OLD | NEW |
| (Empty) |
1 /* Copyright 2015 Google Inc. All Rights Reserved. | |
2 | |
3 Distributed under MIT license. | |
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT | |
5 */ | |
6 | |
7 // Function for fast encoding of an input fragment, independently from the input | |
8 // history. This function uses one-pass processing: when we find a backward | |
9 // match, we immediately emit the corresponding command and literal codes to | |
10 // the bit stream. | |
11 // | |
12 // Adapted from the CompressFragment() function in | |
13 // https://github.com/google/snappy/blob/master/snappy.cc | |
14 | |
15 #include "./compress_fragment.h" | |
16 | |
17 #include <algorithm> | |
18 #include <cstring> | |
19 | |
20 #include "./brotli_bit_stream.h" | |
21 #include "./entropy_encode.h" | |
22 #include "./fast_log.h" | |
23 #include "./find_match_length.h" | |
24 #include "./port.h" | |
25 #include "./types.h" | |
26 #include "./write_bits.h" | |
27 | |
28 namespace brotli { | |
29 | |
30 // kHashMul32 multiplier has these properties: | |
31 // * The multiplier must be odd. Otherwise we may lose the highest bit. | |
32 // * No long streaks of 1s or 0s. | |
33 // * There is no effort to ensure that it is a prime, the oddity is enough | |
34 // for this use. | |
35 // * The number has been tuned heuristically against compression benchmarks. | |
36 static const uint32_t kHashMul32 = 0x1e35a7bd; | |
37 | |
38 static inline uint32_t Hash(const uint8_t* p, size_t shift) { | |
39 const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 24) * kHashMul32; | |
40 return static_cast<uint32_t>(h >> shift); | |
41 } | |
42 | |
43 static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) { | |
44 assert(offset >= 0); | |
45 assert(offset <= 3); | |
46 const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32; | |
47 return static_cast<uint32_t>(h >> shift); | |
48 } | |
49 | |
50 static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) { | |
51 return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && | |
52 p1[4] == p2[4]); | |
53 } | |
54 | |
55 // Builds a literal prefix code into "depths" and "bits" based on the statistics | |
56 // of the "input" string and stores it into the bit stream. | |
57 // Note that the prefix code here is built from the pre-LZ77 input, therefore | |
58 // we can only approximate the statistics of the actual literal stream. | |
59 // Moreover, for long inputs we build a histogram from a sample of the input | |
60 // and thus have to assign a non-zero depth for each literal. | |
61 static void BuildAndStoreLiteralPrefixCode(const uint8_t* input, | |
62 const size_t input_size, | |
63 uint8_t depths[256], | |
64 uint16_t bits[256], | |
65 size_t* storage_ix, | |
66 uint8_t* storage) { | |
67 uint32_t histogram[256] = { 0 }; | |
68 size_t histogram_total; | |
69 if (input_size < (1 << 15)) { | |
70 for (size_t i = 0; i < input_size; ++i) { | |
71 ++histogram[input[i]]; | |
72 } | |
73 histogram_total = input_size; | |
74 for (size_t i = 0; i < 256; ++i) { | |
75 // We weigh the first 11 samples with weight 3 to account for the | |
76 // balancing effect of the LZ77 phase on the histogram. | |
77 const uint32_t adjust = 2 * std::min(histogram[i], 11u); | |
78 histogram[i] += adjust; | |
79 histogram_total += adjust; | |
80 } | |
81 } else { | |
82 static const size_t kSampleRate = 29; | |
83 for (size_t i = 0; i < input_size; i += kSampleRate) { | |
84 ++histogram[input[i]]; | |
85 } | |
86 histogram_total = (input_size + kSampleRate - 1) / kSampleRate; | |
87 for (size_t i = 0; i < 256; ++i) { | |
88 // We add 1 to each population count to avoid 0 bit depths (since this is | |
