Index: third_party/brotli/enc/entropy_encode.cc |
diff --git a/third_party/brotli/enc/entropy_encode.cc b/third_party/brotli/enc/entropy_encode.cc |
deleted file mode 100644 |
index f18355d88db5a3cf7a1b85ea500210b59765ef85..0000000000000000000000000000000000000000 |
--- a/third_party/brotli/enc/entropy_encode.cc |
+++ /dev/null |
@@ -1,480 +0,0 @@ |
-/* Copyright 2010 Google Inc. All Rights Reserved. |
- |
- Distributed under MIT license. |
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
-*/ |
- |
-// Entropy encoding (Huffman) utilities. |
- |
-#include "./entropy_encode.h" |
- |
-#include <algorithm> |
-#include <limits> |
-#include <cstdlib> |
- |
-#include "./histogram.h" |
-#include "./port.h" |
-#include "./types.h" |
- |
-namespace brotli { |
- |
-void SetDepth(const HuffmanTree &p, |
- HuffmanTree *pool, |
- uint8_t *depth, |
- uint8_t level) { |
- if (p.index_left_ >= 0) { |
- ++level; |
- SetDepth(pool[p.index_left_], pool, depth, level); |
- SetDepth(pool[p.index_right_or_value_], pool, depth, level); |
- } else { |
- depth[p.index_right_or_value_] = level; |
- } |
-} |
- |
-// Sort the root nodes, least popular first. |
-static inline bool SortHuffmanTree(const HuffmanTree& v0, |
- const HuffmanTree& v1) { |
- if (v0.total_count_ != v1.total_count_) { |
- return v0.total_count_ < v1.total_count_; |
- } |
- return v0.index_right_or_value_ > v1.index_right_or_value_; |
-} |
- |
-// This function will create a Huffman tree. |
-// |
-// The catch here is that the tree cannot be arbitrarily deep. |
-// Brotli specifies a maximum depth of 15 bits for "code trees" |
-// and 7 bits for "code length code trees." |
-// |
-// count_limit is the value that is to be faked as the minimum value |
-// and this minimum value is raised until the tree matches the |
-// maximum length requirement. |
-// |
-// This algorithm is not of excellent performance for very long data blocks, |
-// especially when population counts are longer than 2**tree_limit, but |
-// we are not planning to use this with extremely long blocks. |
-// |
-// See http://en.wikipedia.org/wiki/Huffman_coding |
-void CreateHuffmanTree(const uint32_t *data, |
- const size_t length, |
- const int tree_limit, |
- HuffmanTree* tree, |
- uint8_t *depth) { |
- // For block sizes below 64 kB, we never need to do a second iteration |
- // of this loop. Probably all of our block sizes will be smaller than |
- // that, so this loop is mostly of academic interest. If we actually |
- // would need this, we would be better off with the Katajainen algorithm. |
- for (uint32_t count_limit = 1; ; count_limit *= 2) { |
- size_t n = 0; |
- for (size_t i = length; i != 0;) { |
- --i; |
- if (data[i]) { |
- const uint32_t count = std::max(data[i], count_limit); |
- tree[n++] = HuffmanTree(count, -1, static_cast<int16_t>(i)); |
- } |
- } |
- |
- if (n == 1) { |
- depth[tree[0].index_right_or_value_] = 1; // Only one element. |
- break; |
- } |
- |
- std::sort(tree, tree + n, SortHuffmanTree); |
- |
- // The nodes are: |
- // [0, n): the sorted leaf nodes that we start with. |
- // [n]: we add a sentinel here. |
- // [n + 1, 2n): new parent nodes are added here, starting from |
- // (n+1). These are naturally in ascending order. |
- // [2n]: we add a sentinel at the end as well. |
- // There will be (2n+1) elements at the end. |
- const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1); |
