
+/**
+ * Represents part of speech information for a token. Parts of speech
+ * are as defined in
+ * http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
+ */
+class PartOfSpeech {
+ /**
+ * The grammatical aspect.
+ * Possible string values are:
+ * - "ASPECT_UNKNOWN" : Aspect is not applicable in the analyzed language or
+ * is not predicted.
+ * - "PERFECTIVE" : Perfective
+ * - "IMPERFECTIVE" : Imperfective
+ * - "PROGRESSIVE" : Progressive
+ */
+ core.String aspect;
+ /**
+ * The grammatical case.
+ * Possible string values are:
+ * - "CASE_UNKNOWN" : Case is not applicable in the analyzed language or is
+ * not predicted.
+ * - "ACCUSATIVE" : Accusative
+ * - "ADVERBIAL" : Adverbial
+ * - "COMPLEMENTIVE" : Complementive
+ * - "DATIVE" : Dative
+ * - "GENITIVE" : Genitive
+ * - "INSTRUMENTAL" : Instrumental
+ * - "LOCATIVE" : Locative
+ * - "NOMINATIVE" : Nominative
+ * - "OBLIQUE" : Oblique
+ * - "PARTITIVE" : Partitive
+ * - "PREPOSITIONAL" : Prepositional
+ * - "REFLEXIVE_CASE" : Reflexive
+ * - "RELATIVE_CASE" : Relative
+ * - "VOCATIVE" : Vocative
+ */
+ core.String case_;
+ /**
+ * The grammatical form.
+ * Possible string values are:
+ * - "FORM_UNKNOWN" : Form is not applicable in the analyzed language or is
+ * not predicted.
+ * - "ADNOMIAL" : Adnomial
+ * - "AUXILIARY" : Auxiliary
+ * - "COMPLEMENTIZER" : Complementizer
+ * - "FINAL_ENDING" : Final ending
+ * - "GERUND" : Gerund
+ * - "REALIS" : Realis
+ * - "IRREALIS" : Irrealis
+ * - "SHORT" : Short form
+ * - "LONG" : Long form
+ * - "ORDER" : Order form
+ * - "SPECIFIC" : Specific form
+ */
+ core.String form;
+ /**
+ * The grammatical gender.
+ * Possible string values are:
+ * - "GENDER_UNKNOWN" : Gender is not applicable in the analyzed language or
+ * is not predicted.
+ * - "FEMININE" : Feminine
+ * - "MASCULINE" : Masculine
+ * - "NEUTER" : Neuter
+ */
+ core.String gender;
+ /**
+ * The grammatical mood.
+ * Possible string values are:
+ * - "MOOD_UNKNOWN" : Mood is not applicable in the analyzed language or is
+ * not predicted.
+ * - "CONDITIONAL_MOOD" : Conditional
+ * - "IMPERATIVE" : Imperative
+ * - "INDICATIVE" : Indicative
+ * - "INTERROGATIVE" : Interrogative
+ * - "JUSSIVE" : Jussive
+ * - "SUBJUNCTIVE" : Subjunctive
+ */
+ core.String mood;
+ /**
+ * The grammatical number.
+ * Possible string values are:
+ * - "NUMBER_UNKNOWN" : Number is not applicable in the analyzed language or
+ * is not predicted.
+ * - "SINGULAR" : Singular
+ * - "PLURAL" : Plural
+ * - "DUAL" : Dual
+ */
+ core.String number;
+ /**
+ * The grammatical person.
+ * Possible string values are:
+ * - "PERSON_UNKNOWN" : Person is not applicable in the analyzed language or
+ * is not predicted.
+ * - "FIRST" : First
+ * - "SECOND" : Second
+ * - "THIRD" : Third
+ * - "REFLEXIVE_PERSON" : Reflexive
+ */
+ core.String person;
+ /**
+ * The grammatical properness.
+ * Possible string values are:
+ * - "PROPER_UNKNOWN" : Proper is not applicable in the analyzed language or
+ * is not predicted.
