Index: third_party/brotli/enc/compress_fragment_two_pass.cc |
diff --git a/third_party/brotli/enc/compress_fragment_two_pass.cc b/third_party/brotli/enc/compress_fragment_two_pass.cc |
deleted file mode 100644 |
index a032740d655a628dac0d81bc8a8ab2eb9bf18108..0000000000000000000000000000000000000000 |
--- a/third_party/brotli/enc/compress_fragment_two_pass.cc |
+++ /dev/null |
@@ -1,524 +0,0 @@ |
-/* Copyright 2015 Google Inc. All Rights Reserved. |
- |
- Distributed under MIT license. |
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
-*/ |
- |
-// Function for fast encoding of an input fragment, independently from the input |
-// history. This function uses two-pass processing: in the first pass we save |
-// the found backward matches and literal bytes into a buffer, and in the |
-// second pass we emit them into the bit stream using prefix codes built based |
-// on the actual command and literal byte histograms. |
- |
-#include "./compress_fragment_two_pass.h" |
- |
-#include <algorithm> |
- |
-#include "./brotli_bit_stream.h" |
-#include "./bit_cost.h" |
-#include "./entropy_encode.h" |
-#include "./fast_log.h" |
-#include "./find_match_length.h" |
-#include "./port.h" |
-#include "./types.h" |
-#include "./write_bits.h" |
- |
-namespace brotli { |
- |
-// kHashMul32 multiplier has these properties: |
-// * The multiplier must be odd. Otherwise we may lose the highest bit. |
-// * No long streaks of 1s or 0s. |
-// * There is no effort to ensure that it is a prime, the oddity is enough |
-// for this use. |
-// * The number has been tuned heuristically against compression benchmarks. |
-static const uint32_t kHashMul32 = 0x1e35a7bd; |
- |
-static inline uint32_t Hash(const uint8_t* p, size_t shift) { |
- const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32; |
- return static_cast<uint32_t>(h >> shift); |
-} |
- |
-static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) { |
- assert(offset >= 0); |
- assert(offset <= 2); |
- const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32; |
- return static_cast<uint32_t>(h >> shift); |
-} |
- |
-static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) { |
- return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && |
- p1[4] == p2[4] && |
- p1[5] == p2[5]); |
-} |
- |
-// Builds a command and distance prefix code (each 64 symbols) into "depth" and |
-// "bits" based on "histogram" and stores it into the bit stream. |
-static void BuildAndStoreCommandPrefixCode( |
- const uint32_t histogram[128], |
- uint8_t depth[128], uint16_t bits[128], |
- size_t* storage_ix, uint8_t* storage) { |
- // Tree size for building a tree over 64 symbols is 2 * 64 + 1. |
- static const size_t kTreeSize = 129; |
- HuffmanTree tree[kTreeSize]; |
- CreateHuffmanTree(histogram, 64, 15, tree, depth); |
- CreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]); |
- // We have to jump through a few hoopes here in order to compute |
- // the command bits because the symbols are in a different order than in |
- // the full alphabet. This looks complicated, but having the symbols |
- // in this order in the command bits saves a few branches in the Emit* |
- // functions. |
- uint8_t cmd_depth[64]; |
- uint16_t cmd_bits[64]; |
- memcpy(cmd_depth, depth + 24, 24); |
- memcpy(cmd_depth + 24, depth, 8); |
- memcpy(cmd_depth + 32, depth + 48, 8); |
- memcpy(cmd_depth + 40, depth + 8, 8); |
- memcpy(cmd_depth + 48, depth + 56, 8); |
- memcpy(cmd_depth + 56, depth + 16, 8); |
- ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); |
- memcpy(bits, cmd_bits + 24, 16); |
- memcpy(bits + 8, cmd_bits + 40, 16); |
- memcpy(bits + 16, cmd_bits + 56, 16); |
- memcpy(bits + 24, cmd_bits, 48); |
- memcpy(bits + 48, cmd_bits + 32, 16); |
- memcpy(bits + 56, cmd_bits + 48, 16); |
- ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); |
- { |
- // Create the bit length array for the full command alphabet. |
- uint8_t cmd_depth[704] = { 0 }; |
- memcpy(cmd_depth, depth + 24, 8); |
- memcpy(cmd_depth + 64, depth + 32, 8); |
- memcpy(cmd_depth + 128, depth + 40, 8); |