- tree[n] = sentinel; |
- tree[n + 1] = sentinel; |
- |
- size_t i = 0; // Points to the next leaf node. |
- size_t j = n + 1; // Points to the next non-leaf node. |
- for (size_t k = n - 1; k != 0; --k) { |
- size_t left, right; |
- if (tree[i].total_count_ <= tree[j].total_count_) { |
- left = i; |
- ++i; |
- } else { |
- left = j; |
- ++j; |
- } |
- if (tree[i].total_count_ <= tree[j].total_count_) { |
- right = i; |
- ++i; |
- } else { |
- right = j; |
- ++j; |
- } |
- |
- // The sentinel node becomes the parent node. |
- size_t j_end = 2 * n - k; |
- tree[j_end].total_count_ = |
- tree[left].total_count_ + tree[right].total_count_; |
- tree[j_end].index_left_ = static_cast<int16_t>(left); |
- tree[j_end].index_right_or_value_ = static_cast<int16_t>(right); |
- |
- // Add back the last sentinel node. |
- tree[j_end + 1] = sentinel; |
- } |
- SetDepth(tree[2 * n - 1], &tree[0], depth, 0); |
- |
- // We need to pack the Huffman tree in tree_limit bits. |
- // If this was not successful, add fake entities to the lowest values |
- // and retry. |
- if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) { |
- break; |
- } |
- } |
-} |
- |
-static void Reverse(uint8_t* v, size_t start, size_t end) { |
- --end; |
- while (start < end) { |
- uint8_t tmp = v[start]; |
- v[start] = v[end]; |
- v[end] = tmp; |
- ++start; |
- --end; |
- } |
-} |
- |
-static void WriteHuffmanTreeRepetitions( |
- const uint8_t previous_value, |
- const uint8_t value, |
- size_t repetitions, |
- size_t* tree_size, |
- uint8_t* tree, |
- uint8_t* extra_bits_data) { |
- assert(repetitions > 0); |
- if (previous_value != value) { |
- tree[*tree_size] = value; |
- extra_bits_data[*tree_size] = 0; |
- ++(*tree_size); |
- --repetitions; |
- } |
- if (repetitions == 7) { |
- tree[*tree_size] = value; |
- extra_bits_data[*tree_size] = 0; |
- ++(*tree_size); |
- --repetitions; |
- } |
- if (repetitions < 3) { |
- for (size_t i = 0; i < repetitions; ++i) { |
- tree[*tree_size] = value; |
- extra_bits_data[*tree_size] = 0; |
- ++(*tree_size); |
- } |
- } else { |
- repetitions -= 3; |
- size_t start = *tree_size; |
- while (true) { |
- tree[*tree_size] = 16; |
- extra_bits_data[*tree_size] = repetitions & 0x3; |
- ++(*tree_size); |
- repetitions >>= 2; |
- if (repetitions == 0) { |
- break; |
- } |
- --repetitions; |
- } |
- Reverse(tree, start, *tree_size); |
- Reverse(extra_bits_data, start, *tree_size); |
- } |
-} |
- |
-static void WriteHuffmanTreeRepetitionsZeros( |
- size_t repetitions, |
- size_t* tree_size, |
- uint8_t* tree, |
- uint8_t* extra_bits_data) { |
- if (repetitions == 11) { |
- tree[*tree_size] = 0; |
- extra_bits_data[*tree_size] = 0; |
- ++(*tree_size); |
- --repetitions; |
- } |
- if (repetitions < 3) { |
- for (size_t i = 0; i < repetitions; ++i) { |
- tree[*tree_size] = 0; |
- extra_bits_data[*tree_size] = 0; |
- ++(*tree_size); |
- } |
- } else { |
- repetitions -= 3; |
- size_t start = *tree_size; |
- while (true) { |
- tree[*tree_size] = 17; |
- extra_bits_data[*tree_size] = repetitions & 0x7; |
- ++(*tree_size); |
- repetitions >>= 3; |
- if (repetitions == 0) { |
- break; |
- } |
- --repetitions; |
- } |
- Reverse(tree, start, *tree_size); |
- Reverse(extra_bits_data, start, *tree_size); |
- } |
-} |
- |
-void OptimizeHuffmanCountsForRle(size_t length, uint32_t* counts, |
- uint8_t* good_for_rle) { |
- size_t nonzero_count = 0; |
