Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(483)

Unified Diff: src/ia32/code-stubs-ia32.cc

Issue 25571002: Revert "Hydrogenisation of binops" (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 7 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/hydrogen-instructions.h ('k') | src/ia32/deoptimizer-ia32.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/ia32/code-stubs-ia32.cc
diff --git a/src/ia32/code-stubs-ia32.cc b/src/ia32/code-stubs-ia32.cc
index 56798d32c1978329060653e49aac8801489de9be..83613ccc86a041c8a360232cacee3c76eee09698 100644
--- a/src/ia32/code-stubs-ia32.cc
+++ b/src/ia32/code-stubs-ia32.cc
@@ -293,18 +293,6 @@ void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
}
-void BinaryOpStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- static Register registers[] = { edx, eax };
- descriptor->register_param_count_ = 2;
- descriptor->register_params_ = registers;
- descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
- descriptor->SetMissHandler(
- ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
-}
-
-
#define __ ACCESS_MASM(masm)
@@ -492,6 +480,18 @@ class FloatingPointHelper : public AllStatic {
// on FPU stack.
static void LoadFloatOperand(MacroAssembler* masm, Register number);
+ // Code pattern for loading floating point values. Input values must
+ // be either smi or heap number objects (fp values). Requirements:
+ // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
+ // Returns operands as floating point numbers on FPU stack.
+ static void LoadFloatOperands(MacroAssembler* masm,
+ Register scratch,
+ ArgLocation arg_location = ARGS_ON_STACK);
+
+ // Similar to LoadFloatOperand but assumes that both operands are smis.
+ // Expects operands in edx, eax.
+ static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
+
// Test if operands are smi or number objects (fp). Requirements:
// operand_1 in eax, operand_2 in edx; falls through on float
// operands, jumps to the non_float label otherwise.
@@ -499,11 +499,32 @@ class FloatingPointHelper : public AllStatic {
Label* non_float,
Register scratch);
+ // Takes the operands in edx and eax and loads them as integers in eax
+ // and ecx.
+ static void LoadUnknownsAsIntegers(MacroAssembler* masm,
+ bool use_sse3,
+ BinaryOpIC::TypeInfo left_type,
+ BinaryOpIC::TypeInfo right_type,
+ Label* operand_conversion_failure);
+
// Test if operands are numbers (smi or HeapNumber objects), and load
// them into xmm0 and xmm1 if they are. Jump to label not_numbers if
// either operand is not a number. Operands are in edx and eax.
// Leaves operands unchanged.
static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
+
+ // Similar to LoadSSE2Operands but assumes that both operands are smis.
+ // Expects operands in edx, eax.
+ static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
+
+ // Checks that |operand| has an int32 value. If |int32_result| is different
+ // from |scratch|, it will contain that int32 value.
+ static void CheckSSE2OperandIsInt32(MacroAssembler* masm,
+ Label* non_int32,
+ XMMRegister operand,
+ Register int32_result,
+ Register scratch,
+ XMMRegister xmm_scratch);
};
@@ -647,6 +668,1259 @@ void DoubleToIStub::Generate(MacroAssembler* masm) {
}
+void BinaryOpStub::Initialize() {
+ platform_specific_bit_ = CpuFeatures::IsSupported(SSE3);
+}
+
+
+void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ __ pop(ecx); // Save return address.
+ __ push(edx);
+ __ push(eax);
+ // Left and right arguments are now on top.
+ __ push(Immediate(Smi::FromInt(MinorKey())));
+
+ __ push(ecx); // Push return address.
+
+ // Patch the caller to an appropriate specialized stub and return the
+ // operation result to the caller of the stub.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
+ masm->isolate()),
+ 3,
+ 1);
+}
+
+
+// Prepare for a type transition runtime call when the args are already on
+// the stack, under the return address.
+void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm) {
+ __ pop(ecx); // Save return address.
+ // Left and right arguments are already on top of the stack.
+ __ push(Immediate(Smi::FromInt(MinorKey())));
+
+ __ push(ecx); // Push return address.