+ * - "PROPER" : Proper
+ * - "NOT_PROPER" : Not proper
+ */
+ core.String proper;
+ /**
+ * The grammatical reciprocity.
+ * Possible string values are:
+ * - "RECIPROCITY_UNKNOWN" : Reciprocity is not applicable in the analyzed
+ * language or is not
+ * predicted.
+ * - "RECIPROCAL" : Reciprocal
+ * - "NON_RECIPROCAL" : Non-reciprocal
+ */
+ core.String reciprocity;
+ /**
+ * The part of speech tag.
+ * Possible string values are:
+ * - "UNKNOWN" : Unknown
+ * - "ADJ" : Adjective
+ * - "ADP" : Adposition (preposition and postposition)
+ * - "ADV" : Adverb
+ * - "CONJ" : Conjunction
+ * - "DET" : Determiner
+ * - "NOUN" : Noun (common and proper)
+ * - "NUM" : Cardinal number
+ * - "PRON" : Pronoun
+ * - "PRT" : Particle or other function word
+ * - "PUNCT" : Punctuation
+ * - "VERB" : Verb (all tenses and modes)
+ * - "X" : Other: foreign words, typos, abbreviations
+ * - "AFFIX" : Affix
+ */
+ core.String tag;
+ /**
+ * The grammatical tense.
+ * Possible string values are:
+ * - "TENSE_UNKNOWN" : Tense is not applicable in the analyzed language or is
+ * not predicted.
+ * - "CONDITIONAL_TENSE" : Conditional
+ * - "FUTURE" : Future
+ * - "PAST" : Past
+ * - "PRESENT" : Present
+ * - "IMPERFECT" : Imperfect
+ * - "PLUPERFECT" : Pluperfect
+ */
+ core.String tense;
+ /**
+ * The grammatical voice.
+ * Possible string values are:
+ * - "VOICE_UNKNOWN" : Voice is not applicable in the analyzed language or is
+ * not predicted.
+ * - "ACTIVE" : Active
+ * - "CAUSATIVE" : Causative
+ * - "PASSIVE" : Passive
+ */
+ core.String voice;
+
+ PartOfSpeech();
+
+ PartOfSpeech.fromJson(core.Map _json) {
+ if (_json.containsKey("aspect")) {
+ aspect = _json["aspect"];
+ }
+ if (_json.containsKey("case")) {
+ case_ = _json["case"];
+ }
+ if (_json.containsKey("form")) {
+ form = _json["form"];
+ }
+ if (_json.containsKey("gender")) {
+ gender = _json["gender"];
+ }
+ if (_json.containsKey("mood")) {
+ mood = _json["mood"];
+ }
+ if (_json.containsKey("number")) {
+ number = _json["number"];
+ }
+ if (_json.containsKey("person")) {
+ person = _json["person"];
+ }
+ if (_json.containsKey("proper")) {
+ proper = _json["proper"];
+ }
+ if (_json.containsKey("reciprocity")) {
+ reciprocity = _json["reciprocity"];
+ }
+ if (_json.containsKey("tag")) {
+ tag = _json["tag"];
+ }
+ if (_json.containsKey("tense")) {
+ tense = _json["tense"];
+ }
+ if (_json.containsKey("voice")) {
+ voice = _json["voice"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (aspect != null) {
+ _json["aspect"] = aspect;
+ }
+ if (case_ != null) {
+ _json["case"] = case_;
+ }
+ if (form != null) {
+ _json["form"] = form;
+ }
+ if (gender != null) {
+ _json["gender"] = gender;
+ }
+ if (mood != null) {
+ _json["mood"] = mood;
+ }
+ if (number != null) {
+ _json["number"] = number;
+ }
+ if (person != null) {
+ _json["person"] = person;
+ }
+ if (proper != null) {
+ _json["proper"] = proper;
+ }
+ if (reciprocity != null) {
+ _json["reciprocity"] = reciprocity;
+ }
+ if (tag != null) {
+ _json["tag"] = tag;
+ }
+ if (tense != null) {
+ _json["tense"] = tense;
+ }
+ if (voice != null) {
+ _json["voice"] = voice;
+ }
+ return _json;
+ }
+}
+
+/** Represents a sentence in the input document. */
+class Sentence {
+ /**
+ * For calls to AnalyzeSentiment or if
+ * AnnotateTextRequest.Features.extract_document_sentiment is set to
+ * true, this field will contain the sentiment for the sentence.
