| Index: generated/googleapis/lib/language/v1.dart
|
| diff --git a/generated/googleapis/lib/language/v1.dart b/generated/googleapis/lib/language/v1.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..fc4be2b9780a72e5b44ac918593646797ae435b6
|
| --- /dev/null
|
| +++ b/generated/googleapis/lib/language/v1.dart
|
| @@ -0,0 +1,1459 @@
|
| +// This is a generated file (see the discoveryapis_generator project).
|
| +
|
| +library googleapis.language.v1;
|
| +
|
| +import 'dart:core' as core;
|
| +import 'dart:async' as async;
|
| +import 'dart:convert' as convert;
|
| +
|
| +import 'package:_discoveryapis_commons/_discoveryapis_commons.dart' as commons;
|
| +import 'package:http/http.dart' as http;
|
| +
|
| +export 'package:_discoveryapis_commons/_discoveryapis_commons.dart' show
|
| + ApiRequestError, DetailedApiRequestError;
|
| +
|
| +const core.String USER_AGENT = 'dart-api-client language/v1';
|
| +
|
| +/**
|
| + * Google Cloud Natural Language API provides natural language understanding
|
| + * technologies to developers. Examples include sentiment analysis, entity
|
| + * recognition, and text annotations.
|
| + */
|
| +class LanguageApi {
|
| + /** View and manage your data across Google Cloud Platform services */
|
| + static const CloudPlatformScope = "https://www.googleapis.com/auth/cloud-platform";
|
| +
|
| +
|
| + final commons.ApiRequester _requester;
|
| +
|
| + DocumentsResourceApi get documents => new DocumentsResourceApi(_requester);
|
| +
|
| + LanguageApi(http.Client client, {core.String rootUrl: "https://language.googleapis.com/", core.String servicePath: ""}) :
|
| + _requester = new commons.ApiRequester(client, rootUrl, servicePath, USER_AGENT);
|
| +}
|
| +
|
| +
|
| +class DocumentsResourceApi {
|
| + final commons.ApiRequester _requester;
|
| +
|
| + DocumentsResourceApi(commons.ApiRequester client) :
|
| + _requester = client;
|
| +
|
| + /**
|
| + * Finds named entities (currently finds proper names) in the text,
|
| + * entity types, salience, mentions for each entity, and other properties.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * Completes with a [AnalyzeEntitiesResponse].
|
| + *
|
| + * Completes with a [commons.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<AnalyzeEntitiesResponse> analyzeEntities(AnalyzeEntitiesRequest request) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = commons.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| +
|
| + _url = 'v1/documents:analyzeEntities';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new AnalyzeEntitiesResponse.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Analyzes the sentiment of the provided text.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * Completes with a [AnalyzeSentimentResponse].
|
| + *
|
| + * Completes with a [commons.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<AnalyzeSentimentResponse> analyzeSentiment(AnalyzeSentimentRequest request) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = commons.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| +
|
| + _url = 'v1/documents:analyzeSentiment';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new AnalyzeSentimentResponse.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Analyzes the syntax of the text and provides sentence boundaries and
|
| + * tokenization along with part of speech tags, dependency trees, and other
|
| + * properties.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * Completes with a [AnalyzeSyntaxResponse].
|
| + *
|
| + * Completes with a [commons.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<AnalyzeSyntaxResponse> analyzeSyntax(AnalyzeSyntaxRequest request) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = commons.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| +
|
| + _url = 'v1/documents:analyzeSyntax';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new AnalyzeSyntaxResponse.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * A convenience method that provides all the features that analyzeSentiment,
|
| + * analyzeEntities, and analyzeSyntax provide in one call.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * Completes with a [AnnotateTextResponse].
|
| + *
|
| + * Completes with a [commons.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<AnnotateTextResponse> annotateText(AnnotateTextRequest request) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = commons.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| +
|
| + _url = 'v1/documents:annotateText';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new AnnotateTextResponse.fromJson(data));
|
| + }
|
| +
|
| +}
|
| +
|
| +
|
| +
|
| +/** The entity analysis request message. */
|
| +class AnalyzeEntitiesRequest {
|
| + /** Input document. */
|
| + Document document;
|
| + /**
|
| + * The encoding type used by the API to calculate offsets.
|
| + * Possible string values are:
|
| + * - "NONE" : If `EncodingType` is not specified, encoding-dependent
|
| + * information (such as
|
| + * `begin_offset`) will be set at `-1`.
|
| + * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-8 encoding of the input. C++ and Go are examples of languages
|
| + * that use this encoding natively.
|
| + * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-16 encoding of the input. Java and Javascript are examples of
|
| + * languages that use this encoding natively.
|
| + * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-32 encoding of the input. Python is an example of a language
|
| + * that uses this encoding natively.
|
| + */
|
| + core.String encodingType;
|
| +
|
| + AnalyzeEntitiesRequest();
|
| +
|
| + AnalyzeEntitiesRequest.fromJson(core.Map _json) {
|
| + if (_json.containsKey("document")) {
|
| + document = new Document.fromJson(_json["document"]);
|
| + }
|
| + if (_json.containsKey("encodingType")) {
|
| + encodingType = _json["encodingType"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (document != null) {
|
| + _json["document"] = (document).toJson();
|
| + }
|
| + if (encodingType != null) {
|
| + _json["encodingType"] = encodingType;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The entity analysis response message. */
|
| +class AnalyzeEntitiesResponse {
|
| + /** The recognized entities in the input document. */
|
| + core.List<Entity> entities;
|
| + /**
|
| + * The language of the text, which will be the same as the language specified
|
| + * in the request or, if not specified, the automatically-detected language.
|
| + * See `Document.language` field for more details.
