Index: third_party/brotli/enc/entropy_encode.c |
diff --git a/third_party/brotli/enc/entropy_encode.c b/third_party/brotli/enc/entropy_encode.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..41ea9483d19e966855d83466831abf6fd937e554 |
--- /dev/null |
+++ b/third_party/brotli/enc/entropy_encode.c |
@@ -0,0 +1,501 @@ |
+/* Copyright 2010 Google Inc. All Rights Reserved. |
+ |
+ Distributed under MIT license. |
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
+*/ |
+ |
+/* Entropy encoding (Huffman) utilities. */ |
+ |
+#include "./entropy_encode.h" |
+ |
+#include <string.h> /* memset */ |
+ |
+#include "../common/constants.h" |
+#include <brotli/types.h> |
+#include "./port.h" |
+ |
+#if defined(__cplusplus) || defined(c_plusplus) |
+extern "C" { |
+#endif |
+ |
+BROTLI_BOOL BrotliSetDepth( |
+ int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) { |
+ int stack[16]; |
+ int level = 0; |
+ int p = p0; |
+ assert(max_depth <= 15); |
+ stack[0] = -1; |
+ while (BROTLI_TRUE) { |
+ if (pool[p].index_left_ >= 0) { |
+ level++; |
+ if (level > max_depth) return BROTLI_FALSE; |
+ stack[level] = pool[p].index_right_or_value_; |
+ p = pool[p].index_left_; |
+ continue; |
+ } else { |
+ depth[pool[p].index_right_or_value_] = (uint8_t)level; |
+ } |
+ while (level >= 0 && stack[level] == -1) level--; |
+ if (level < 0) return BROTLI_TRUE; |
+ p = stack[level]; |
+ stack[level] = -1; |
+ } |
+} |
+ |
+/* Sort the root nodes, least popular first. */ |
+static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( |
+ const HuffmanTree* v0, const HuffmanTree* v1) { |
+ if (v0->total_count_ != v1->total_count_) { |
+ return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); |
+ } |
+ return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_); |
+} |
+ |
+/* This function will create a Huffman tree. |
+ |
+ The catch here is that the tree cannot be arbitrarily deep. |
+ Brotli specifies a maximum depth of 15 bits for "code trees" |
+ and 7 bits for "code length code trees." |
+ |
+ count_limit is the value that is to be faked as the minimum value |
+ and this minimum value is raised until the tree matches the |
+ maximum length requirement. |
+ |
+ This algorithm is not of excellent performance for very long data blocks, |
+ especially when population counts are longer than 2**tree_limit, but |
+ we are not planning to use this with extremely long blocks. |
+ |
+ See http://en.wikipedia.org/wiki/Huffman_coding */ |
+void BrotliCreateHuffmanTree(const uint32_t *data, |
+ const size_t length, |
+ const int tree_limit, |
+ HuffmanTree* tree, |
+ uint8_t *depth) { |
+ uint32_t count_limit; |
+ HuffmanTree sentinel; |
+ InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); |
+ /* For block sizes below 64 kB, we never need to do a second iteration |
+ of this loop. Probably all of our block sizes will be smaller than |
+ that, so this loop is mostly of academic interest. If we actually |
+ would need this, we would be better off with the Katajainen algorithm. */ |
+ for (count_limit = 1; ; count_limit *= 2) { |
+ size_t n = 0; |
+ size_t i; |
+ size_t j; |
+ size_t k; |
+ for (i = length; i != 0;) { |
+ --i; |
+ if (data[i]) { |
+ const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit); |
+ InitHuffmanTree(&tree[n++], count, -1, (int16_t)i); |
+ } |
+ } |
+ |
+ if (n == 1) { |
+ depth[tree[0].index_right_or_value_] = 1; /* Only one element. */ |
+ break; |
+ } |
+ |
+ SortHuffmanTreeItems(tree, n, SortHuffmanTree); |
+ |
+ /* The nodes are: |
+ [0, n): the sorted leaf nodes that we start with. |