+ */
+ Sentiment sentiment;
+ /** The sentence text. */
+ TextSpan text;
+
+ Sentence();
+
+ Sentence.fromJson(core.Map _json) {
+ if (_json.containsKey("sentiment")) {
+ sentiment = new Sentiment.fromJson(_json["sentiment"]);
+ }
+ if (_json.containsKey("text")) {
+ text = new TextSpan.fromJson(_json["text"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (sentiment != null) {
+ _json["sentiment"] = (sentiment).toJson();
+ }
+ if (text != null) {
+ _json["text"] = (text).toJson();
+ }
+ return _json;
+ }
+}
+
+/**
+ * Represents the feeling associated with the entire text or entities in
+ * the text.
+ */
+class Sentiment {
+ /**
+ * A non-negative number in the [0, +inf) range, which represents
+ * the absolute magnitude of sentiment regardless of score (positive or
+ * negative).
+ */
+ core.double magnitude;
+ /**
+ * Sentiment score between -1.0 (negative sentiment) and 1.0
+ * (positive sentiment).
+ */
+ core.double score;
+
+ Sentiment();
+
+ Sentiment.fromJson(core.Map _json) {
+ if (_json.containsKey("magnitude")) {
+ magnitude = _json["magnitude"];
+ }
+ if (_json.containsKey("score")) {
+ score = _json["score"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (magnitude != null) {
+ _json["magnitude"] = magnitude;
+ }
+ if (score != null) {
+ _json["score"] = score;
+ }
+ return _json;
+ }
+}
+
+/**
+ * The `Status` type defines a logical error model that is suitable for
+ * different
+ * programming environments, including REST APIs and RPC APIs. It is used by
+ * [gRPC](https://github.com/grpc). The error model is designed to be:
+ *
+ * - Simple to use and understand for most users
+ * - Flexible enough to meet unexpected needs
+ *
+ * # Overview
+ *
+ * The `Status` message contains three pieces of data: error code, error
+ * message,
+ * and error details. The error code should be an enum value of
+ * google.rpc.Code, but it may accept additional error codes if needed. The
+ * error message should be a developer-facing English message that helps
+ * developers *understand* and *resolve* the error. If a localized user-facing
+ * error message is needed, put the localized message in the error details or
+ * localize it in the client. The optional error details may contain arbitrary
+ * information about the error. There is a predefined set of error detail types
+ * in the package `google.rpc` which can be used for common error conditions.
+ *
+ * # Language mapping
+ *
+ * The `Status` message is the logical representation of the error model, but it
+ * is not necessarily the actual wire format. When the `Status` message is
+ * exposed in different client libraries and different wire protocols, it can be
+ * mapped differently. For example, it will likely be mapped to some exceptions
+ * in Java, but more likely mapped to some error codes in C.
+ *
+ * # Other uses
+ *
+ * The error model and the `Status` message can be used in a variety of
+ * environments, either with or without APIs, to provide a
+ * consistent developer experience across different environments.
+ *
+ * Example uses of this error model include:
+ *
+ * - Partial errors. If a service needs to return partial errors to the client,
+ * it may embed the `Status` in the normal response to indicate the partial
+ * errors.
+ *
+ * - Workflow errors. A typical workflow has multiple steps. Each step may
+ * have a `Status` message for error reporting purpose.