|
| + */
|
| + core.String language;
|
| +
|
| + AnalyzeEntitiesResponse();
|
| +
|
| + AnalyzeEntitiesResponse.fromJson(core.Map _json) {
|
| + if (_json.containsKey("entities")) {
|
| + entities = _json["entities"].map((value) => new Entity.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("language")) {
|
| + language = _json["language"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (entities != null) {
|
| + _json["entities"] = entities.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (language != null) {
|
| + _json["language"] = language;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The sentiment analysis request message. */
|
| +class AnalyzeSentimentRequest {
|
| + /**
|
| + * Input document. Currently, `analyzeSentiment` only supports English text
|
| + * (Document.language="EN").
|
| + */
|
| + Document document;
|
| + /**
|
| + * The encoding type used by the API to calculate sentence offsets.
|
| + * Possible string values are:
|
| + * - "NONE" : If `EncodingType` is not specified, encoding-dependent
|
| + * information (such as
|
| + * `begin_offset`) will be set at `-1`.
|
| + * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-8 encoding of the input. C++ and Go are examples of languages
|
| + * that use this encoding natively.
|
| + * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-16 encoding of the input. Java and Javascript are examples of
|
| + * languages that use this encoding natively.
|
| + * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-32 encoding of the input. Python is an example of a language
|
| + * that uses this encoding natively.
|
| + */
|
| + core.String encodingType;
|
| +
|
| + AnalyzeSentimentRequest();
|
| +
|
| + AnalyzeSentimentRequest.fromJson(core.Map _json) {
|
| + if (_json.containsKey("document")) {
|
| + document = new Document.fromJson(_json["document"]);
|
| + }
|
| + if (_json.containsKey("encodingType")) {
|
| + encodingType = _json["encodingType"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (document != null) {
|
| + _json["document"] = (document).toJson();
|
| + }
|
| + if (encodingType != null) {
|
| + _json["encodingType"] = encodingType;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The sentiment analysis response message. */
|
| +class AnalyzeSentimentResponse {
|
| + /** The overall sentiment of the input document. */
|
| + Sentiment documentSentiment;
|
| + /**
|
| + * The language of the text, which will be the same as the language specified
|
| + * in the request or, if not specified, the automatically-detected language.
|
| + * See `Document.language` field for more details.
|
| + */
|
| + core.String language;
|
| + /** The sentiment for all the sentences in the document. */
|
| + core.List<Sentence> sentences;
|
| +
|
| + AnalyzeSentimentResponse();
|
| +
|
| + AnalyzeSentimentResponse.fromJson(core.Map _json) {
|
| + if (_json.containsKey("documentSentiment")) {
|
| + documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]);
|
| + }
|
| + if (_json.containsKey("language")) {
|
| + language = _json["language"];
|
| + }
|
| + if (_json.containsKey("sentences")) {
|
| + sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (documentSentiment != null) {
|
| + _json["documentSentiment"] = (documentSentiment).toJson();
|
| + }
|
| + if (language != null) {
|
| + _json["language"] = language;
|
| + }
|
| + if (sentences != null) {
|
| + _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The syntax analysis request message. */
|
| +class AnalyzeSyntaxRequest {
|
| + /** Input document. */
|
| + Document document;
|
| + /**
|
| + * The encoding type used by the API to calculate offsets.
|
| + * Possible string values are:
|
| + * - "NONE" : If `EncodingType` is not specified, encoding-dependent
|
| + * information (such as
|
| + * `begin_offset`) will be set at `-1`.
|
| + * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-8 encoding of the input. C++ and Go are examples of languages
|
| + * that use this encoding natively.
|
| + * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-16 encoding of the input. Java and Javascript are examples of
|
| + * languages that use this encoding natively.
|
| + * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-32 encoding of the input. Python is an example of a language
|
| + * that uses this encoding natively.
|
| + */
|
| + core.String encodingType;
|
| +
|
| + AnalyzeSyntaxRequest();
|
| +
|
| + AnalyzeSyntaxRequest.fromJson(core.Map _json) {
|
| + if (_json.containsKey("document")) {
|
| + document = new Document.fromJson(_json["document"]);
|
| + }
|
| + if (_json.containsKey("encodingType")) {
|
| + encodingType = _json["encodingType"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (document != null) {
|
| + _json["document"] = (document).toJson();
|
| + }
|
| + if (encodingType != null) {
|
| + _json["encodingType"] = encodingType;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The syntax analysis response message. */
|
| +class AnalyzeSyntaxResponse {
|
| + /**
|
| + * The language of the text, which will be the same as the language specified
|
| + * in the request or, if not specified, the automatically-detected language.
|
| + * See `Document.language` field for more details.
|
| + */
|
| + core.String language;
|
| + /** Sentences in the input document. */
|
| + core.List<Sentence> sentences;
|
| + /** Tokens, along with their syntactic information, in the input document. */
|
| + core.List<Token> tokens;
|
| +
|
| + AnalyzeSyntaxResponse();
|
| +
|
| + AnalyzeSyntaxResponse.fromJson(core.Map _json) {
|
| + if (_json.containsKey("language")) {
|
| + language = _json["language"];
|
| + }
|
| + if (_json.containsKey("sentences")) {
|
| + sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("tokens")) {
|
| + tokens = _json["tokens"].map((value) => new Token.fromJson(value)).toList();
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (language != null) {
|
| + _json["language"] = language;
|
| + }
|
| + if (sentences != null) {
|
| + _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (tokens != null) {
|
| + _json["tokens"] = tokens.map((value) => (value).toJson()).toList();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The request message for the text annotation API, which can perform multiple
|
| + * analysis types (sentiment, entities, and syntax) in one call.