+
+ // Patch the caller to an appropriate specialized stub and return the
+ // operation result to the caller of the stub.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
+ masm->isolate()),
+ 3,
+ 1);
+}
+
+
+static void BinaryOpStub_GenerateRegisterArgsPop(MacroAssembler* masm) {
+ __ pop(ecx);
+ __ pop(eax);
+ __ pop(edx);
+ __ push(ecx);
+}
+
+
+static void BinaryOpStub_GenerateSmiCode(
+ MacroAssembler* masm,
+ Label* slow,
+ BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
+ Token::Value op) {
+ // 1. Move arguments into edx, eax except for DIV and MOD, which need the
+ // dividend in eax and edx free for the division. Use eax, ebx for those.
+ Comment load_comment(masm, "-- Load arguments");
+ Register left = edx;
+ Register right = eax;
+ if (op == Token::DIV || op == Token::MOD) {
+ left = eax;
+ right = ebx;
+ __ mov(ebx, eax);
+ __ mov(eax, edx);
+ }
+
+
+ // 2. Prepare the smi check of both operands by oring them together.
+ Comment smi_check_comment(masm, "-- Smi check arguments");
+ Label not_smis;
+ Register combined = ecx;
+ ASSERT(!left.is(combined) && !right.is(combined));
+ switch (op) {
+ case Token::BIT_OR:
+ // Perform the operation into eax and smi check the result. Preserve
+ // eax in case the result is not a smi.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, left); // Bitwise or is commutative.
+ combined = right;
+ break;
+
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD:
+ __ mov(combined, right);
+ __ or_(combined, left);
+ break;
+
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Move the right operand into ecx for the shift operation, use eax
+ // for the smi check register.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, left);
+ combined = right;
+ break;
+
+ default:
+ break;
+ }
+
+ // 3. Perform the smi check of the operands.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
+ __ JumpIfNotSmi(combined, &not_smis);
+
+ // 4. Operands are both smis, perform the operation leaving the result in
+ // eax and check the result if necessary.
+ Comment perform_smi(masm, "-- Perform smi operation");
+ Label use_fp_on_smis;
+ switch (op) {
+ case Token::BIT_OR:
+ // Nothing to do.
+ break;
+
+ case Token::BIT_XOR:
+ ASSERT(right.is(eax));
+ __ xor_(right, left); // Bitwise xor is commutative.
+ break;
+
+ case Token::BIT_AND:
+ ASSERT(right.is(eax));
+ __ and_(right, left); // Bitwise and is commutative.
+ break;
+
+ case Token::SHL:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shl_cl(left);
+ // Check that the *signed* result fits in a smi.
+ __ cmp(left, 0xc0000000);
+ __ j(sign, &use_fp_on_smis);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SAR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ sar_cl(left);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SHR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shr_cl(left);
+ // Check that the *unsigned* result fits in a smi.
+ // Neither of the two high-order bits can be set:
+ // - 0x80000000: high bit would be lost when smi tagging.
+ // - 0x40000000: this number would convert to negative when
+ // Smi tagging these two cases can only happen with shifts
+ // by 0 or 1 when handed a valid smi.
+ __ test(left, Immediate(0xc0000000));
+ __ j(not_zero, &use_fp_on_smis);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::ADD:
+ ASSERT(right.is(eax));
+ __ add(right, left); // Addition is commutative.
+ __ j(overflow, &use_fp_on_smis);
+ break;
+
+ case Token::SUB:
+ __ sub(left, right);
+ __ j(overflow, &use_fp_on_smis);
+ __ mov(eax, left);
+ break;
+
+ case Token::MUL:
+ // If the smi tag is 0 we can just leave the tag on one operand.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
+ // We can't revert the multiplication if the result is not a smi
+ // so save the right operand.
+ __ mov(ebx, right);
+ // Remove tag from one of the operands (but keep sign).
+ __ SmiUntag(right);
+ // Do multiplication.
+ __ imul(right, left); // Multiplication is commutative.
+ __ j(overflow, &use_fp_on_smis);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(right, combined, &use_fp_on_smis);
+ break;
+
+ case Token::DIV:
+ // We can't revert the division if the result is not a smi so
+ // save the left operand.
+ __ mov(edi, left);
+ // Check for 0 divisor.
+ __ test(right, right);
+ __ j(zero, &use_fp_on_smis);
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for the corner case of dividing the most negative smi by
+ // -1. We cannot use the overflow flag, since it is not set by idiv
+ // instruction.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ cmp(eax, 0x40000000);
+ __ j(equal, &use_fp_on_smis);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
+ // Check that the remainder is zero.
+ __ test(edx, edx);
+ __ j(not_zero, &use_fp_on_smis);
+ // Tag the result and store it in register eax.