- memcpy(cmd_depth + 192, depth + 48, 8); |
- memcpy(cmd_depth + 384, depth + 56, 8); |
- for (size_t i = 0; i < 8; ++i) { |
- cmd_depth[128 + 8 * i] = depth[i]; |
- cmd_depth[256 + 8 * i] = depth[8 + i]; |
- cmd_depth[448 + 8 * i] = depth[16 + i]; |
- } |
- StoreHuffmanTree(cmd_depth, 704, tree, storage_ix, storage); |
- } |
- StoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage); |
-} |
- |
-inline void EmitInsertLen(uint32_t insertlen, uint32_t** commands) { |
- if (insertlen < 6) { |
- **commands = insertlen; |
- } else if (insertlen < 130) { |
- insertlen -= 2; |
- const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u; |
- const uint32_t prefix = insertlen >> nbits; |
- const uint32_t inscode = (nbits << 1) + prefix + 2; |
- const uint32_t extra = insertlen - (prefix << nbits); |
- **commands = inscode | (extra << 8); |
- } else if (insertlen < 2114) { |
- insertlen -= 66; |
- const uint32_t nbits = Log2FloorNonZero(insertlen); |
- const uint32_t code = nbits + 10; |
- const uint32_t extra = insertlen - (1 << nbits); |
- **commands = code | (extra << 8); |
- } else if (insertlen < 6210) { |
- const uint32_t extra = insertlen - 2114; |
- **commands = 21 | (extra << 8); |
- } else if (insertlen < 22594) { |
- const uint32_t extra = insertlen - 6210; |
- **commands = 22 | (extra << 8); |
- } else { |
- const uint32_t extra = insertlen - 22594; |
- **commands = 23 | (extra << 8); |
- } |
- ++(*commands); |
-} |
- |
-inline void EmitCopyLen(size_t copylen, uint32_t** commands) { |
- if (copylen < 10) { |
- **commands = static_cast<uint32_t>(copylen + 38); |
- } else if (copylen < 134) { |
- copylen -= 6; |
- const size_t nbits = Log2FloorNonZero(copylen) - 1; |
- const size_t prefix = copylen >> nbits; |
- const size_t code = (nbits << 1) + prefix + 44; |
- const size_t extra = copylen - (prefix << nbits); |
- **commands = static_cast<uint32_t>(code | (extra << 8)); |
- } else if (copylen < 2118) { |
- copylen -= 70; |
- const size_t nbits = Log2FloorNonZero(copylen); |
- const size_t code = nbits + 52; |
- const size_t extra = copylen - (1 << nbits); |
- **commands = static_cast<uint32_t>(code | (extra << 8)); |
- } else { |
- const size_t extra = copylen - 2118; |
- **commands = static_cast<uint32_t>(63 | (extra << 8)); |
- } |
- ++(*commands); |
-} |
- |
-inline void EmitCopyLenLastDistance(size_t copylen, uint32_t** commands) { |
- if (copylen < 12) { |
- **commands = static_cast<uint32_t>(copylen + 20); |
- ++(*commands); |
- } else if (copylen < 72) { |
- copylen -= 8; |
- const size_t nbits = Log2FloorNonZero(copylen) - 1; |
- const size_t prefix = copylen >> nbits; |
- const size_t code = (nbits << 1) + prefix + 28; |
- const size_t extra = copylen - (prefix << nbits); |
- **commands = static_cast<uint32_t>(code | (extra << 8)); |
- ++(*commands); |
- } else if (copylen < 136) { |
- copylen -= 8; |
- const size_t code = (copylen >> 5) + 54; |
- const size_t extra = copylen & 31; |
- **commands = static_cast<uint32_t>(code | (extra << 8)); |
- ++(*commands); |
- **commands = 64; |
- ++(*commands); |
- } else if (copylen < 2120) { |
- copylen -= 72; |
- const size_t nbits = Log2FloorNonZero(copylen); |
- const size_t code = nbits + 52; |
- const size_t extra = copylen - (1 << nbits); |
- **commands = static_cast<uint32_t>(code | (extra << 8)); |
- ++(*commands); |
- **commands = 64; |
- ++(*commands); |
- } else { |
- const size_t extra = copylen - 2120; |
- **commands = static_cast<uint32_t>(63 | (extra << 8)); |
- ++(*commands); |
- **commands = 64; |
- ++(*commands); |
- } |
-} |
- |
-inline void EmitDistance(uint32_t distance, uint32_t** commands) { |
- distance += 3; |
- uint32_t nbits = Log2FloorNonZero(distance) - 1; |
- const uint32_t prefix = (distance >> nbits) & 1; |
- const uint32_t offset = (2 + prefix) << nbits; |
- const uint32_t distcode = 2 * (nbits - 1) + prefix + 80; |
- uint32_t extra = distance - offset; |
- **commands = distcode | (extra << 8); |
- ++(*commands); |
-} |
- |
-// REQUIRES: len <= 1 << 20. |
-static void StoreMetaBlockHeader( |
- size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) { |