|
| + */
|
| +class AnnotateTextRequest {
|
| + /** Input document. */
|
| + Document document;
|
| + /**
|
| + * The encoding type used by the API to calculate offsets.
|
| + * Possible string values are:
|
| + * - "NONE" : If `EncodingType` is not specified, encoding-dependent
|
| + * information (such as
|
| + * `begin_offset`) will be set at `-1`.
|
| + * - "UTF8" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-8 encoding of the input. C++ and Go are examples of languages
|
| + * that use this encoding natively.
|
| + * - "UTF16" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-16 encoding of the input. Java and Javascript are examples of
|
| + * languages that use this encoding natively.
|
| + * - "UTF32" : Encoding-dependent information (such as `begin_offset`) is
|
| + * calculated based
|
| + * on the UTF-32 encoding of the input. Python is an example of a language
|
| + * that uses this encoding natively.
|
| + */
|
| + core.String encodingType;
|
| + /** The enabled features. */
|
| + Features features;
|
| +
|
| + AnnotateTextRequest();
|
| +
|
| + AnnotateTextRequest.fromJson(core.Map _json) {
|
| + if (_json.containsKey("document")) {
|
| + document = new Document.fromJson(_json["document"]);
|
| + }
|
| + if (_json.containsKey("encodingType")) {
|
| + encodingType = _json["encodingType"];
|
| + }
|
| + if (_json.containsKey("features")) {
|
| + features = new Features.fromJson(_json["features"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (document != null) {
|
| + _json["document"] = (document).toJson();
|
| + }
|
| + if (encodingType != null) {
|
| + _json["encodingType"] = encodingType;
|
| + }
|
| + if (features != null) {
|
| + _json["features"] = (features).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** The text annotations response message. */
|
| +class AnnotateTextResponse {
|
| + /**
|
| + * The overall sentiment for the document. Populated if the user enables
|
| + * AnnotateTextRequest.Features.extract_document_sentiment.
|
| + */
|
| + Sentiment documentSentiment;
|
| + /**
|
| + * Entities, along with their semantic information, in the input document.
|
| + * Populated if the user enables
|
| + * AnnotateTextRequest.Features.extract_entities.
|
| + */
|
| + core.List<Entity> entities;
|
| + /**
|
| + * The language of the text, which will be the same as the language specified
|
| + * in the request or, if not specified, the automatically-detected language.
|
| + * See `Document.language` field for more details.
|
| + */
|
| + core.String language;
|
| + /**
|
| + * Sentences in the input document. Populated if the user enables
|
| + * AnnotateTextRequest.Features.extract_syntax.
|
| + */
|
| + core.List<Sentence> sentences;
|
| + /**
|
| + * Tokens, along with their syntactic information, in the input document.
|
| + * Populated if the user enables
|
| + * AnnotateTextRequest.Features.extract_syntax.
|
| + */
|
| + core.List<Token> tokens;
|
| +
|
| + AnnotateTextResponse();
|
| +
|
| + AnnotateTextResponse.fromJson(core.Map _json) {
|
| + if (_json.containsKey("documentSentiment")) {
|
| + documentSentiment = new Sentiment.fromJson(_json["documentSentiment"]);
|
| + }
|
| + if (_json.containsKey("entities")) {
|
| + entities = _json["entities"].map((value) => new Entity.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("language")) {
|
| + language = _json["language"];
|
| + }
|
| + if (_json.containsKey("sentences")) {
|
| + sentences = _json["sentences"].map((value) => new Sentence.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("tokens")) {
|
| + tokens = _json["tokens"].map((value) => new Token.fromJson(value)).toList();
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (documentSentiment != null) {
|
| + _json["documentSentiment"] = (documentSentiment).toJson();
|
| + }
|
| + if (entities != null) {
|
| + _json["entities"] = entities.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (language != null) {
|
| + _json["language"] = language;
|
| + }
|
| + if (sentences != null) {
|
| + _json["sentences"] = sentences.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (tokens != null) {
|
| + _json["tokens"] = tokens.map((value) => (value).toJson()).toList();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Represents dependency parse tree information for a token. (For more
|
| + * information on dependency labels, see
|
| + * http://www.aclweb.org/anthology/P13-2017
|
| + */
|
| +class DependencyEdge {
|
| + /**
|
| + * Represents the head of this token in the dependency tree.
|
| + * This is the index of the token which has an arc going to this token.
|
| + * The index is the position of the token in the array of tokens returned
|
| + * by the API method. If this token is a root token, then the
|
| + * `head_token_index` is its own index.
|
| + */
|
| + core.int headTokenIndex;
|
| + /**
|
| + * The parse label for the token.