+ __ SmiTag(eax);
+ break;
+
+ case Token::MOD:
+ // Check for 0 divisor.
+ __ test(right, right);
+ __ j(zero, &not_smis);
+
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(edx, combined, slow);
+ // Move remainder to register eax.
+ __ mov(eax, edx);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+
+ // 5. Emit return of result in eax. Some operations have registers pushed.
+ switch (op) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ __ ret(0);
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ __ ret(2 * kPointerSize);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // 6. For some operations emit inline code to perform floating point
+ // operations on known smis (e.g., if the result of the operation
+ // overflowed the smi range).
+ if (allow_heapnumber_results == BinaryOpStub::NO_HEAPNUMBER_RESULTS) {
+ __ bind(&use_fp_on_smis);
+ switch (op) {
+ // Undo the effects of some operations, and some register moves.
+ case Token::SHL:
+ // The arguments are saved on the stack, and only used from there.
+ break;
+ case Token::ADD:
+ // Revert right = right + left.
+ __ sub(right, left);
+ break;
+ case Token::SUB:
+ // Revert left = left - right.
+ __ add(left, right);
+ break;
+ case Token::MUL:
+ // Right was clobbered but a copy is in ebx.
+ __ mov(right, ebx);
+ break;
+ case Token::DIV:
+ // Left was clobbered but a copy is in edi. Right is in ebx for
+ // division. They should be in eax, ebx for jump to not_smi.
+ __ mov(eax, edi);
+ break;
+ default:
+ // No other operators jump to use_fp_on_smis.
+ break;
+ }
+ __ jmp(&not_smis);
+ } else {
+ ASSERT(allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS);
+ switch (op) {
+ case Token::SHL:
+ case Token::SHR: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ // Result we want is in left == edx, so we can put the allocated heap
+ // number in eax.
+ __ AllocateHeapNumber(eax, ecx, ebx, slow);
+ // Store the result in the HeapNumber and return.
+ // It's OK to overwrite the arguments on the stack because we
+ // are about to return.
+ if (op == Token::SHR) {
+ __ mov(Operand(esp, 1 * kPointerSize), left);
+ __ mov(Operand(esp, 2 * kPointerSize), Immediate(0));
+ __ fild_d(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ } else {
+ ASSERT_EQ(Token::SHL, op);
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ __ Cvtsi2sd(xmm0, left);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), left);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ }
+ __ ret(2 * kPointerSize);
+ break;
+ }
+
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ // Restore arguments to edx, eax.
+ switch (op) {
+ case Token::ADD:
+ // Revert right = right + left.
+ __ sub(right, left);
+ break;
+ case Token::SUB:
+ // Revert left = left - right.
+ __ add(left, right);
+ break;
+ case Token::MUL:
+ // Right was clobbered but a copy is in ebx.
+ __ mov(right, ebx);
+ break;
+ case Token::DIV:
+ // Left was clobbered but a copy is in edi. Right is in ebx for
+ // division.
+ __ mov(edx, edi);
+ __ mov(eax, right);
+ break;
+ default: UNREACHABLE();
+ break;
+ }
+ __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ FloatingPointHelper::LoadSSE2Smis(masm, ebx);
+ switch (op) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::LoadFloatSmis(masm, ebx);
+ switch (op) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
+ }
+ __ mov(eax, ecx);
+ __ ret(0);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ // 7. Non-smi operands, fall out to the non-smi code with the operands in
+ // edx and eax.
+ Comment done_comment(masm, "-- Enter non-smi code");
+ __ bind(&not_smis);
+ switch (op) {
+ case Token::BIT_OR:
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Right operand is saved in ecx and eax was destroyed by the smi
+ // check.
+ __ mov(eax, ecx);
+ break;
+
+ case Token::DIV:
+ case Token::MOD:
+ // Operands are in eax, ebx at this point.
+ __ mov(edx, eax);
+ __ mov(eax, ebx);
+ break;
+
+ default:
+ break;
+ }
+}
+
+
+void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
+ Label right_arg_changed, call_runtime;
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateRegisterArgsPush(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ if (op_ == Token::MOD && encoded_right_arg_.has_value) {
+ // It is guaranteed that the value will fit into a Smi, because if it
+ // didn't, we wouldn't be here, see BinaryOp_Patch.