+ *
+ * - Batch operations. If a client uses batch request and batch response, the
+ * `Status` message should be used directly inside batch response, one for
+ * each error sub-response.
+ *
+ * - Asynchronous operations. If an API call embeds asynchronous operation
+ * results in its response, the status of those operations should be
+ * represented directly using the `Status` message.
+ *
+ * - Logging. If some API errors are stored in logs, the message `Status` could
+ * be used directly after any stripping needed for security/privacy reasons.
+ */
+class Status {
+ /** The status code, which should be an enum value of google.rpc.Code. */
+ core.int code;
+ /**
+ * A list of messages that carry the error details. There will be a
+ * common set of message types for APIs to use.
+ *
+ * The values for Object must be JSON objects. It can consist of `num`,
+ * `String`, `bool` and `null` as well as `Map` and `List` values.
+ */
+ core.List<core.Map<core.String, core.Object>> details;
+ /**
+ * A developer-facing error message, which should be in English. Any
+ * user-facing error message should be localized and sent in the
+ * google.rpc.Status.details field, or localized by the client.
+ */
+ core.String message;
+
+ Status();
+
+ Status.fromJson(core.Map _json) {
+ if (_json.containsKey("code")) {
+ code = _json["code"];
+ }
+ if (_json.containsKey("details")) {
+ details = _json["details"];
+ }
+ if (_json.containsKey("message")) {
+ message = _json["message"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (code != null) {
+ _json["code"] = code;
+ }
+ if (details != null) {
+ _json["details"] = details;
+ }
+ if (message != null) {
+ _json["message"] = message;
+ }
+ return _json;
+ }
+}
+
+/** Represents an output piece of text. */
+class TextSpan {
+ /**
+ * The API calculates the beginning offset of the content in the original
+ * document according to the EncodingType specified in the API request.
+ */
+ core.int beginOffset;
+ /** The content of the output text. */
+ core.String content;
+
+ TextSpan();
+
+ TextSpan.fromJson(core.Map _json) {
+ if (_json.containsKey("beginOffset")) {
+ beginOffset = _json["beginOffset"];
+ }
+ if (_json.containsKey("content")) {
+ content = _json["content"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (beginOffset != null) {
+ _json["beginOffset"] = beginOffset;
+ }
+ if (content != null) {
+ _json["content"] = content;
+ }
+ return _json;
+ }
+}
+
+/** Represents the smallest syntactic building block of the text. */
+class Token {
+ /** Dependency tree parse for this token. */
+ DependencyEdge dependencyEdge;
+ /**
+ * [Lemma](https://en.wikipedia.org/wiki/Lemma_%28morphology%29) of the token.
+ */
+ core.String lemma;
+ /** Parts of speech tag for this token. */
+ PartOfSpeech partOfSpeech;
+ /** The token text. */
+ TextSpan text;
+
+ Token();
+
+ Token.fromJson(core.Map _json) {
+ if (_json.containsKey("dependencyEdge")) {
+ dependencyEdge = new DependencyEdge.fromJson(_json["dependencyEdge"]);
+ }
+ if (_json.containsKey("lemma")) {
+ lemma = _json["lemma"];
+ }
+ if (_json.containsKey("partOfSpeech")) {
+ partOfSpeech = new PartOfSpeech.fromJson(_json["partOfSpeech"]);
+ }
+ if (_json.containsKey("text")) {
+ text = new TextSpan.fromJson(_json["text"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (dependencyEdge != null) {
+ _json["dependencyEdge"] = (dependencyEdge).toJson();
+ }
+ if (lemma != null) {
+ _json["lemma"] = lemma;
+ }
+ if (partOfSpeech != null) {
+ _json["partOfSpeech"] = (partOfSpeech).toJson();
+ }
+ if (text != null) {
+ _json["text"] = (text).toJson();
+ }
+ return _json;
+ }
+}
« no previous file with comments | « generated/googleapis/lib/identitytoolkit/v3.dart ('k') | generated/googleapis/lib/logging/v2.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698