|
| + * Possible string values are:
|
| + * - "UNKNOWN" : Unknown
|
| + * - "ABBREV" : Abbreviation modifier
|
| + * - "ACOMP" : Adjectival complement
|
| + * - "ADVCL" : Adverbial clause modifier
|
| + * - "ADVMOD" : Adverbial modifier
|
| + * - "AMOD" : Adjectival modifier of an NP
|
| + * - "APPOS" : Appositional modifier of an NP
|
| + * - "ATTR" : Attribute dependent of a copular verb
|
| + * - "AUX" : Auxiliary (non-main) verb
|
| + * - "AUXPASS" : Passive auxiliary
|
| + * - "CC" : Coordinating conjunction
|
| + * - "CCOMP" : Clausal complement of a verb or adjective
|
| + * - "CONJ" : Conjunct
|
| + * - "CSUBJ" : Clausal subject
|
| + * - "CSUBJPASS" : Clausal passive subject
|
| + * - "DEP" : Dependency (unable to determine)
|
| + * - "DET" : Determiner
|
| + * - "DISCOURSE" : Discourse
|
| + * - "DOBJ" : Direct object
|
| + * - "EXPL" : Expletive
|
| + * - "GOESWITH" : Goes with (part of a word in a text not well edited)
|
| + * - "IOBJ" : Indirect object
|
| + * - "MARK" : Marker (word introducing a subordinate clause)
|
| + * - "MWE" : Multi-word expression
|
| + * - "MWV" : Multi-word verbal expression
|
| + * - "NEG" : Negation modifier
|
| + * - "NN" : Noun compound modifier
|
| + * - "NPADVMOD" : Noun phrase used as an adverbial modifier
|
| + * - "NSUBJ" : Nominal subject
|
| + * - "NSUBJPASS" : Passive nominal subject
|
| + * - "NUM" : Numeric modifier of a noun
|
| + * - "NUMBER" : Element of compound number
|
| + * - "P" : Punctuation mark
|
| + * - "PARATAXIS" : Parataxis relation
|
| + * - "PARTMOD" : Participial modifier
|
| + * - "PCOMP" : The complement of a preposition is a clause
|
| + * - "POBJ" : Object of a preposition
|
| + * - "POSS" : Possession modifier
|
| + * - "POSTNEG" : Postverbal negative particle
|
| + * - "PRECOMP" : Predicate complement
|
| + * - "PRECONJ" : Preconjunt
|
| + * - "PREDET" : Predeterminer
|
| + * - "PREF" : Prefix
|
| + * - "PREP" : Prepositional modifier
|
| + * - "PRONL" : The relationship between a verb and verbal morpheme
|
| + * - "PRT" : Particle
|
| + * - "PS" : Associative or possessive marker
|
| + * - "QUANTMOD" : Quantifier phrase modifier
|
| + * - "RCMOD" : Relative clause modifier
|
| + * - "RCMODREL" : Complementizer in relative clause
|
| + * - "RDROP" : Ellipsis without a preceding predicate
|
| + * - "REF" : Referent
|
| + * - "REMNANT" : Remnant
|
| + * - "REPARANDUM" : Reparandum
|
| + * - "ROOT" : Root
|
| + * - "SNUM" : Suffix specifying a unit of number
|
| + * - "SUFF" : Suffix
|
| + * - "TMOD" : Temporal modifier
|
| + * - "TOPIC" : Topic marker
|
| + * - "VMOD" : Clause headed by an infinite form of the verb that modifies a
|
| + * noun
|
| + * - "VOCATIVE" : Vocative
|
| + * - "XCOMP" : Open clausal complement
|
| + * - "SUFFIX" : Name suffix
|
| + * - "TITLE" : Name title
|
| + * - "ADVPHMOD" : Adverbial phrase modifier
|
| + * - "AUXCAUS" : Causative auxiliary
|
| + * - "AUXVV" : Helper auxiliary
|
| + * - "DTMOD" : Rentaishi (Prenominal modifier)
|
| + * - "FOREIGN" : Foreign words
|
| + * - "KW" : Keyword
|
| + * - "LIST" : List for chains of comparable items
|
| + * - "NOMC" : Nominalized clause
|
| + * - "NOMCSUBJ" : Nominalized clausal subject
|
| + * - "NOMCSUBJPASS" : Nominalized clausal passive
|
| + * - "NUMC" : Compound of numeric modifier
|
| + * - "COP" : Copula
|
| + * - "DISLOCATED" : Dislocated relation (for fronted/topicalized elements)
|
| + */
|
| + core.String label;
|
| +
|
| + DependencyEdge();
|
| +
|
| + DependencyEdge.fromJson(core.Map _json) {
|
| + if (_json.containsKey("headTokenIndex")) {
|
| + headTokenIndex = _json["headTokenIndex"];
|
| + }
|
| + if (_json.containsKey("label")) {
|
| + label = _json["label"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (headTokenIndex != null) {
|
| + _json["headTokenIndex"] = headTokenIndex;
|
| + }
|
| + if (label != null) {
|
| + _json["label"] = label;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * ################################################################ #
|
| + *
|
| + * Represents the input to API methods.
|
| + */
|
| +class Document {
|
| + /** The content of the input in string format. */
|
| + core.String content;
|
| + /**
|
| + * The Google Cloud Storage URI where the file content is located.
|
| + * This URI must be of the form: gs://bucket_name/object_name. For more
|
| + * details, see https://cloud.google.com/storage/docs/reference-uris.
|
| + * NOTE: Cloud Storage object versioning is not supported.
|
| + */
|
| + core.String gcsContentUri;
|
| + /**
|
| + * The language of the document (if not specified, the language is
|
| + * automatically detected). Both ISO and BCP-47 language codes are
|
| + * accepted.<br>
|
| + * **Current Language Restrictions:**
|
| + *
|
| + * * Only English, Spanish, and Japanese textual content are supported.
|
| + * If the language (either specified by the caller or automatically detected)
|
| + * is not supported by the called API method, an `INVALID_ARGUMENT` error
|
| + * is returned.
|
| + */
|
| + core.String language;
|
| + /**
|
| + * Required. If the type is not set or is `TYPE_UNSPECIFIED`,
|
| + * returns an `INVALID_ARGUMENT` error.
|
| + * Possible string values are:
|
| + * - "TYPE_UNSPECIFIED" : The content type is not specified.
