Index: third_party/brotli/enc/cluster_inc.h |
diff --git a/third_party/brotli/enc/cluster_inc.h b/third_party/brotli/enc/cluster_inc.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cf279bdebf034b33753734a784592427418a54fc |
--- /dev/null |
+++ b/third_party/brotli/enc/cluster_inc.h |
@@ -0,0 +1,315 @@ |
+/* NOLINT(build/header_guard) */ |
+/* Copyright 2013 Google Inc. All Rights Reserved. |
+ |
+ Distributed under MIT license. |
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
+*/ |
+ |
+/* template parameters: FN, CODE */ |
+ |
+#define HistogramType FN(Histogram) |
+ |
+/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if |
+ it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */ |
+BROTLI_INTERNAL void FN(BrotliCompareAndPushToQueue)( |
+ const HistogramType* out, const uint32_t* cluster_size, uint32_t idx1, |
+ uint32_t idx2, size_t max_num_pairs, HistogramPair* pairs, |
+ size_t* num_pairs) CODE({ |
+ BROTLI_BOOL is_good_pair = BROTLI_FALSE; |
+ HistogramPair p; |
+ if (idx1 == idx2) { |
+ return; |
+ } |
+ if (idx2 < idx1) { |
+ uint32_t t = idx2; |
+ idx2 = idx1; |
+ idx1 = t; |
+ } |
+ p.idx1 = idx1; |
+ p.idx2 = idx2; |
+ p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]); |
+ p.cost_diff -= out[idx1].bit_cost_; |
+ p.cost_diff -= out[idx2].bit_cost_; |
+ |
+ if (out[idx1].total_count_ == 0) { |
+ p.cost_combo = out[idx2].bit_cost_; |
+ is_good_pair = BROTLI_TRUE; |
+ } else if (out[idx2].total_count_ == 0) { |
+ p.cost_combo = out[idx1].bit_cost_; |
+ is_good_pair = BROTLI_TRUE; |
+ } else { |
+ double threshold = *num_pairs == 0 ? 1e99 : |
+ BROTLI_MAX(double, 0.0, pairs[0].cost_diff); |
+ HistogramType combo = out[idx1]; |
+ double cost_combo; |
+ FN(HistogramAddHistogram)(&combo, &out[idx2]); |
+ cost_combo = FN(BrotliPopulationCost)(&combo); |
+ if (cost_combo < threshold - p.cost_diff) { |
+ p.cost_combo = cost_combo; |
+ is_good_pair = BROTLI_TRUE; |
+ } |
+ } |
+ if (is_good_pair) { |
+ p.cost_diff += p.cost_combo; |
+ if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) { |
+ /* Replace the top of the queue if needed. */ |
+ if (*num_pairs < max_num_pairs) { |
+ pairs[*num_pairs] = pairs[0]; |
+ ++(*num_pairs); |
+ } |
+ pairs[0] = p; |
+ } else if (*num_pairs < max_num_pairs) { |
+ pairs[*num_pairs] = p; |
+ ++(*num_pairs); |
+ } |
+ } |
+}) |
+ |
+BROTLI_INTERNAL size_t FN(BrotliHistogramCombine)(HistogramType* out, |
+ uint32_t* cluster_size, |
+ uint32_t* symbols, |
+ uint32_t* clusters, |
+ HistogramPair* pairs, |
+ size_t num_clusters, |
+ size_t symbols_size, |
+ size_t max_clusters, |
+ size_t max_num_pairs) CODE({ |
+ double cost_diff_threshold = 0.0; |
+ size_t min_cluster_size = 1; |
+ size_t num_pairs = 0; |
+ |
+ { |
+ /* We maintain a vector of histogram pairs, with the property that the pair |
+ with the maximum bit cost reduction is the first. */ |
+ size_t idx1; |
+ for (idx1 = 0; idx1 < num_clusters; ++idx1) { |
+ size_t idx2; |
+ for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) { |
+ FN(BrotliCompareAndPushToQueue)(out, cluster_size, clusters[idx1], |
+ clusters[idx2], max_num_pairs, &pairs[0], &num_pairs); |
+ } |
+ } |
+ } |
+ |
+ while (num_clusters > min_cluster_size) { |
+ uint32_t best_idx1; |
+ uint32_t best_idx2; |
+ size_t i; |
+ if (pairs[0].cost_diff >= cost_diff_threshold) { |
+ cost_diff_threshold = 1e99; |
+ min_cluster_size = max_clusters; |
+ continue; |
+ } |
+ /* Take the best pair from the top of heap. */ |
+ best_idx1 = pairs[0].idx1; |
+ best_idx2 = pairs[0].idx2; |
+ FN(HistogramAddHistogram)(&out[best_idx1], &out[best_idx2]); |
+ out[best_idx1].bit_cost_ = pairs[0].cost_combo; |