+ __ cmp(eax, Immediate(Smi::FromInt(fixed_right_arg_value())));
+ __ j(not_equal, &right_arg_changed);
+ }
+
+ if (result_type_ == BinaryOpIC::UNINITIALIZED ||
+ result_type_ == BinaryOpIC::SMI) {
+ BinaryOpStub_GenerateSmiCode(
+ masm, &call_runtime, NO_HEAPNUMBER_RESULTS, op_);
+ } else {
+ BinaryOpStub_GenerateSmiCode(
+ masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS, op_);
+ }
+
+ // Code falls through if the result is not returned as either a smi or heap
+ // number.
+ __ bind(&right_arg_changed);
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ GenerateTypeTransition(masm);
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ __ bind(&call_runtime);
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ BinaryOpStub_GenerateRegisterArgsPop(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edx);
+ __ push(eax);
+ GenerateCallRuntime(masm);
+ }
+ __ ret(0);
+}
+
+
+void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
+ Label call_runtime;
+ ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING);
+ ASSERT(op_ == Token::ADD);
+ // If both arguments are strings, call the string add stub.
+ // Otherwise, do a transition.
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+
+ // Test if left operand is a string.
+ __ JumpIfSmi(left, &call_runtime, Label::kNear);
+ __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &call_runtime, Label::kNear);
+
+ // Test if right operand is a string.
+ __ JumpIfSmi(right, &call_runtime, Label::kNear);
+ __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &call_runtime, Label::kNear);
+
+ StringAddStub string_add_stub(
+ (StringAddFlags)(STRING_ADD_CHECK_NONE | STRING_ADD_ERECT_FRAME));
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_stub);
+
+ __ bind(&call_runtime);
+ GenerateTypeTransition(masm);
+}
+
+
+static void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
+ Label* alloc_failure,
+ OverwriteMode mode);
+
+
+// Input:
+// edx: left operand (tagged)
+// eax: right operand (tagged)
+// Output:
+// eax: result (tagged)
+void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
+ Label call_runtime;
+ ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32);
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD: {
+ Label not_floats, not_int32, right_arg_changed;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ // It could be that only SMIs have been seen at either the left
+ // or the right operand. For precise type feedback, patch the IC
+ // again if this changes.
+ // In theory, we would need the same check in the non-SSE2 case,
+ // but since we don't support Crankshaft on such hardware we can
+ // afford not to care about precise type feedback.
+ if (left_type_ == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(edx, &not_int32);
+ }
+ if (right_type_ == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(eax, &not_int32);
+ }
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+ FloatingPointHelper::CheckSSE2OperandIsInt32(
+ masm, &not_int32, xmm0, ebx, ecx, xmm2);
+ FloatingPointHelper::CheckSSE2OperandIsInt32(
+ masm, &not_int32, xmm1, edi, ecx, xmm2);
+ if (op_ == Token::MOD) {
+ if (encoded_right_arg_.has_value) {
+ __ cmp(edi, Immediate(fixed_right_arg_value()));
+ __ j(not_equal, &right_arg_changed);
+ }
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ } else {
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ // Check result type if it is currently Int32.
+ if (result_type_ <= BinaryOpIC::INT32) {
+ FloatingPointHelper::CheckSSE2OperandIsInt32(
+ masm, &not_int32, xmm0, ecx, ecx, xmm2);
+ }
+ BinaryOpStub_GenerateHeapResultAllocation(masm, &call_runtime, mode_);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ }
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ if (op_ == Token::MOD) {
+ // The operands are now on the FPU stack, but we don't need them.
+ __ fstp(0);
+ __ fstp(0);
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ } else {
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ BinaryOpStub_GenerateHeapResultAllocation(
+ masm, &after_alloc_failure, mode_);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ fstp(0); // Pop FPU stack before calling runtime.
+ __ jmp(&call_runtime);
+ }
+ }
+
+ __ bind(&not_floats);
+ __ bind(&not_int32);
+ __ bind(&right_arg_changed);
+ GenerateTypeTransition(masm);
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ GenerateRegisterArgsPush(masm);
+ Label not_floats;
+ Label not_int32;
+ Label non_smi_result;
+ bool use_sse3 = platform_specific_bit_;
+ FloatingPointHelper::LoadUnknownsAsIntegers(
+ masm, use_sse3, left_type_, right_type_, &not_floats);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, ecx); break;
+ case Token::BIT_AND: __ and_(eax, ecx); break;
+ case Token::BIT_XOR: __ xor_(eax, ecx); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result, Label::kNear);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, eax); // ebx: result
+ Label skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ __ Cvtsi2sd(xmm0, ebx);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+ }
+
+ __ bind(&not_floats);
+ __ bind(&not_int32);
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If an allocation fails, or SHR hits a hard case, use the runtime system to
+ // get the correct result.