- // ISLAST |
- WriteBits(1, 0, storage_ix, storage); |
- if (len <= (1U << 16)) { |
- // MNIBBLES is 4 |
- WriteBits(2, 0, storage_ix, storage); |
- WriteBits(16, len - 1, storage_ix, storage); |
- } else { |
- // MNIBBLES is 5 |
- WriteBits(2, 1, storage_ix, storage); |
- WriteBits(20, len - 1, storage_ix, storage); |
- } |
- // ISUNCOMPRESSED |
- WriteBits(1, is_uncompressed, storage_ix, storage); |
-} |
- |
-static void CreateCommands(const uint8_t* input, size_t block_size, |
- size_t input_size, const uint8_t* base_ip, |
- int* table, size_t table_size, |
- uint8_t** literals, uint32_t** commands) { |
- // "ip" is the input pointer. |
- const uint8_t* ip = input; |
- assert(table_size); |
- assert(table_size <= (1u << 31)); |
- assert((table_size & (table_size - 1)) == 0); // table must be power of two |
- const size_t shift = 64u - Log2FloorNonZero(table_size); |
- assert(table_size - 1 == static_cast<size_t>( |
- MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift)); |
- const uint8_t* ip_end = input + block_size; |
- // "next_emit" is a pointer to the first byte that is not covered by a |
- // previous copy. Bytes between "next_emit" and the start of the next copy or |
- // the end of the input will be emitted as literal bytes. |
- const uint8_t* next_emit = input; |
- |
- int last_distance = -1; |
- const size_t kInputMarginBytes = 16; |
- const size_t kMinMatchLen = 6; |
- if (PREDICT_TRUE(block_size >= kInputMarginBytes)) { |
- // For the last block, we need to keep a 16 bytes margin so that we can be |
- // sure that all distances are at most window size - 16. |
- // For all other blocks, we only need to keep a margin of 5 bytes so that |
- // we don't go over the block size with a copy. |
- const size_t len_limit = std::min(block_size - kMinMatchLen, |
- input_size - kInputMarginBytes); |
- const uint8_t* ip_limit = input + len_limit; |
- |
- for (uint32_t next_hash = Hash(++ip, shift); ; ) { |
- assert(next_emit < ip); |
- // Step 1: Scan forward in the input looking for a 6-byte-long match. |
- // If we get close to exhausting the input then goto emit_remainder. |
- // |
- // Heuristic match skipping: If 32 bytes are scanned with no matches |
- // found, start looking only at every other byte. If 32 more bytes are |
- // scanned, look at every third byte, etc.. When a match is found, |
- // immediately go back to looking at every byte. This is a small loss |
- // (~5% performance, ~0.1% density) for compressible data due to more |
- // bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
- // win since the compressor quickly "realizes" the data is incompressible |
- // and doesn't bother looking for matches everywhere. |
- // |
- // The "skip" variable keeps track of how many bytes there are since the |
- // last match; dividing it by 32 (ie. right-shifting by five) gives the |
- // number of bytes to move ahead for each iteration. |
- uint32_t skip = 32; |
- |
- const uint8_t* next_ip = ip; |
- const uint8_t* candidate; |
- do { |
- ip = next_ip; |
- uint32_t hash = next_hash; |
- assert(hash == Hash(ip, shift)); |
- uint32_t bytes_between_hash_lookups = skip++ >> 5; |
- next_ip = ip + bytes_between_hash_lookups; |
- if (PREDICT_FALSE(next_ip > ip_limit)) { |
- goto emit_remainder; |
- } |
- next_hash = Hash(next_ip, shift); |
- candidate = ip - last_distance; |
- if (IsMatch(ip, candidate)) { |
- if (PREDICT_TRUE(candidate < ip)) { |
- table[hash] = static_cast<int>(ip - base_ip); |
- break; |
- } |
- } |
- candidate = base_ip + table[hash]; |
- assert(candidate >= base_ip); |
- assert(candidate < ip); |
- |
- table[hash] = static_cast<int>(ip - base_ip); |
- } while (PREDICT_TRUE(!IsMatch(ip, candidate))); |
- |
- // Step 2: Emit the found match together with the literal bytes from |
- // "next_emit", and then see if we can find a next macth immediately |
- // afterwards. Repeat until we find no match for the input |
- // without emitting some literal bytes. |
- uint64_t input_bytes; |
- |
- { |
- // We have a 6-byte match at ip, and we need to emit bytes in |
- // [next_emit, ip). |