+ cluster_size[best_idx1] += cluster_size[best_idx2]; |
+ for (i = 0; i < symbols_size; ++i) { |
+ if (symbols[i] == best_idx2) { |
+ symbols[i] = best_idx1; |
+ } |
+ } |
+ for (i = 0; i < num_clusters; ++i) { |
+ if (clusters[i] == best_idx2) { |
+ memmove(&clusters[i], &clusters[i + 1], |
+ (num_clusters - i - 1) * sizeof(clusters[0])); |
+ break; |
+ } |
+ } |
+ --num_clusters; |
+ { |
+ /* Remove pairs intersecting the just combined best pair. */ |
+ size_t copy_to_idx = 0; |
+ for (i = 0; i < num_pairs; ++i) { |
+ HistogramPair* p = &pairs[i]; |
+ if (p->idx1 == best_idx1 || p->idx2 == best_idx1 || |
+ p->idx1 == best_idx2 || p->idx2 == best_idx2) { |
+ /* Remove invalid pair from the queue. */ |
+ continue; |
+ } |
+ if (HistogramPairIsLess(&pairs[0], p)) { |
+ /* Replace the top of the queue if needed. */ |
+ HistogramPair front = pairs[0]; |
+ pairs[0] = *p; |
+ pairs[copy_to_idx] = front; |
+ } else { |
+ pairs[copy_to_idx] = *p; |
+ } |
+ ++copy_to_idx; |
+ } |
+ num_pairs = copy_to_idx; |
+ } |
+ |
+ /* Push new pairs formed with the combined histogram to the heap. */ |
+ for (i = 0; i < num_clusters; ++i) { |
+ FN(BrotliCompareAndPushToQueue)(out, cluster_size, best_idx1, clusters[i], |
+ max_num_pairs, &pairs[0], &num_pairs); |
+ } |
+ } |
+ return num_clusters; |
+}) |
+ |
+/* What is the bit cost of moving histogram from cur_symbol to candidate. */ |
+BROTLI_INTERNAL double FN(BrotliHistogramBitCostDistance)( |
+ const HistogramType* histogram, const HistogramType* candidate) CODE({ |
+ if (histogram->total_count_ == 0) { |
+ return 0.0; |
+ } else { |
+ HistogramType tmp = *histogram; |
+ FN(HistogramAddHistogram)(&tmp, candidate); |
+ return FN(BrotliPopulationCost)(&tmp) - candidate->bit_cost_; |
+ } |
+}) |
+ |
+/* Find the best 'out' histogram for each of the 'in' histograms. |
+ When called, clusters[0..num_clusters) contains the unique values from |
+ symbols[0..in_size), but this property is not preserved in this function. |
+ Note: we assume that out[]->bit_cost_ is already up-to-date. */ |
+BROTLI_INTERNAL void FN(BrotliHistogramRemap)(const HistogramType* in, |
+ size_t in_size, const uint32_t* clusters, size_t num_clusters, |
+ HistogramType* out, uint32_t* symbols) CODE({ |
+ size_t i; |
+ for (i = 0; i < in_size; ++i) { |
+ uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1]; |
+ double best_bits = |
+ FN(BrotliHistogramBitCostDistance)(&in[i], &out[best_out]); |
+ size_t j; |
+ for (j = 0; j < num_clusters; ++j) { |
+ const double cur_bits = |
+ FN(BrotliHistogramBitCostDistance)(&in[i], &out[clusters[j]]); |
+ if (cur_bits < best_bits) { |
+ best_bits = cur_bits; |
+ best_out = clusters[j]; |
+ } |
+ } |
+ symbols[i] = best_out; |
+ } |
+ |
+ /* Recompute each out based on raw and symbols. */ |
+ for (i = 0; i < num_clusters; ++i) { |
+ FN(HistogramClear)(&out[clusters[i]]); |
+ } |
+ for (i = 0; i < in_size; ++i) { |
+ FN(HistogramAddHistogram)(&out[symbols[i]], &in[i]); |
+ } |
+}) |
+ |
+/* Reorders elements of the out[0..length) array and changes values in |
+ symbols[0..length) array in the following way: |
+ * when called, symbols[] contains indexes into out[], and has N unique |
+ values (possibly N < length) |
+ * on return, symbols'[i] = f(symbols[i]) and |
+ out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length, |
+ where f is a bijection between the range of symbols[] and [0..N), and |
+ the first occurrences of values in symbols'[i] come in consecutive |
+ increasing order. |
+ Returns N, the number of unique values in symbols[]. */ |
+BROTLI_INTERNAL size_t FN(BrotliHistogramReindex)(MemoryManager* m, |