- size_t stride; |
- size_t limit; |
- size_t sum; |
- const size_t streak_limit = 1240; |
- // Let's make the Huffman code more compatible with rle encoding. |
- size_t i; |
- for (i = 0; i < length; i++) { |
- if (counts[i]) { |
- ++nonzero_count; |
- } |
- } |
- if (nonzero_count < 16) { |
- return; |
- } |
- while (length != 0 && counts[length - 1] == 0) { |
- --length; |
- } |
- if (length == 0) { |
- return; // All zeros. |
- } |
- // Now counts[0..length - 1] does not have trailing zeros. |
- { |
- size_t nonzeros = 0; |
- uint32_t smallest_nonzero = 1 << 30; |
- for (i = 0; i < length; ++i) { |
- if (counts[i] != 0) { |
- ++nonzeros; |
- if (smallest_nonzero > counts[i]) { |
- smallest_nonzero = counts[i]; |
- } |
- } |
- } |
- if (nonzeros < 5) { |
- // Small histogram will model it well. |
- return; |
- } |
- size_t zeros = length - nonzeros; |
- if (smallest_nonzero < 4) { |
- if (zeros < 6) { |
- for (i = 1; i < length - 1; ++i) { |
- if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { |
- counts[i] = 1; |
- } |
- } |
- } |
- } |
- if (nonzeros < 28) { |
- return; |
- } |
- } |
- // 2) Let's mark all population counts that already can be encoded |
- // with an rle code. |
- memset(good_for_rle, 0, length); |
- { |
- // Let's not spoil any of the existing good rle codes. |
- // Mark any seq of 0's that is longer as 5 as a good_for_rle. |
- // Mark any seq of non-0's that is longer as 7 as a good_for_rle. |
- uint32_t symbol = counts[0]; |
- size_t step = 0; |
- for (i = 0; i <= length; ++i) { |
- if (i == length || counts[i] != symbol) { |
- if ((symbol == 0 && step >= 5) || |
- (symbol != 0 && step >= 7)) { |
- size_t k; |
- for (k = 0; k < step; ++k) { |
- good_for_rle[i - k - 1] = 1; |
- } |
- } |
- step = 1; |
- if (i != length) { |
- symbol = counts[i]; |
- } |
- } else { |
- ++step; |
- } |
- } |
- } |
- // 3) Let's replace those population counts that lead to more rle codes. |
- // Math here is in 24.8 fixed point representation. |
- stride = 0; |
- limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; |
- sum = 0; |
- for (i = 0; i <= length; ++i) { |
- if (i == length || good_for_rle[i] || |
- (i != 0 && good_for_rle[i - 1]) || |
- (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) { |
- if (stride >= 4 || (stride >= 3 && sum == 0)) { |
- size_t k; |
- // The stride must end, collapse what we have, if we have enough (4). |
- size_t count = (sum + stride / 2) / stride; |
- if (count == 0) { |
- count = 1; |
- } |
- if (sum == 0) { |
- // Don't make an all zeros stride to be upgraded to ones. |
- count = 0; |
- } |
- for (k = 0; k < stride; ++k) { |
- // We don't want to change value at counts[i], |
- // that is already belonging to the next stride. Thus - 1. |
- counts[i - k - 1] = static_cast<uint32_t>(count); |
- } |
- } |
- stride = 0; |
- sum = 0; |
- if (i < length - 2) { |
- // All interesting strides have a count of at least 4, |
- // at least when non-zeros. |
- limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; |
- } else if (i < length) { |
- limit = 256 * counts[i]; |
- } else { |
- limit = 0; |
- } |
- } |
- ++stride; |
- if (i != length) { |
- sum += counts[i]; |
- if (stride >= 4) { |
- limit = (256 * sum + stride / 2) / stride; |
- } |
- if (stride == 4) { |
- limit += 120; |
- } |
- } |
- } |
-} |
- |
-static void DecideOverRleUse(const uint8_t* depth, const size_t length, |