|
| + * - "PLAIN_TEXT" : Plain text
|
| + * - "HTML" : HTML
|
| + */
|
| + core.String type;
|
| +
|
| + Document();
|
| +
|
| + Document.fromJson(core.Map _json) {
|
| + if (_json.containsKey("content")) {
|
| + content = _json["content"];
|
| + }
|
| + if (_json.containsKey("gcsContentUri")) {
|
| + gcsContentUri = _json["gcsContentUri"];
|
| + }
|
| + if (_json.containsKey("language")) {
|
| + language = _json["language"];
|
| + }
|
| + if (_json.containsKey("type")) {
|
| + type = _json["type"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (content != null) {
|
| + _json["content"] = content;
|
| + }
|
| + if (gcsContentUri != null) {
|
| + _json["gcsContentUri"] = gcsContentUri;
|
| + }
|
| + if (language != null) {
|
| + _json["language"] = language;
|
| + }
|
| + if (type != null) {
|
| + _json["type"] = type;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Represents a phrase in the text that is a known entity, such as
|
| + * a person, an organization, or location. The API associates information, such
|
| + * as salience and mentions, with entities.
|
| + */
|
| +class Entity {
|
| + /**
|
| + * The mentions of this entity in the input document. The API currently
|
| + * supports proper noun mentions.
|
| + */
|
| + core.List<EntityMention> mentions;
|
| + /**
|
| + * Metadata associated with the entity.
|
| + *
|
| + * Currently, Wikipedia URLs and Knowledge Graph MIDs are provided, if
|
| + * available. The associated keys are "wikipedia_url" and "mid", respectively.
|
| + */
|
| + core.Map<core.String, core.String> metadata;
|
| + /** The representative name for the entity. */
|
| + core.String name;
|
| + /**
|
| + * The salience score associated with the entity in the [0, 1.0] range.
|
| + *
|
| + * The salience score for an entity provides information about the
|
| + * importance or centrality of that entity to the entire document text.
|
| + * Scores closer to 0 are less salient, while scores closer to 1.0 are highly
|
| + * salient.
|
| + */
|
| + core.double salience;
|
| + /**
|
| + * The entity type.
|
| + * Possible string values are:
|
| + * - "UNKNOWN" : Unknown
|
| + * - "PERSON" : Person
|
| + * - "LOCATION" : Location
|
| + * - "ORGANIZATION" : Organization
|
| + * - "EVENT" : Event
|
| + * - "WORK_OF_ART" : Work of art
|
| + * - "CONSUMER_GOOD" : Consumer goods
|
| + * - "OTHER" : Other types
|
| + */
|
| + core.String type;
|
| +
|
| + Entity();
|
| +
|
| + Entity.fromJson(core.Map _json) {
|
| + if (_json.containsKey("mentions")) {
|
| + mentions = _json["mentions"].map((value) => new EntityMention.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("metadata")) {
|
| + metadata = _json["metadata"];
|
| + }
|
| + if (_json.containsKey("name")) {
|
| + name = _json["name"];
|
| + }
|
| + if (_json.containsKey("salience")) {
|
| + salience = _json["salience"];
|
| + }
|
| + if (_json.containsKey("type")) {
|
| + type = _json["type"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (mentions != null) {
|
| + _json["mentions"] = mentions.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (metadata != null) {
|
| + _json["metadata"] = metadata;
|
| + }
|
| + if (name != null) {
|
| + _json["name"] = name;
|
| + }
|
| + if (salience != null) {
|
| + _json["salience"] = salience;
|
| + }
|
| + if (type != null) {
|
| + _json["type"] = type;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Represents a mention for an entity in the text. Currently, proper noun
|
| + * mentions are supported.
|
| + */
|
| +class EntityMention {
|
| + /** The mention text. */
|
| + TextSpan text;
|
| + /**
|
| + * The type of the entity mention.
|
| + * Possible string values are:
|
| + * - "TYPE_UNKNOWN" : Unknown
|
| + * - "PROPER" : Proper name
|
| + * - "COMMON" : Common noun (or noun compound)
|
| + */
|
| + core.String type;
|
| +
|
| + EntityMention();
|
| +
|
| + EntityMention.fromJson(core.Map _json) {
|
| + if (_json.containsKey("text")) {
|
| + text = new TextSpan.fromJson(_json["text"]);
|
| + }
|
| + if (_json.containsKey("type")) {
|
| + type = _json["type"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (text != null) {
|
| + _json["text"] = (text).toJson();
|
| + }
|
| + if (type != null) {
|
| + _json["type"] = type;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * All available features for sentiment, syntax, and semantic analysis.
|
| + * Setting each one to true will enable that specific analysis for the input.
|
| + */
|
| +class Features {
|
| + /** Extract document-level sentiment. */
|
| + core.bool extractDocumentSentiment;
|
| + /** Extract entities. */
|
| + core.bool extractEntities;
|
| + /** Extract syntax information. */
|
| + core.bool extractSyntax;
|
| +
|
| + Features();
|
| +
|
| + Features.fromJson(core.Map _json) {
|
| + if (_json.containsKey("extractDocumentSentiment")) {
|
| + extractDocumentSentiment = _json["extractDocumentSentiment"];
|
| + }
|
| + if (_json.containsKey("extractEntities")) {
|
| + extractEntities = _json["extractEntities"];
|
| + }
|
| + if (_json.containsKey("extractSyntax")) {
|
| + extractSyntax = _json["extractSyntax"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (extractDocumentSentiment != null) {
|
| + _json["extractDocumentSentiment"] = extractDocumentSentiment;
|
| + }
|
| + if (extractEntities != null) {
|
| + _json["extractEntities"] = extractEntities;
|
| + }
|
| + if (extractSyntax != null) {
|
| + _json["extractSyntax"] = extractSyntax;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Represents part of speech information for a token. Parts of speech
|
| + * are as defined in
|
| + * http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
|
| + */
|
| +class PartOfSpeech {
|
| + /**
|
| + * The grammatical aspect.