+ [n]: we add a sentinel here. |
+ [n + 1, 2n): new parent nodes are added here, starting from |
+ (n+1). These are naturally in ascending order. |
+ [2n]: we add a sentinel at the end as well. |
+ There will be (2n+1) elements at the end. */ |
+ tree[n] = sentinel; |
+ tree[n + 1] = sentinel; |
+ |
+ i = 0; /* Points to the next leaf node. */ |
+ j = n + 1; /* Points to the next non-leaf node. */ |
+ for (k = n - 1; k != 0; --k) { |
+ size_t left, right; |
+ if (tree[i].total_count_ <= tree[j].total_count_) { |
+ left = i; |
+ ++i; |
+ } else { |
+ left = j; |
+ ++j; |
+ } |
+ if (tree[i].total_count_ <= tree[j].total_count_) { |
+ right = i; |
+ ++i; |
+ } else { |
+ right = j; |
+ ++j; |
+ } |
+ |
+ { |
+ /* The sentinel node becomes the parent node. */ |
+ size_t j_end = 2 * n - k; |
+ tree[j_end].total_count_ = |
+ tree[left].total_count_ + tree[right].total_count_; |
+ tree[j_end].index_left_ = (int16_t)left; |
+ tree[j_end].index_right_or_value_ = (int16_t)right; |
+ |
+ /* Add back the last sentinel node. */ |
+ tree[j_end + 1] = sentinel; |
+ } |
+ } |
+ if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) { |
+ /* We need to pack the Huffman tree in tree_limit bits. If this was not |
+ successful, add fake entities to the lowest values and retry. */ |
+ break; |
+ } |
+ } |
+} |
+ |
+static void Reverse(uint8_t* v, size_t start, size_t end) { |
+ --end; |
+ while (start < end) { |
+ uint8_t tmp = v[start]; |
+ v[start] = v[end]; |
+ v[end] = tmp; |
+ ++start; |
+ --end; |
+ } |
+} |
+ |
+static void BrotliWriteHuffmanTreeRepetitions( |
+ const uint8_t previous_value, |
+ const uint8_t value, |
+ size_t repetitions, |
+ size_t* tree_size, |
+ uint8_t* tree, |
+ uint8_t* extra_bits_data) { |
+ assert(repetitions > 0); |
+ if (previous_value != value) { |
+ tree[*tree_size] = value; |
+ extra_bits_data[*tree_size] = 0; |
+ ++(*tree_size); |
+ --repetitions; |
+ } |
+ if (repetitions == 7) { |
+ tree[*tree_size] = value; |
+ extra_bits_data[*tree_size] = 0; |
+ ++(*tree_size); |
+ --repetitions; |
+ } |
+ if (repetitions < 3) { |
+ size_t i; |
+ for (i = 0; i < repetitions; ++i) { |
+ tree[*tree_size] = value; |
+ extra_bits_data[*tree_size] = 0; |
+ ++(*tree_size); |
+ } |
+ } else { |
+ size_t start = *tree_size; |
+ repetitions -= 3; |
+ while (BROTLI_TRUE) { |
+ tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH; |
+ extra_bits_data[*tree_size] = repetitions & 0x3; |
+ ++(*tree_size); |
+ repetitions >>= 2; |
+ if (repetitions == 0) { |
+ break; |
+ } |
+ --repetitions; |
+ } |
+ Reverse(tree, start, *tree_size); |
+ Reverse(extra_bits_data, start, *tree_size); |
+ } |
+} |
+ |
+static void BrotliWriteHuffmanTreeRepetitionsZeros( |
+ size_t repetitions, |
+ size_t* tree_size, |
+ uint8_t* tree, |
+ uint8_t* extra_bits_data) { |
+ if (repetitions == 11) { |
+ tree[*tree_size] = 0; |
+ extra_bits_data[*tree_size] = 0; |
+ ++(*tree_size); |
+ --repetitions; |
+ } |
+ if (repetitions < 3) { |
+ size_t i; |
+ for (i = 0; i < repetitions; ++i) { |
+ tree[*tree_size] = 0; |
+ extra_bits_data[*tree_size] = 0; |
+ ++(*tree_size); |
+ } |
+ } else { |
+ size_t start = *tree_size; |
+ repetitions -= 3; |
+ while (BROTLI_TRUE) { |
+ tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH; |
+ extra_bits_data[*tree_size] = repetitions & 0x7; |
+ ++(*tree_size); |
+ repetitions >>= 3; |
+ if (repetitions == 0) { |
+ break; |
+ } |
+ --repetitions; |
+ } |
+ Reverse(tree, start, *tree_size); |
+ Reverse(extra_bits_data, start, *tree_size); |
+ } |
+} |
+ |
