OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2008 Apple Inc. All rights reserved. | |
3 * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies) | |
4 * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) | |
5 * | |
6 * Redistribution and use in source and binary forms, with or without | |
7 * modification, are permitted provided that the following conditions | |
8 * are met: | |
9 * | |
10 * 1. Redistributions of source code must retain the above copyright | |
11 * notice, this list of conditions and the following disclaimer. | |
12 * 2. Redistributions in binary form must reproduce the above copyright | |
13 * notice, this list of conditions and the following disclaimer in the | |
14 * documentation and/or other materials provided with the distribution. | |
15 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of | |
16 * its contributors may be used to endorse or promote products derived | |
17 * from this software without specific prior written permission. | |
18 * | |
19 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
22 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 */ | |
30 | |
31 #include "config.h" | |
32 #include "core/platform/graphics/FloatQuad.h" | |
33 | |
34 #include <algorithm> | |
35 #include <limits> | |
36 | |
37 using namespace std; | |
38 | |
39 namespace WebCore { | |
40 | |
41 static inline float min4(float a, float b, float c, float d) | |
42 { | |
43 return min(min(a, b), min(c, d)); | |
44 } | |
45 | |
46 static inline float max4(float a, float b, float c, float d) | |
47 { | |
48 return max(max(a, b), max(c, d)); | |
49 } | |
50 | |
51 inline float dot(const FloatSize& a, const FloatSize& b) | |
52 { | |
53 return a.width() * b.width() + a.height() * b.height(); | |
54 } | |
55 | |
56 inline float determinant(const FloatSize& a, const FloatSize& b) | |
57 { | |
58 return a.width() * b.height() - a.height() * b.width(); | |
59 } | |
60 | |
61 inline bool isPointInTriangle(const FloatPoint& p, const FloatPoint& t1, const F
loatPoint& t2, const FloatPoint& t3) | |
62 { | |
63 // Compute vectors | |
64 FloatSize v0 = t3 - t1; | |
65 FloatSize v1 = t2 - t1; | |
66 FloatSize v2 = p - t1; | |
67 | |
68 // Compute dot products | |
69 float dot00 = dot(v0, v0); | |
70 float dot01 = dot(v0, v1); | |
71 float dot02 = dot(v0, v2); | |
72 float dot11 = dot(v1, v1); | |
73 float dot12 = dot(v1, v2); | |
74 | |
75 // Compute barycentric coordinates | |
76 float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); | |
77 float u = (dot11 * dot02 - dot01 * dot12) * invDenom; | |
78 float v = (dot00 * dot12 - dot01 * dot02) * invDenom; | |
79 | |
80 // Check if point is in triangle | |
81 return (u >= 0) && (v >= 0) && (u + v <= 1); | |
82 } | |
83 | |
84 FloatRect FloatQuad::boundingBox() const | |
85 { | |
86 float left = min4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); | |
87 float top = min4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); | |
88 | |
89 float right = max4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); | |
90 float bottom = max4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); | |
91 | |
92 return FloatRect(left, top, right - left, bottom - top); | |
93 } | |
94 | |
95 static inline bool withinEpsilon(float a, float b) | |
96 { | |
97 return fabs(a - b) < numeric_limits<float>::epsilon(); | |
98 } | |
99 | |
100 bool FloatQuad::isRectilinear() const | |
101 { | |
102 return (withinEpsilon(m_p1.x(), m_p2.x()) && withinEpsilon(m_p2.y(), m_p3.y(
)) && withinEpsilon(m_p3.x(), m_p4.x()) && withinEpsilon(m_p4.y(), m_p1.y())) | |
103 || (withinEpsilon(m_p1.y(), m_p2.y()) && withinEpsilon(m_p2.x(), m_p3.x(
)) && withinEpsilon(m_p3.y(), m_p4.y()) && withinEpsilon(m_p4.x(), m_p1.x())); | |
104 } | |
105 | |
106 bool FloatQuad::containsPoint(const FloatPoint& p) const | |
107 { | |
108 return isPointInTriangle(p, m_p1, m_p2, m_p3) || isPointInTriangle(p, m_p1,
m_p3, m_p4); | |
109 } | |
110 | |
111 // Note that we only handle convex quads here. | |
112 bool FloatQuad::containsQuad(const FloatQuad& other) const | |
113 { | |
114 return containsPoint(other.p1()) && containsPoint(other.p2()) && containsPoi
nt(other.p3()) && containsPoint(other.p4()); | |
115 } | |
116 | |
117 static inline FloatPoint rightMostCornerToVector(const FloatRect& rect, const Fl
oatSize& vector) | |
118 { | |
119 // Return the corner of the rectangle that if it is to the left of the vecto
r | |
120 // would mean all of the rectangle is to the left of the vector. | |