- const uint8_t* base = ip; |
- size_t matched = 6 + FindMatchLengthWithLimit( |
- candidate + 6, ip + 6, static_cast<size_t>(ip_end - ip) - 6); |
- ip += matched; |
- int distance = static_cast<int>(base - candidate); /* > 0 */ |
- int insert = static_cast<int>(base - next_emit); |
- assert(0 == memcmp(base, candidate, matched)); |
- EmitInsertLen(static_cast<uint32_t>(insert), commands); |
- memcpy(*literals, next_emit, static_cast<size_t>(insert)); |
- *literals += insert; |
- if (distance == last_distance) { |
- **commands = 64; |
- ++(*commands); |
- } else { |
- EmitDistance(static_cast<uint32_t>(distance), commands); |
- last_distance = distance; |
- } |
- EmitCopyLenLastDistance(matched, commands); |
- |
- next_emit = ip; |
- if (PREDICT_FALSE(ip >= ip_limit)) { |
- goto emit_remainder; |
- } |
- // We could immediately start working at ip now, but to improve |
- // compression we first update "table" with the hashes of some positions |
- // within the last copy. |
- input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); |
- uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 5); |
- prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 4); |
- prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 3); |
- input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); |
- prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 2); |
- prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 1); |
- |
- uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift); |
- candidate = base_ip + table[cur_hash]; |
- table[cur_hash] = static_cast<int>(ip - base_ip); |
- } |
- |
- while (IsMatch(ip, candidate)) { |
- // We have a 6-byte match at ip, and no need to emit any |
- // literal bytes prior to ip. |
- const uint8_t* base = ip; |
- size_t matched = 6 + FindMatchLengthWithLimit( |
- candidate + 6, ip + 6, static_cast<size_t>(ip_end - ip) - 6); |
- ip += matched; |
- last_distance = static_cast<int>(base - candidate); /* > 0 */ |
- assert(0 == memcmp(base, candidate, matched)); |
- EmitCopyLen(matched, commands); |
- EmitDistance(static_cast<uint32_t>(last_distance), commands); |
- |
- next_emit = ip; |
- if (PREDICT_FALSE(ip >= ip_limit)) { |
- goto emit_remainder; |
- } |
- // We could immediately start working at ip now, but to improve |
- // compression we first update "table" with the hashes of some positions |
- // within the last copy. |
- input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); |
- uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 5); |
- prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 4); |
- prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 3); |
- input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); |
- prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 2); |
- prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
- table[prev_hash] = static_cast<int>(ip - base_ip - 1); |
- |
- uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift); |
- candidate = base_ip + table[cur_hash]; |
- table[cur_hash] = static_cast<int>(ip - base_ip); |
- } |
- |
- next_hash = Hash(++ip, shift); |
- } |
- } |
- |
-emit_remainder: |
- assert(next_emit <= ip_end); |
- // Emit the remaining bytes as literals. |
- if (next_emit < ip_end) { |
- const uint32_t insert = static_cast<uint32_t>(ip_end - next_emit); |
- EmitInsertLen(insert, commands); |
- memcpy(*literals, next_emit, insert); |
- *literals += insert; |
- } |
-} |
- |
-static void StoreCommands(const uint8_t* literals, const size_t num_literals, |
- const uint32_t* commands, const size_t num_commands, |
- size_t* storage_ix, uint8_t* storage) { |
- uint8_t lit_depths[256] = { 0 }; |
- uint16_t lit_bits[256] = { 0 }; |
- uint32_t lit_histo[256] = { 0 }; |
- for (size_t i = 0; i < num_literals; ++i) { |
- ++lit_histo[literals[i]]; |
- } |
- BuildAndStoreHuffmanTreeFast(lit_histo, num_literals, |
- /* max_bits = */ 8, |
- lit_depths, lit_bits, |
- storage_ix, storage); |
- |
- uint8_t cmd_depths[128] = { 0 }; |
- uint16_t cmd_bits[128] = { 0 }; |
- uint32_t cmd_histo[128] = { 0 }; |