+void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts, |
+ uint8_t* good_for_rle) { |
+ size_t nonzero_count = 0; |
+ size_t stride; |
+ size_t limit; |
+ size_t sum; |
+ const size_t streak_limit = 1240; |
+ /* Let's make the Huffman code more compatible with RLE encoding. */ |
+ size_t i; |
+ for (i = 0; i < length; i++) { |
+ if (counts[i]) { |
+ ++nonzero_count; |
+ } |
+ } |
+ if (nonzero_count < 16) { |
+ return; |
+ } |
+ while (length != 0 && counts[length - 1] == 0) { |
+ --length; |
+ } |
+ if (length == 0) { |
+ return; /* All zeros. */ |
+ } |
+ /* Now counts[0..length - 1] does not have trailing zeros. */ |
+ { |
+ size_t nonzeros = 0; |
+ uint32_t smallest_nonzero = 1 << 30; |
+ for (i = 0; i < length; ++i) { |
+ if (counts[i] != 0) { |
+ ++nonzeros; |
+ if (smallest_nonzero > counts[i]) { |
+ smallest_nonzero = counts[i]; |
+ } |
+ } |
+ } |
+ if (nonzeros < 5) { |
+ /* Small histogram will model it well. */ |
+ return; |
+ } |
+ if (smallest_nonzero < 4) { |
+ size_t zeros = length - nonzeros; |
+ if (zeros < 6) { |
+ for (i = 1; i < length - 1; ++i) { |
+ if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) { |
+ counts[i] = 1; |
+ } |
+ } |
+ } |
+ } |
+ if (nonzeros < 28) { |
+ return; |
+ } |
+ } |
+ /* 2) Let's mark all population counts that already can be encoded |
+ with an RLE code. */ |
+ memset(good_for_rle, 0, length); |
+ { |
+ /* Let's not spoil any of the existing good RLE codes. |
+ Mark any seq of 0's that is longer as 5 as a good_for_rle. |
+ Mark any seq of non-0's that is longer as 7 as a good_for_rle. */ |
+ uint32_t symbol = counts[0]; |
+ size_t step = 0; |
+ for (i = 0; i <= length; ++i) { |
+ if (i == length || counts[i] != symbol) { |
+ if ((symbol == 0 && step >= 5) || |
+ (symbol != 0 && step >= 7)) { |
+ size_t k; |
+ for (k = 0; k < step; ++k) { |
+ good_for_rle[i - k - 1] = 1; |
+ } |
+ } |
+ step = 1; |
+ if (i != length) { |
+ symbol = counts[i]; |
+ } |
+ } else { |
+ ++step; |
+ } |
+ } |
+ } |
+ /* 3) Let's replace those population counts that lead to more RLE codes. |
+ Math here is in 24.8 fixed point representation. */ |
+ stride = 0; |
+ limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420; |
+ sum = 0; |
+ for (i = 0; i <= length; ++i) { |
+ if (i == length || good_for_rle[i] || |
+ (i != 0 && good_for_rle[i - 1]) || |
+ (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) { |
+ if (stride >= 4 || (stride >= 3 && sum == 0)) { |
+ size_t k; |
+ /* The stride must end, collapse what we have, if we have enough (4). */ |
+ size_t count = (sum + stride / 2) / stride; |
+ if (count == 0) { |
+ count = 1; |
+ } |
+ if (sum == 0) { |
+ /* Don't make an all zeros stride to be upgraded to ones. */ |
+ count = 0; |
+ } |
+ for (k = 0; k < stride; ++k) { |
+ /* We don't want to change value at counts[i], |
+ that is already belonging to the next stride. Thus - 1. */ |
+ counts[i - k - 1] = (uint32_t)count; |
+ } |
+ } |
+ stride = 0; |
+ sum = 0; |
+ if (i < length - 2) { |
+ /* All interesting strides have a count of at least 4, */ |
+ /* at least when non-zeros. */ |
+ limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420; |
+ } else if (i < length) { |
+ limit = 256 * counts[i]; |
+ } else { |
+ limit = 0; |
+ } |
+ } |
+ ++stride; |
+ if (i != length) { |
+ sum += counts[i]; |
+ if (stride >= 4) { |
+ limit = (256 * sum + stride / 2) / stride; |
+ } |
+ if (stride == 4) { |
+ limit += 120; |
+ } |
+ } |
+ } |
+} |
+ |
+static void DecideOverRleUse(const uint8_t* depth, const size_t length, |
+ BROTLI_BOOL *use_rle_for_non_zero, |