|
| + * Possible string values are:
|
| + * - "ASPECT_UNKNOWN" : Aspect is not applicable in the analyzed language or
|
| + * is not predicted.
|
| + * - "PERFECTIVE" : Perfective
|
| + * - "IMPERFECTIVE" : Imperfective
|
| + * - "PROGRESSIVE" : Progressive
|
| + */
|
| + core.String aspect;
|
| + /**
|
| + * The grammatical case.
|
| + * Possible string values are:
|
| + * - "CASE_UNKNOWN" : Case is not applicable in the analyzed language or is
|
| + * not predicted.
|
| + * - "ACCUSATIVE" : Accusative
|
| + * - "ADVERBIAL" : Adverbial
|
| + * - "COMPLEMENTIVE" : Complementive
|
| + * - "DATIVE" : Dative
|
| + * - "GENITIVE" : Genitive
|
| + * - "INSTRUMENTAL" : Instrumental
|
| + * - "LOCATIVE" : Locative
|
| + * - "NOMINATIVE" : Nominative
|
| + * - "OBLIQUE" : Oblique
|
| + * - "PARTITIVE" : Partitive
|
| + * - "PREPOSITIONAL" : Prepositional
|
| + * - "REFLEXIVE_CASE" : Reflexive
|
| + * - "RELATIVE_CASE" : Relative
|
| + * - "VOCATIVE" : Vocative
|
| + */
|
| + core.String case_;
|
| + /**
|
| + * The grammatical form.
|
| + * Possible string values are:
|
| + * - "FORM_UNKNOWN" : Form is not applicable in the analyzed language or is
|
| + * not predicted.
|
| + * - "ADNOMIAL" : Adnomial
|
| + * - "AUXILIARY" : Auxiliary
|
| + * - "COMPLEMENTIZER" : Complementizer
|
| + * - "FINAL_ENDING" : Final ending
|
| + * - "GERUND" : Gerund
|
| + * - "REALIS" : Realis
|
| + * - "IRREALIS" : Irrealis
|
| + * - "SHORT" : Short form
|
| + * - "LONG" : Long form
|
| + * - "ORDER" : Order form
|
| + * - "SPECIFIC" : Specific form
|
| + */
|
| + core.String form;
|
| + /**
|
| + * The grammatical gender.
|
| + * Possible string values are:
|
| + * - "GENDER_UNKNOWN" : Gender is not applicable in the analyzed language or
|
| + * is not predicted.
|
| + * - "FEMININE" : Feminine
|
| + * - "MASCULINE" : Masculine
|
| + * - "NEUTER" : Neuter
|
| + */
|
| + core.String gender;
|
| + /**
|
| + * The grammatical mood.
|
| + * Possible string values are:
|
| + * - "MOOD_UNKNOWN" : Mood is not applicable in the analyzed language or is
|
| + * not predicted.
|
| + * - "CONDITIONAL_MOOD" : Conditional
|
| + * - "IMPERATIVE" : Imperative
|
| + * - "INDICATIVE" : Indicative
|
| + * - "INTERROGATIVE" : Interrogative
|
| + * - "JUSSIVE" : Jussive
|
| + * - "SUBJUNCTIVE" : Subjunctive
|
| + */
|
| + core.String mood;
|
| + /**
|
| + * The grammatical number.
|
| + * Possible string values are:
|
| + * - "NUMBER_UNKNOWN" : Number is not applicable in the analyzed language or
|
| + * is not predicted.
|
| + * - "SINGULAR" : Singular
|
| + * - "PLURAL" : Plural
|
| + * - "DUAL" : Dual
|
| + */
|
| + core.String number;
|
| + /**
|
| + * The grammatical person.
|
| + * Possible string values are:
|
| + * - "PERSON_UNKNOWN" : Person is not applicable in the analyzed language or
|
| + * is not predicted.
|
| + * - "FIRST" : First
|
| + * - "SECOND" : Second
|
| + * - "THIRD" : Third
|
| + * - "REFLEXIVE_PERSON" : Reflexive
|
| + */
|
| + core.String person;
|
| + /**
|
| + * The grammatical properness.
|
| + * Possible string values are:
|
| + * - "PROPER_UNKNOWN" : Proper is not applicable in the analyzed language or
|
| + * is not predicted.
|
| + * - "PROPER" : Proper
|
| + * - "NOT_PROPER" : Not proper
|
| + */
|
| + core.String proper;
|
| + /**
|
| + * The grammatical reciprocity.
|
| + * Possible string values are:
|
| + * - "RECIPROCITY_UNKNOWN" : Reciprocity is not applicable in the analyzed
|
| + * language or is not
|
| + * predicted.
|
| + * - "RECIPROCAL" : Reciprocal
|
| + * - "NON_RECIPROCAL" : Non-reciprocal
|
| + */
|
| + core.String reciprocity;
|
| + /**
|
| + * The part of speech tag.
|
| + * Possible string values are:
|
| + * - "UNKNOWN" : Unknown
|
| + * - "ADJ" : Adjective
|
| + * - "ADP" : Adposition (preposition and postposition)
|
| + * - "ADV" : Adverb
|
| + * - "CONJ" : Conjunction
|
| + * - "DET" : Determiner
|
| + * - "NOUN" : Noun (common and proper)
|
| + * - "NUM" : Cardinal number
|
| + * - "PRON" : Pronoun
|
| + * - "PRT" : Particle or other function word
|
| + * - "PUNCT" : Punctuation
|
| + * - "VERB" : Verb (all tenses and modes)
|
| + * - "X" : Other: foreign words, typos, abbreviations
|
| + * - "AFFIX" : Affix
|
| + */
|
| + core.String tag;
|
| + /**
|
| + * The grammatical tense.