- for (size_t i = 0; i < num_commands; ++i) { |
- ++cmd_histo[commands[i] & 0xff]; |
- } |
- cmd_histo[1] += 1; |
- cmd_histo[2] += 1; |
- cmd_histo[64] += 1; |
- cmd_histo[84] += 1; |
- BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits, |
- storage_ix, storage); |
- |
- static const uint32_t kNumExtraBits[128] = { |
- 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24, |
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, |
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24, |
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
- 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
- 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, |
- 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, |
- }; |
- static const uint32_t kInsertOffset[24] = { |
- 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578, |
- 1090, 2114, 6210, 22594, |
- }; |
- |
- for (size_t i = 0; i < num_commands; ++i) { |
- const uint32_t cmd = commands[i]; |
- const uint32_t code = cmd & 0xff; |
- const uint32_t extra = cmd >> 8; |
- WriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage); |
- WriteBits(kNumExtraBits[code], extra, storage_ix, storage); |
- if (code < 24) { |
- const uint32_t insert = kInsertOffset[code] + extra; |
- for (uint32_t j = 0; j < insert; ++j) { |
- const uint8_t lit = *literals; |
- WriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage); |
- ++literals; |
- } |
- } |
- } |
-} |
- |
-static bool ShouldCompress(const uint8_t* input, size_t input_size, |
- size_t num_literals) { |
- static const double kAcceptableLossForUncompressibleSpeedup = 0.02; |
- static const double kMaxRatioOfLiterals = |
- 1.0 - kAcceptableLossForUncompressibleSpeedup; |
- if (num_literals < kMaxRatioOfLiterals * static_cast<double>(input_size)) { |
- return true; |
- } |
- uint32_t literal_histo[256] = { 0 }; |
- static const uint32_t kSampleRate = 43; |
- static const double kMaxEntropy = |
- 8 * (1.0 - kAcceptableLossForUncompressibleSpeedup); |
- const double max_total_bit_cost = |
- static_cast<double>(input_size) * kMaxEntropy / kSampleRate; |
- for (size_t i = 0; i < input_size; i += kSampleRate) { |
- ++literal_histo[input[i]]; |
- } |
- return BitsEntropy(literal_histo, 256) < max_total_bit_cost; |
-} |
- |
-void BrotliCompressFragmentTwoPass(const uint8_t* input, size_t input_size, |
- bool is_last, |
- uint32_t* command_buf, uint8_t* literal_buf, |
- int* table, size_t table_size, |
- size_t* storage_ix, uint8_t* storage) { |
- // Save the start of the first block for position and distance computations. |
- const uint8_t* base_ip = input; |
- |
- while (input_size > 0) { |
- size_t block_size = std::min(input_size, kCompressFragmentTwoPassBlockSize); |
- uint32_t* commands = command_buf; |
- uint8_t* literals = literal_buf; |
- CreateCommands(input, block_size, input_size, base_ip, table, table_size, |
- &literals, &commands); |
- const size_t num_literals = static_cast<size_t>(literals - literal_buf); |
- const size_t num_commands = static_cast<size_t>(commands - command_buf); |
- if (ShouldCompress(input, block_size, num_literals)) { |
- StoreMetaBlockHeader(block_size, 0, storage_ix, storage); |
- // No block splits, no contexts. |
- WriteBits(13, 0, storage_ix, storage); |
- StoreCommands(literal_buf, num_literals, command_buf, num_commands, |
- storage_ix, storage); |
- } else { |
- // Since we did not find many backward references and the entropy of |
- // the data is close to 8 bits, we can simply emit an uncompressed block. |
- // This makes compression speed of uncompressible data about 3x faster. |
- StoreMetaBlockHeader(block_size, 1, storage_ix, storage); |
- *storage_ix = (*storage_ix + 7u) & ~7u; |
- memcpy(&storage[*storage_ix >> 3], input, block_size); |
- *storage_ix += block_size << 3; |
- storage[*storage_ix >> 3] = 0; |
- } |
- input += block_size; |
- input_size -= block_size; |
- } |
- |
- if (is_last) { |
- WriteBits(1, 1, storage_ix, storage); // islast |
- WriteBits(1, 1, storage_ix, storage); // isempty |
- *storage_ix = (*storage_ix + 7u) & ~7u; |
- } |
-} |
- |
-} // namespace brotli |