+ __ bind(&call_runtime);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ return; // Handled above.
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ BinaryOpStub_GenerateRegisterArgsPop(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edx);
+ __ push(eax);
+ GenerateCallRuntime(masm);
+ }
+ __ ret(0);
+}
+
+
+void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
+ if (op_ == Token::ADD) {
+ // Handle string addition here, because it is the only operation
+ // that does not do a ToNumber conversion on the operands.
+ GenerateAddStrings(masm);
+ }
+
+ Factory* factory = masm->isolate()->factory();
+
+ // Convert odd ball arguments to numbers.
+ Label check, done;
+ __ cmp(edx, factory->undefined_value());
+ __ j(not_equal, &check, Label::kNear);
+ if (Token::IsBitOp(op_)) {
+ __ xor_(edx, edx);
+ } else {
+ __ mov(edx, Immediate(factory->nan_value()));
+ }
+ __ jmp(&done, Label::kNear);
+ __ bind(&check);
+ __ cmp(eax, factory->undefined_value());
+ __ j(not_equal, &done, Label::kNear);
+ if (Token::IsBitOp(op_)) {
+ __ xor_(eax, eax);
+ } else {
+ __ mov(eax, Immediate(factory->nan_value()));
+ }
+ __ bind(&done);
+
+ GenerateNumberStub(masm);
+}
+
+
+void BinaryOpStub::GenerateNumberStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Label not_floats;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+
+ // It could be that only SMIs have been seen at either the left
+ // or the right operand. For precise type feedback, patch the IC
+ // again if this changes.
+ // In theory, we would need the same check in the non-SSE2 case,
+ // but since we don't support Crankshaft on such hardware we can
+ // afford not to care about precise type feedback.
+ if (left_type_ == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(edx, &not_floats);
+ }
+ if (right_type_ == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(eax, &not_floats);
+ }
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+ if (left_type_ == BinaryOpIC::INT32) {
+ FloatingPointHelper::CheckSSE2OperandIsInt32(
+ masm, &not_floats, xmm0, ecx, ecx, xmm2);
+ }
+ if (right_type_ == BinaryOpIC::INT32) {
+ FloatingPointHelper::CheckSSE2OperandIsInt32(
+ masm, &not_floats, xmm1, ecx, ecx, xmm2);
+ }
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ BinaryOpStub_GenerateHeapResultAllocation(masm, &call_runtime, mode_);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ BinaryOpStub_GenerateHeapResultAllocation(
+ masm, &after_alloc_failure, mode_);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ fstp(0); // Pop FPU stack before calling runtime.
+ __ jmp(&call_runtime);
+ }
+
+ __ bind(&not_floats);
+ GenerateTypeTransition(masm);
+ break;
+ }
+
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ GenerateRegisterArgsPush(masm);
+ Label not_floats;
+ Label non_smi_result;
+ // We do not check the input arguments here, as any value is
+ // unconditionally truncated to an int32 anyway. To get the
+ // right optimized code, int32 type feedback is just right.
+ bool use_sse3 = platform_specific_bit_;
+ FloatingPointHelper::LoadUnknownsAsIntegers(
+ masm, use_sse3, left_type_, right_type_, &not_floats);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, ecx); break;
+ case Token::BIT_AND: __ and_(eax, ecx); break;
+ case Token::BIT_XOR: __ xor_(eax, ecx); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result, Label::kNear);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, eax); // ebx: result
+ Label skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ __ Cvtsi2sd(xmm0, ebx);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+ }
+
+ __ bind(&not_floats);
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If an allocation fails, or SHR or MOD hit a hard case,
+ // use the runtime system to get the correct result.
+ __ bind(&call_runtime);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD:
+ break;
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ BinaryOpStub_GenerateRegisterArgsPop(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edx);
+ __ push(eax);
+ GenerateCallRuntime(masm);
+ }
+ __ ret(0);
+}
+
+
+void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
+ Label call_runtime;
+
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->generic_binary_stub_calls(), 1);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateRegisterArgsPush(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ BinaryOpStub_GenerateSmiCode(
+ masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS, op_);
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Label not_floats;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ BinaryOpStub_GenerateHeapResultAllocation(masm, &call_runtime, mode_);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ BinaryOpStub_GenerateHeapResultAllocation(
+ masm, &after_alloc_failure, mode_);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ fstp(0); // Pop FPU stack before calling runtime.