|
| + * Possible string values are:
|
| + * - "TENSE_UNKNOWN" : Tense is not applicable in the analyzed language or is
|
| + * not predicted.
|
| + * - "CONDITIONAL_TENSE" : Conditional
|
| + * - "FUTURE" : Future
|
| + * - "PAST" : Past
|
| + * - "PRESENT" : Present
|
| + * - "IMPERFECT" : Imperfect
|
| + * - "PLUPERFECT" : Pluperfect
|
| + */
|
| + core.String tense;
|
| + /**
|
| + * The grammatical voice.
|
| + * Possible string values are:
|
| + * - "VOICE_UNKNOWN" : Voice is not applicable in the analyzed language or is
|
| + * not predicted.
|
| + * - "ACTIVE" : Active
|
| + * - "CAUSATIVE" : Causative
|
| + * - "PASSIVE" : Passive
|
| + */
|
| + core.String voice;
|
| +
|
| + PartOfSpeech();
|
| +
|
| + PartOfSpeech.fromJson(core.Map _json) {
|
| + if (_json.containsKey("aspect")) {
|
| + aspect = _json["aspect"];
|
| + }
|
| + if (_json.containsKey("case")) {
|
| + case_ = _json["case"];
|
| + }
|
| + if (_json.containsKey("form")) {
|
| + form = _json["form"];
|
| + }
|
| + if (_json.containsKey("gender")) {
|
| + gender = _json["gender"];
|
| + }
|
| + if (_json.containsKey("mood")) {
|
| + mood = _json["mood"];
|
| + }
|
| + if (_json.containsKey("number")) {
|
| + number = _json["number"];
|
| + }
|
| + if (_json.containsKey("person")) {
|
| + person = _json["person"];
|
| + }
|
| + if (_json.containsKey("proper")) {
|
| + proper = _json["proper"];
|
| + }
|
| + if (_json.containsKey("reciprocity")) {
|
| + reciprocity = _json["reciprocity"];
|
| + }
|
| + if (_json.containsKey("tag")) {
|
| + tag = _json["tag"];
|
| + }
|
| + if (_json.containsKey("tense")) {
|
| + tense = _json["tense"];
|
| + }
|
| + if (_json.containsKey("voice")) {
|
| + voice = _json["voice"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (aspect != null) {
|
| + _json["aspect"] = aspect;
|
| + }
|
| + if (case_ != null) {
|
| + _json["case"] = case_;
|
| + }
|
| + if (form != null) {
|
| + _json["form"] = form;
|
| + }
|
| + if (gender != null) {
|
| + _json["gender"] = gender;
|
| + }
|
| + if (mood != null) {
|
| + _json["mood"] = mood;
|
| + }
|
| + if (number != null) {
|
| + _json["number"] = number;
|
| + }
|
| + if (person != null) {
|
| + _json["person"] = person;
|
| + }
|
| + if (proper != null) {
|
| + _json["proper"] = proper;
|
| + }
|
| + if (reciprocity != null) {
|
| + _json["reciprocity"] = reciprocity;
|
| + }
|
| + if (tag != null) {
|
| + _json["tag"] = tag;
|
| + }
|
| + if (tense != null) {
|
| + _json["tense"] = tense;
|
| + }
|
| + if (voice != null) {
|
| + _json["voice"] = voice;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** Represents a sentence in the input document. */
|
| +class Sentence {
|
| + /**
|
| + * For calls to AnalyzeSentiment or if
|
| + * AnnotateTextRequest.Features.extract_document_sentiment is set to
|
| + * true, this field will contain the sentiment for the sentence.
|
| + */
|
| + Sentiment sentiment;
|
| + /** The sentence text. */
|
| + TextSpan text;
|
| +
|
| + Sentence();
|
| +
|
| + Sentence.fromJson(core.Map _json) {
|
| + if (_json.containsKey("sentiment")) {
|
| + sentiment = new Sentiment.fromJson(_json["sentiment"]);
|
| + }
|
| + if (_json.containsKey("text")) {
|
| + text = new TextSpan.fromJson(_json["text"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (sentiment != null) {
|
| + _json["sentiment"] = (sentiment).toJson();
|
| + }
|
| + if (text != null) {
|
| + _json["text"] = (text).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Represents the feeling associated with the entire text or entities in
|
| + * the text.
|
| + */
|
| +class Sentiment {
|
| + /**
|
| + * A non-negative number in the [0, +inf) range, which represents
|
| + * the absolute magnitude of sentiment regardless of score (positive or
|
| + * negative).
|
| + */
|
| + core.double magnitude;
|
| + /**
|
| + * Sentiment score between -1.0 (negative sentiment) and 1.0
|
| + * (positive sentiment).
|
| + */
|
| + core.double score;
|
| +
|
| + Sentiment();
|
| +
|
| + Sentiment.fromJson(core.Map _json) {
|
| + if (_json.containsKey("magnitude")) {
|
| + magnitude = _json["magnitude"];
|
| + }
|
| + if (_json.containsKey("score")) {
|
| + score = _json["score"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (magnitude != null) {
|
| + _json["magnitude"] = magnitude;
|
| + }
|
| + if (score != null) {
|
| + _json["score"] = score;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * The `Status` type defines a logical error model that is suitable for
|
| + * different
|
| + * programming environments, including REST APIs and RPC APIs. It is used by
|
| + * [gRPC](https://github.com/grpc). The error model is designed to be:
|
| + *
|
| + * - Simple to use and understand for most users
|
| + * - Flexible enough to meet unexpected needs
|
| + *
|
| + * # Overview
|
| + *
|
| + * The `Status` message contains three pieces of data: error code, error
|
| + * message,
|
| + * and error details. The error code should be an enum value of
|
| + * google.rpc.Code, but it may accept additional error codes if needed. The
|
| + * error message should be a developer-facing English message that helps
|
| + * developers *understand* and *resolve* the error. If a localized user-facing
|
| + * error message is needed, put the localized message in the error details or
|
| + * localize it in the client. The optional error details may contain arbitrary
|
| + * information about the error. There is a predefined set of error detail types
|
| + * in the package `google.rpc` which can be used for common error conditions.