89 // only a sample and we don't know if the symbol appears or not), and we | |
90 // weigh the first 11 samples with weight 3 to account for the balancing | |
91 // effect of the LZ77 phase on the histogram (more frequent symbols are | |
92 // more likely to be in backward references instead as literals). | |
93 const uint32_t adjust = 1 + 2 * std::min(histogram[i], 11u); | |
94 histogram[i] += adjust; | |
95 histogram_total += adjust; | |
96 } | |
97 } | |
98 BuildAndStoreHuffmanTreeFast(histogram, histogram_total, | |
99 /* max_bits = */ 8, | |
100 depths, bits, storage_ix, storage); | |
101 } | |
102 | |
103 // Builds a command and distance prefix code (each 64 symbols) into "depth" and | |
104 // "bits" based on "histogram" and stores it into the bit stream. | |
105 static void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128], | |
106 uint8_t depth[128], | |
107 uint16_t bits[128], | |
108 size_t* storage_ix, | |
109 uint8_t* storage) { | |
110 // Tree size for building a tree over 64 symbols is 2 * 64 + 1. | |
111 static const size_t kTreeSize = 129; | |
112 HuffmanTree tree[kTreeSize]; | |
113 CreateHuffmanTree(histogram, 64, 15, tree, depth); | |
114 CreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]); | |
115 // We have to jump through a few hoopes here in order to compute | |
116 // the command bits because the symbols are in a different order than in | |
117 // the full alphabet. This looks complicated, but having the symbols | |
118 // in this order in the command bits saves a few branches in the Emit* | |
119 // functions. | |
120 uint8_t cmd_depth[64]; | |
121 uint16_t cmd_bits[64]; | |
122 memcpy(cmd_depth, depth, 24); | |
123 memcpy(cmd_depth + 24, depth + 40, 8); | |
124 memcpy(cmd_depth + 32, depth + 24, 8); | |
125 memcpy(cmd_depth + 40, depth + 48, 8); | |
126 memcpy(cmd_depth + 48, depth + 32, 8); | |
127 memcpy(cmd_depth + 56, depth + 56, 8); | |
128 ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); | |
129 memcpy(bits, cmd_bits, 48); | |
130 memcpy(bits + 24, cmd_bits + 32, 16); | |
131 memcpy(bits + 32, cmd_bits + 48, 16); | |
132 memcpy(bits + 40, cmd_bits + 24, 16); | |
133 memcpy(bits + 48, cmd_bits + 40, 16); | |
134 memcpy(bits + 56, cmd_bits + 56, 16); | |
135 ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); | |
136 { | |
137 // Create the bit length array for the full command alphabet. | |
138 uint8_t cmd_depth[704] = { 0 }; | |
139 memcpy(cmd_depth, depth, 8); | |
140 memcpy(cmd_depth + 64, depth + 8, 8); | |
141 memcpy(cmd_depth + 128, depth + 16, 8); | |
142 memcpy(cmd_depth + 192, depth + 24, 8); | |
143 memcpy(cmd_depth + 384, depth + 32, 8); | |
144 for (size_t i = 0; i < 8; ++i) { | |
145 cmd_depth[128 + 8 * i] = depth[40 + i]; | |
146 cmd_depth[256 + 8 * i] = depth[48 + i]; | |
147 cmd_depth[448 + 8 * i] = depth[56 + i]; | |
148 } | |
149 StoreHuffmanTree(cmd_depth, 704, tree, storage_ix, storage); | |
150 } | |
151 StoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage); | |
152 } | |
153 | |
154 // REQUIRES: insertlen < 6210 | |
155 inline void EmitInsertLen(size_t insertlen, | |
156 const uint8_t depth[128], | |
157 const uint16_t bits[128], | |
158 uint32_t histo[128], | |
159 size_t* storage_ix, | |
160 uint8_t* storage) { | |
161 if (insertlen < 6) { | |
162 const size_t code = insertlen + 40; | |
163 WriteBits(depth[code], bits[code], storage_ix, storage); | |
164 ++histo[code]; | |
165 } else if (insertlen < 130) { | |
166 insertlen -= 2; | |
167 const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u; | |
168 const size_t prefix = insertlen >> nbits; | |
169 const size_t inscode = (nbits << 1) + prefix + 42; | |