+ HistogramType* out, uint32_t* symbols, size_t length) CODE({ |
+ static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX; |
+ uint32_t* new_index = BROTLI_ALLOC(m, uint32_t, length); |
+ uint32_t next_index; |
+ HistogramType* tmp; |
+ size_t i; |
+ if (BROTLI_IS_OOM(m)) return 0; |
+ for (i = 0; i < length; ++i) { |
+ new_index[i] = kInvalidIndex; |
+ } |
+ next_index = 0; |
+ for (i = 0; i < length; ++i) { |
+ if (new_index[symbols[i]] == kInvalidIndex) { |
+ new_index[symbols[i]] = next_index; |
+ ++next_index; |
+ } |
+ } |
+ /* TODO: by using idea of "cycle-sort" we can avoid allocation of |
+ tmp and reduce the number of copying by the factor of 2. */ |
+ tmp = BROTLI_ALLOC(m, HistogramType, next_index); |
+ if (BROTLI_IS_OOM(m)) return 0; |
+ next_index = 0; |
+ for (i = 0; i < length; ++i) { |
+ if (new_index[symbols[i]] == next_index) { |
+ tmp[next_index] = out[symbols[i]]; |
+ ++next_index; |
+ } |
+ symbols[i] = new_index[symbols[i]]; |
+ } |
+ BROTLI_FREE(m, new_index); |
+ for (i = 0; i < next_index; ++i) { |
+ out[i] = tmp[i]; |
+ } |
+ BROTLI_FREE(m, tmp); |
+ return next_index; |
+}) |
+ |
+BROTLI_INTERNAL void FN(BrotliClusterHistograms)( |
+ MemoryManager* m, const HistogramType* in, const size_t in_size, |
+ size_t max_histograms, HistogramType* out, size_t* out_size, |
+ uint32_t* histogram_symbols) CODE({ |
+ uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, in_size); |
+ uint32_t* clusters = BROTLI_ALLOC(m, uint32_t, in_size); |
+ size_t num_clusters = 0; |
+ const size_t max_input_histograms = 64; |
+ size_t pairs_capacity = max_input_histograms * max_input_histograms / 2; |
+ /* For the first pass of clustering, we allow all pairs. */ |
+ HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity + 1); |
+ size_t i; |
+ |
+ if (BROTLI_IS_OOM(m)) return; |
+ |
+ for (i = 0; i < in_size; ++i) { |
+ cluster_size[i] = 1; |
+ } |
+ |
+ for (i = 0; i < in_size; ++i) { |
+ out[i] = in[i]; |
+ out[i].bit_cost_ = FN(BrotliPopulationCost)(&in[i]); |
+ histogram_symbols[i] = (uint32_t)i; |
+ } |
+ |
+ for (i = 0; i < in_size; i += max_input_histograms) { |
+ size_t num_to_combine = |
+ BROTLI_MIN(size_t, in_size - i, max_input_histograms); |
+ size_t num_new_clusters; |
+ size_t j; |
+ for (j = 0; j < num_to_combine; ++j) { |
+ clusters[num_clusters + j] = (uint32_t)(i + j); |
+ } |
+ num_new_clusters = |
+ FN(BrotliHistogramCombine)(out, cluster_size, |
+ &histogram_symbols[i], |
+ &clusters[num_clusters], pairs, |
+ num_to_combine, num_to_combine, |
+ max_histograms, pairs_capacity); |
+ num_clusters += num_new_clusters; |
+ } |
+ |
+ { |
+ /* For the second pass, we limit the total number of histogram pairs. |
+ After this limit is reached, we only keep searching for the best pair. */ |
+ size_t max_num_pairs = BROTLI_MIN(size_t, |
+ 64 * num_clusters, (num_clusters / 2) * num_clusters); |
+ BROTLI_ENSURE_CAPACITY( |
+ m, HistogramPair, pairs, pairs_capacity, max_num_pairs + 1); |
+ if (BROTLI_IS_OOM(m)) return; |
+ |
+ /* Collapse similar histograms. */ |
+ num_clusters = FN(BrotliHistogramCombine)(out, cluster_size, |
+ histogram_symbols, clusters, |
+ pairs, num_clusters, in_size, |
+ max_histograms, max_num_pairs); |
+ } |
+ BROTLI_FREE(m, pairs); |
+ BROTLI_FREE(m, cluster_size); |
+ /* Find the optimal map from original histograms to the final ones. */ |
+ FN(BrotliHistogramRemap)(in, in_size, clusters, num_clusters, |
+ out, histogram_symbols); |
+ BROTLI_FREE(m, clusters); |
+ /* Convert the context map to a canonical form. */ |
+ *out_size = FN(BrotliHistogramReindex)(m, out, histogram_symbols, in_size); |
+ if (BROTLI_IS_OOM(m)) return; |
+}) |
+ |
+#undef HistogramType |