+ __ jmp(&call_runtime);
+ }
+ __ bind(&not_floats);
+ break;
+ }
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ Label non_smi_result;
+ bool use_sse3 = platform_specific_bit_;
+ FloatingPointHelper::LoadUnknownsAsIntegers(masm,
+ use_sse3,
+ BinaryOpIC::GENERIC,
+ BinaryOpIC::GENERIC,
+ &call_runtime);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, ecx); break;
+ case Token::BIT_AND: __ and_(eax, ecx); break;
+ case Token::BIT_XOR: __ xor_(eax, ecx); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result, Label::kNear);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop the arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, eax); // ebx: result
+ Label skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatureScope use_sse2(masm, SSE2);
+ __ Cvtsi2sd(xmm0, ebx);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize);
+ }
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If all else fails, use the runtime system to get the correct
+ // result.
+ __ bind(&call_runtime);
+ switch (op_) {
+ case Token::ADD:
+ GenerateAddStrings(masm);
+ // Fall through.
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ BinaryOpStub_GenerateRegisterArgsPop(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ {
+ FrameScope scope(masm, StackFrame::INTERNAL);
+ __ push(edx);
+ __ push(eax);
+ GenerateCallRuntime(masm);
+ }
+ __ ret(0);
+}
+
+
+void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
+ ASSERT(op_ == Token::ADD);
+ Label left_not_string, call_runtime;
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+
+ // Test if left operand is a string.
+ __ JumpIfSmi(left, &left_not_string, Label::kNear);
+ __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &left_not_string, Label::kNear);
+
+ StringAddStub string_add_left_stub(
+ (StringAddFlags)(STRING_ADD_CHECK_RIGHT | STRING_ADD_ERECT_FRAME));
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_left_stub);
+
+ // Left operand is not a string, test right.
+ __ bind(&left_not_string);
+ __ JumpIfSmi(right, &call_runtime, Label::kNear);
+ __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &call_runtime, Label::kNear);
+
+ StringAddStub string_add_right_stub(
+ (StringAddFlags)(STRING_ADD_CHECK_LEFT | STRING_ADD_ERECT_FRAME));
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_right_stub);
+
+ // Neither argument is a string.
+ __ bind(&call_runtime);
+}
+
+
+static void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
+ Label* alloc_failure,
+ OverwriteMode mode) {
+ Label skip_allocation;
+ switch (mode) {
+ case OVERWRITE_LEFT: {
+ // If the argument in edx is already an object, we skip the
+ // allocation of a heap number.
+ __ JumpIfNotSmi(edx, &skip_allocation, Label::kNear);
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now edx can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(edx, ebx);
+ __ bind(&skip_allocation);
+ // Use object in edx as a result holder
+ __ mov(eax, edx);
+ break;
+ }
+ case OVERWRITE_RIGHT:
+ // If the argument in eax is already an object, we skip the
+ // allocation of a heap number.
+ __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
+ // Fall through!
+ case NO_OVERWRITE:
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now eax can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(eax, ebx);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+ __ pop(ecx);
+ __ push(edx);
+ __ push(eax);
+ __ push(ecx);
+}
+
+
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// TAGGED case:
// Input:
@@ -957,6 +2231,79 @@ void TranscendentalCacheStub::GenerateOperation(
}
+// Input: edx, eax are the left and right objects of a bit op.
+// Output: eax, ecx are left and right integers for a bit op.
+// Warning: can clobber inputs even when it jumps to |conversion_failure|!
+void FloatingPointHelper::LoadUnknownsAsIntegers(
+ MacroAssembler* masm,
+ bool use_sse3,
+ BinaryOpIC::TypeInfo left_type,
+ BinaryOpIC::TypeInfo right_type,
+ Label* conversion_failure) {
+ // Check float operands.
+ Label arg1_is_object, check_undefined_arg1;
+ Label arg2_is_object, check_undefined_arg2;
+ Label load_arg2, done;
+
+ // Test if arg1 is a Smi.