- bool *use_rle_for_non_zero, |
- bool *use_rle_for_zero) { |
- size_t total_reps_zero = 0; |
- size_t total_reps_non_zero = 0; |
- size_t count_reps_zero = 1; |
- size_t count_reps_non_zero = 1; |
- for (size_t i = 0; i < length;) { |
- const uint8_t value = depth[i]; |
- size_t reps = 1; |
- for (size_t k = i + 1; k < length && depth[k] == value; ++k) { |
- ++reps; |
- } |
- if (reps >= 3 && value == 0) { |
- total_reps_zero += reps; |
- ++count_reps_zero; |
- } |
- if (reps >= 4 && value != 0) { |
- total_reps_non_zero += reps; |
- ++count_reps_non_zero; |
- } |
- i += reps; |
- } |
- *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2; |
- *use_rle_for_zero = total_reps_zero > count_reps_zero * 2; |
-} |
- |
-void WriteHuffmanTree(const uint8_t* depth, |
- size_t length, |
- size_t* tree_size, |
- uint8_t* tree, |
- uint8_t* extra_bits_data) { |
- uint8_t previous_value = 8; |
- |
- // Throw away trailing zeros. |
- size_t new_length = length; |
- for (size_t i = 0; i < length; ++i) { |
- if (depth[length - i - 1] == 0) { |
- --new_length; |
- } else { |
- break; |
- } |
- } |
- |
- // First gather statistics on if it is a good idea to do rle. |
- bool use_rle_for_non_zero = false; |
- bool use_rle_for_zero = false; |
- if (length > 50) { |
- // Find rle coding for longer codes. |
- // Shorter codes seem not to benefit from rle. |
- DecideOverRleUse(depth, new_length, |
- &use_rle_for_non_zero, &use_rle_for_zero); |
- } |
- |
- // Actual rle coding. |
- for (size_t i = 0; i < new_length;) { |
- const uint8_t value = depth[i]; |
- size_t reps = 1; |
- if ((value != 0 && use_rle_for_non_zero) || |
- (value == 0 && use_rle_for_zero)) { |
- for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) { |
- ++reps; |
- } |
- } |
- if (value == 0) { |
- WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data); |
- } else { |
- WriteHuffmanTreeRepetitions(previous_value, |
- value, reps, tree_size, |
- tree, extra_bits_data); |
- previous_value = value; |
- } |
- i += reps; |
- } |
-} |
- |
-namespace { |
- |
-uint16_t ReverseBits(int num_bits, uint16_t bits) { |
- static const size_t kLut[16] = { // Pre-reversed 4-bit values. |
- 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
- 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
- }; |
- size_t retval = kLut[bits & 0xf]; |
- for (int i = 4; i < num_bits; i += 4) { |
- retval <<= 4; |
- bits = static_cast<uint16_t>(bits >> 4); |
- retval |= kLut[bits & 0xf]; |
- } |
- retval >>= (-num_bits & 0x3); |
- return static_cast<uint16_t>(retval); |
-} |
- |
-} // namespace |
- |
-void ConvertBitDepthsToSymbols(const uint8_t *depth, |
- size_t len, |
- uint16_t *bits) { |
- // In Brotli, all bit depths are [1..15] |
- // 0 bit depth means that the symbol does not exist. |
- const int kMaxBits = 16; // 0..15 are values for bits |
- uint16_t bl_count[kMaxBits] = { 0 }; |
- { |
- for (size_t i = 0; i < len; ++i) { |
- ++bl_count[depth[i]]; |
- } |
- bl_count[0] = 0; |
- } |
- uint16_t next_code[kMaxBits]; |
- next_code[0] = 0; |
- { |
- int code = 0; |
- for (int bits = 1; bits < kMaxBits; ++bits) { |
- code = (code + bl_count[bits - 1]) << 1; |
- next_code[bits] = static_cast<uint16_t>(code); |
- } |
- } |
- for (size_t i = 0; i < len; ++i) { |
- if (depth[i]) { |
- bits[i] = ReverseBits(depth[i], next_code[depth[i]]++); |
- } |
- } |
-} |
- |
-} // namespace brotli |