|
| + *
|
| + * # Language mapping
|
| + *
|
| + * The `Status` message is the logical representation of the error model, but it
|
| + * is not necessarily the actual wire format. When the `Status` message is
|
| + * exposed in different client libraries and different wire protocols, it can be
|
| + * mapped differently. For example, it will likely be mapped to some exceptions
|
| + * in Java, but more likely mapped to some error codes in C.
|
| + *
|
| + * # Other uses
|
| + *
|
| + * The error model and the `Status` message can be used in a variety of
|
| + * environments, either with or without APIs, to provide a
|
| + * consistent developer experience across different environments.
|
| + *
|
| + * Example uses of this error model include:
|
| + *
|
| + * - Partial errors. If a service needs to return partial errors to the client,
|
| + * it may embed the `Status` in the normal response to indicate the partial
|
| + * errors.
|
| + *
|
| + * - Workflow errors. A typical workflow has multiple steps. Each step may
|
| + * have a `Status` message for error reporting purpose.
|
| + *
|
| + * - Batch operations. If a client uses batch request and batch response, the
|
| + * `Status` message should be used directly inside batch response, one for
|
| + * each error sub-response.
|
| + *
|
| + * - Asynchronous operations. If an API call embeds asynchronous operation
|
| + * results in its response, the status of those operations should be
|
| + * represented directly using the `Status` message.
|
| + *
|
| + * - Logging. If some API errors are stored in logs, the message `Status` could
|
| + * be used directly after any stripping needed for security/privacy reasons.
|
| + */
|
| +class Status {
|
| + /** The status code, which should be an enum value of google.rpc.Code. */
|
| + core.int code;
|
| + /**
|
| + * A list of messages that carry the error details. There will be a
|
| + * common set of message types for APIs to use.
|
| + *
|
| + * The values for Object must be JSON objects. It can consist of `num`,
|
| + * `String`, `bool` and `null` as well as `Map` and `List` values.
|
| + */
|
| + core.List<core.Map<core.String, core.Object>> details;
|
| + /**
|
| + * A developer-facing error message, which should be in English. Any
|
| + * user-facing error message should be localized and sent in the
|
| + * google.rpc.Status.details field, or localized by the client.
|
| + */
|
| + core.String message;
|
| +
|
| + Status();
|
| +
|
| + Status.fromJson(core.Map _json) {
|
| + if (_json.containsKey("code")) {
|
| + code = _json["code"];
|
| + }
|
| + if (_json.containsKey("details")) {
|
| + details = _json["details"];
|
| + }
|
| + if (_json.containsKey("message")) {
|
| + message = _json["message"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (code != null) {
|
| + _json["code"] = code;
|
| + }
|
| + if (details != null) {
|
| + _json["details"] = details;
|
| + }
|
| + if (message != null) {
|
| + _json["message"] = message;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** Represents an output piece of text. */
|
| +class TextSpan {
|
| + /**
|
| + * The API calculates the beginning offset of the content in the original
|
| + * document according to the EncodingType specified in the API request.
|
| + */
|
| + core.int beginOffset;
|
| + /** The content of the output text. */
|
| + core.String content;
|
| +
|
| + TextSpan();
|
| +
|
| + TextSpan.fromJson(core.Map _json) {
|
| + if (_json.containsKey("beginOffset")) {
|
| + beginOffset = _json["beginOffset"];
|
| + }
|
| + if (_json.containsKey("content")) {
|
| + content = _json["content"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (beginOffset != null) {
|
| + _json["beginOffset"] = beginOffset;
|
| + }
|
| + if (content != null) {
|
| + _json["content"] = content;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +/** Represents the smallest syntactic building block of the text. */
|
| +class Token {
|
| + /** Dependency tree parse for this token. */
|
| + DependencyEdge dependencyEdge;
|
| + /**
|
| + * [Lemma](https://en.wikipedia.org/wiki/Lemma_%28morphology%29) of the token.
|
| + */
|
| + core.String lemma;
|
| + /** Parts of speech tag for this token. */
|
| + PartOfSpeech partOfSpeech;
|
| + /** The token text. */
|
| + TextSpan text;
|
| +
|
| + Token();
|
| +
|
| + Token.fromJson(core.Map _json) {
|
| + if (_json.containsKey("dependencyEdge")) {
|
| + dependencyEdge = new DependencyEdge.fromJson(_json["dependencyEdge"]);
|
| + }
|
| + if (_json.containsKey("lemma")) {
|
| + lemma = _json["lemma"];
|
| + }
|
| + if (_json.containsKey("partOfSpeech")) {
|
| + partOfSpeech = new PartOfSpeech.fromJson(_json["partOfSpeech"]);
|
| + }
|
| + if (_json.containsKey("text")) {
|
| + text = new TextSpan.fromJson(_json["text"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (dependencyEdge != null) {
|
| + _json["dependencyEdge"] = (dependencyEdge).toJson();
|
| + }
|
| + if (lemma != null) {
|
| + _json["lemma"] = lemma;
|
| + }
|
| + if (partOfSpeech != null) {
|
| + _json["partOfSpeech"] = (partOfSpeech).toJson();
|
| + }
|
| + if (text != null) {
|
| + _json["text"] = (text).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
|
|