+ if (left_type == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(edx, conversion_failure);
+ } else {
+ __ JumpIfNotSmi(edx, &arg1_is_object, Label::kNear);
+ }
+
+ __ SmiUntag(edx);
+ __ jmp(&load_arg2);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg1);
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(edx, factory->undefined_value());
+ __ j(not_equal, conversion_failure);
+ __ mov(edx, Immediate(0));
+ __ jmp(&load_arg2);
+
+ __ bind(&arg1_is_object);
+ __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ cmp(ebx, factory->heap_number_map());
+ __ j(not_equal, &check_undefined_arg1);
+
+ __ TruncateHeapNumberToI(edx, edx);
+
+ // Here edx has the untagged integer, eax has a Smi or a heap number.
+ __ bind(&load_arg2);
+
+ // Test if arg2 is a Smi.
+ if (right_type == BinaryOpIC::SMI) {
+ __ JumpIfNotSmi(eax, conversion_failure);
+ } else {
+ __ JumpIfNotSmi(eax, &arg2_is_object, Label::kNear);
+ }
+
+ __ SmiUntag(eax);
+ __ mov(ecx, eax);
+ __ jmp(&done);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg2);
+ __ cmp(eax, factory->undefined_value());
+ __ j(not_equal, conversion_failure);
+ __ mov(ecx, Immediate(0));
+ __ jmp(&done);
+
+ __ bind(&arg2_is_object);
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(ebx, factory->heap_number_map());
+ __ j(not_equal, &check_undefined_arg2);
+ // Get the untagged integer version of the eax heap number in ecx.
+
+ __ TruncateHeapNumberToI(ecx, eax);
+
+ __ bind(&done);
+ __ mov(eax, edx);
+}
+
+
void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
Register number) {
Label load_smi, done;
@@ -1006,6 +2353,95 @@ void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
}
+void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
+ Register scratch) {
+ const Register left = edx;
+ const Register right = eax;
+ __ mov(scratch, left);
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch.
+ __ SmiUntag(scratch);
+ __ Cvtsi2sd(xmm0, scratch);
+
+ __ mov(scratch, right);
+ __ SmiUntag(scratch);
+ __ Cvtsi2sd(xmm1, scratch);
+}
+
+
+void FloatingPointHelper::CheckSSE2OperandIsInt32(MacroAssembler* masm,
+ Label* non_int32,
+ XMMRegister operand,
+ Register int32_result,
+ Register scratch,
+ XMMRegister xmm_scratch) {
+ __ cvttsd2si(int32_result, Operand(operand));
+ __ Cvtsi2sd(xmm_scratch, int32_result);
+ __ pcmpeqd(xmm_scratch, operand);
+ __ movmskps(scratch, xmm_scratch);
+ // Two least significant bits should be both set.
+ __ not_(scratch);
+ __ test(scratch, Immediate(3));
+ __ j(not_zero, non_int32);
+}
+
+
+void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
+ Register scratch,
+ ArgLocation arg_location) {
+ Label load_smi_1, load_smi_2, done_load_1, done;
+ if (arg_location == ARGS_IN_REGISTERS) {
+ __ mov(scratch, edx);
+ } else {
+ __ mov(scratch, Operand(esp, 2 * kPointerSize));
+ }
+ __ JumpIfSmi(scratch, &load_smi_1, Label::kNear);
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
+ __ bind(&done_load_1);
+
+ if (arg_location == ARGS_IN_REGISTERS) {
+ __ mov(scratch, eax);
+ } else {
+ __ mov(scratch, Operand(esp, 1 * kPointerSize));
+ }
+ __ JumpIfSmi(scratch, &load_smi_2, Label::kNear);
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&load_smi_1);
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+ __ jmp(&done_load_1);
+
+ __ bind(&load_smi_2);
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
+ Register scratch) {
+ const Register left = edx;
+ const Register right = eax;
+ __ mov(scratch, left);
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch.
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+
+ __ mov(scratch, right);
+ __ SmiUntag(scratch);
+ __ mov(Operand(esp, 0), scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+}
+
+
void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
Label* non_float,
Register scratch) {
@@ -2918,8 +4354,6 @@ void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
RecordWriteStub::GenerateFixedRegStubsAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
- PlatformFeatureScope sse2(SSE2);
- BinaryOpStub::GenerateAheadOfTime(isolate);
}
« no previous file with comments | « src/hydrogen-instructions.h ('k') | src/ia32/deoptimizer-ia32.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698