121 // The vector here represents the side between two points in a clockwise con
vex polygon. | |
122 // | |
123 // Q XXX | |
124 // QQQ XXX If the lower left corner of X is left of the vector that goes f
rom the top corner of Q to | |
125 // QQQ the right corner of Q, then all of X is left of the vector, and
intersection impossible. | |
126 // Q | |
127 // | |
128 FloatPoint point; | |
129 if (vector.width() >= 0) | |
130 point.setY(rect.maxY()); | |
131 else | |
132 point.setY(rect.y()); | |
133 if (vector.height() >= 0) | |
134 point.setX(rect.x()); | |
135 else | |
136 point.setX(rect.maxX()); | |
137 return point; | |
138 } | |
139 | |
140 bool FloatQuad::intersectsRect(const FloatRect& rect) const | |
141 { | |
142 // For each side of the quad clockwise we check if the rectangle is to the l
eft of it | |
143 // since only content on the right can onlap with the quad. | |
144 // This only works if the quad is convex. | |
145 FloatSize v1, v2, v3, v4; | |
146 | |
147 // Ensure we use clockwise vectors. | |
148 if (!isCounterclockwise()) { | |
149 v1 = m_p2 - m_p1; | |
150 v2 = m_p3 - m_p2; | |
151 v3 = m_p4 - m_p3; | |
152 v4 = m_p1 - m_p4; | |
153 } else { | |
154 v1 = m_p4 - m_p1; | |
155 v2 = m_p1 - m_p2; | |
156 v3 = m_p2 - m_p3; | |
157 v4 = m_p3 - m_p4; | |
158 } | |
159 | |
160 FloatPoint p = rightMostCornerToVector(rect, v1); | |
161 if (determinant(v1, p - m_p1) < 0) | |
162 return false; | |
163 | |
164 p = rightMostCornerToVector(rect, v2); | |
165 if (determinant(v2, p - m_p2) < 0) | |
166 return false; | |
167 | |
168 p = rightMostCornerToVector(rect, v3); | |
169 if (determinant(v3, p - m_p3) < 0) | |
170 return false; | |
171 | |
172 p = rightMostCornerToVector(rect, v4); | |
173 if (determinant(v4, p - m_p4) < 0) | |
174 return false; | |
175 | |
176 // If not all of the rectangle is outside one of the quad's four sides, then
that means at least | |
177 // a part of the rectangle is overlapping the quad. | |
178 return true; | |
179 } | |
180 | |
181 // Tests whether the line is contained by or intersected with the circle. | |
182 static inline bool lineIntersectsCircle(const FloatPoint& center, float radius,
const FloatPoint& p0, const FloatPoint& p1) | |
183 { | |
184 float x0 = p0.x() - center.x(), y0 = p0.y() - center.y(); | |
185 float x1 = p1.x() - center.x(), y1 = p1.y() - center.y(); | |
186 float radius2 = radius * radius; | |
187 if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2) | |
188 return true; | |
189 if (p0 == p1) | |
190 return false; | |
191 | |
192 float a = y0 - y1; | |
193 float b = x1 - x0; | |
194 float c = x0 * y1 - x1 * y0; | |
195 float distance2 = c * c / (a * a + b * b); | |
196 // If distance between the center point and the line > the radius, | |
197 // the line doesn't cross (or is contained by) the ellipse. | |
198 if (distance2 > radius2) | |
199 return false; | |
200 | |
201 // The nearest point on the line is between p0 and p1? | |
202 float x = - a * c / (a * a + b * b); | |
203 float y = - b * c / (a * a + b * b); | |
204 return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) | |
205 && ((y0 <= y && y <= y1) || (y1 <= y && y <= y0))); | |
206 } | |
207 | |
208 bool FloatQuad::intersectsCircle(const FloatPoint& center, float radius) const | |
209 { | |
210 return containsPoint(center) // The circle may be totally contained by the q
uad. | |
211 || lineIntersectsCircle(center, radius, m_p1, m_p2) | |
212 || lineIntersectsCircle(center, radius, m_p2, m_p3) | |
213 || lineIntersectsCircle(center, radius, m_p3, m_p4) | |
214 || lineIntersectsCircle(center, radius, m_p4, m_p1); | |
215 } | |
216 | |
217 bool FloatQuad::intersectsEllipse(const FloatPoint& center, const FloatSize& rad
ii) const | |
218 { | |
219 // Transform the ellipse to an origin-centered circle whose radius is the pr
oduct of major radius and minor radius. | |
220 // Here we apply the same transformation to the quad. | |
221 FloatQuad transformedQuad(*this); | |
222 transformedQuad.move(-center.x(), -center.y()); | |
223 transformedQuad.scale(radii.height(), radii.width()); | |
224 | |
225 FloatPoint originPoint; | |
226 return transformedQuad.intersectsCircle(originPoint, radii.height() * radii.
width()); | |
227 | |
228 } | |
229 | |
230 bool FloatQuad::isCounterclockwise() const | |
231 { | |
232 // Return if the two first vectors are turning clockwise. If the quad is con
vex then all following vectors will turn the same way. | |
233 return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0; | |
234 } | |
235 | |
236 } // namespace WebCore | |
OLD | NEW |