+ BROTLI_BOOL *use_rle_for_zero) { |
+ size_t total_reps_zero = 0; |
+ size_t total_reps_non_zero = 0; |
+ size_t count_reps_zero = 1; |
+ size_t count_reps_non_zero = 1; |
+ size_t i; |
+ for (i = 0; i < length;) { |
+ const uint8_t value = depth[i]; |
+ size_t reps = 1; |
+ size_t k; |
+ for (k = i + 1; k < length && depth[k] == value; ++k) { |
+ ++reps; |
+ } |
+ if (reps >= 3 && value == 0) { |
+ total_reps_zero += reps; |
+ ++count_reps_zero; |
+ } |
+ if (reps >= 4 && value != 0) { |
+ total_reps_non_zero += reps; |
+ ++count_reps_non_zero; |
+ } |
+ i += reps; |
+ } |
+ *use_rle_for_non_zero = |
+ TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2); |
+ *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2); |
+} |
+ |
+void BrotliWriteHuffmanTree(const uint8_t* depth, |
+ size_t length, |
+ size_t* tree_size, |
+ uint8_t* tree, |
+ uint8_t* extra_bits_data) { |
+ uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH; |
+ size_t i; |
+ BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE; |
+ BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE; |
+ |
+ /* Throw away trailing zeros. */ |
+ size_t new_length = length; |
+ for (i = 0; i < length; ++i) { |
+ if (depth[length - i - 1] == 0) { |
+ --new_length; |
+ } else { |
+ break; |
+ } |
+ } |
+ |
+ /* First gather statistics on if it is a good idea to do RLE. */ |
+ if (length > 50) { |
+ /* Find RLE coding for longer codes. |
+ Shorter codes seem not to benefit from RLE. */ |
+ DecideOverRleUse(depth, new_length, |
+ &use_rle_for_non_zero, &use_rle_for_zero); |
+ } |
+ |
+ /* Actual RLE coding. */ |
+ for (i = 0; i < new_length;) { |
+ const uint8_t value = depth[i]; |
+ size_t reps = 1; |
+ if ((value != 0 && use_rle_for_non_zero) || |
+ (value == 0 && use_rle_for_zero)) { |
+ size_t k; |
+ for (k = i + 1; k < new_length && depth[k] == value; ++k) { |
+ ++reps; |
+ } |
+ } |
+ if (value == 0) { |
+ BrotliWriteHuffmanTreeRepetitionsZeros( |
+ reps, tree_size, tree, extra_bits_data); |
+ } else { |
+ BrotliWriteHuffmanTreeRepetitions(previous_value, |
+ value, reps, tree_size, |
+ tree, extra_bits_data); |
+ previous_value = value; |
+ } |
+ i += reps; |
+ } |
+} |
+ |
+static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) { |
+ static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */ |
+ 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
+ 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
+ }; |
+ size_t retval = kLut[bits & 0xf]; |
+ size_t i; |
+ for (i = 4; i < num_bits; i += 4) { |
+ retval <<= 4; |
+ bits = (uint16_t)(bits >> 4); |
+ retval |= kLut[bits & 0xf]; |
+ } |
+ retval >>= ((0 - num_bits) & 0x3); |
+ return (uint16_t)retval; |
+} |
+ |
+/* 0..15 are values for bits */ |
+#define MAX_HUFFMAN_BITS 16 |
+ |
+void BrotliConvertBitDepthsToSymbols(const uint8_t *depth, |
+ size_t len, |
+ uint16_t *bits) { |
+ /* In Brotli, all bit depths are [1..15] |
+ 0 bit depth means that the symbol does not exist. */ |
+ uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 }; |
+ uint16_t next_code[MAX_HUFFMAN_BITS]; |
+ size_t i; |
+ int code = 0; |
+ for (i = 0; i < len; ++i) { |
+ ++bl_count[depth[i]]; |
+ } |
+ bl_count[0] = 0; |
+ next_code[0] = 0; |
+ for (i = 1; i < MAX_HUFFMAN_BITS; ++i) { |
+ code = (code + bl_count[i - 1]) << 1; |
+ next_code[i] = (uint16_t)code; |
+ } |
+ for (i = 0; i < len; ++i) { |
+ if (depth[i]) { |
+ bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++); |
+ } |
+ } |
+} |
+ |
+#if defined(__cplusplus) || defined(c_plusplus) |
+} /* extern "C" */ |
+#endif |