170 WriteBits(depth[inscode], bits[inscode], storage_ix, storage); | |
171 WriteBits(nbits, insertlen - (prefix << nbits), storage_ix, storage); | |
172 ++histo[inscode]; | |
173 } else if (insertlen < 2114) { | |
174 insertlen -= 66; | |
175 const uint32_t nbits = Log2FloorNonZero(insertlen); | |
176 const size_t code = nbits + 50; | |
177 WriteBits(depth[code], bits[code], storage_ix, storage); | |
178 WriteBits(nbits, insertlen - (1 << nbits), storage_ix, storage); | |
179 ++histo[code]; | |
180 } else { | |
181 WriteBits(depth[61], bits[61], storage_ix, storage); | |
182 WriteBits(12, insertlen - 2114, storage_ix, storage); | |
183 ++histo[21]; | |
184 } | |
185 } | |
186 | |
187 inline void EmitLongInsertLen(size_t insertlen, | |
188 const uint8_t depth[128], | |
189 const uint16_t bits[128], | |
190 uint32_t histo[128], | |
191 size_t* storage_ix, | |
192 uint8_t* storage) { | |
193 if (insertlen < 22594) { | |
194 WriteBits(depth[62], bits[62], storage_ix, storage); | |
195 WriteBits(14, insertlen - 6210, storage_ix, storage); | |
196 ++histo[22]; | |
197 } else { | |
198 WriteBits(depth[63], bits[63], storage_ix, storage); | |
199 WriteBits(24, insertlen - 22594, storage_ix, storage); | |
200 ++histo[23]; | |
201 } | |
202 } | |
203 | |
204 inline void EmitCopyLen(size_t copylen, | |
205 const uint8_t depth[128], | |
206 const uint16_t bits[128], | |
207 uint32_t histo[128], | |
208 size_t* storage_ix, | |
209 uint8_t* storage) { | |
210 if (copylen < 10) { | |
211 WriteBits(depth[copylen + 14], bits[copylen + 14], storage_ix, storage); | |
212 ++histo[copylen + 14]; | |
213 } else if (copylen < 134) { | |
214 copylen -= 6; | |
215 const uint32_t nbits = Log2FloorNonZero(copylen) - 1u; | |
216 const size_t prefix = copylen >> nbits; | |
217 const size_t code = (nbits << 1) + prefix + 20; | |
218 WriteBits(depth[code], bits[code], storage_ix, storage); | |
219 WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage); | |
220 ++histo[code]; | |
221 } else if (copylen < 2118) { | |
222 copylen -= 70; | |
223 const uint32_t nbits = Log2FloorNonZero(copylen); | |
224 const size_t code = nbits + 28; | |
225 WriteBits(depth[code], bits[code], storage_ix, storage); | |
226 WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage); | |
227 ++histo[code]; | |
228 } else { | |
229 WriteBits(depth[39], bits[39], storage_ix, storage); | |
230 WriteBits(24, copylen - 2118, storage_ix, storage); | |
231 ++histo[47]; | |
232 } | |
233 } | |
234 | |
235 inline void EmitCopyLenLastDistance(size_t copylen, | |
236 const uint8_t depth[128], | |
237 const uint16_t bits[128], | |
238 uint32_t histo[128], | |
239 size_t* storage_ix, | |
240 uint8_t* storage) { | |
241 if (copylen < 12) { | |
242 WriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage); | |
243 ++histo[copylen - 4]; | |
244 } else if (copylen < 72) { | |
245 copylen -= 8; | |
246 const uint32_t nbits = Log2FloorNonZero(copylen) - 1; | |
247 const size_t prefix = copylen >> nbits; | |
248 const size_t code = (nbits << 1) + prefix + 4; | |
249 WriteBits(depth[code], bits[code], storage_ix, storage); | |
250 WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage); | |
251 ++histo[code]; | |
252 } else if (copylen < 136) { | |
253 copylen -= 8; | |
254 const size_t code = (copylen >> 5) + 30; | |
255 WriteBits(depth[code], bits[code], storage_ix, storage); | |
256 WriteBits(5, copylen & 31, storage_ix, storage); | |
257 WriteBits(depth[64], bits[64], storage_ix, storage); | |
258 ++histo[code]; | |
259 ++histo[64]; | |
260 } else if (copylen < 2120) { | |
261 copylen -= 72; | |
262 const uint32_t nbits = Log2FloorNonZero(copylen); | |
263 const size_t code = nbits + 28; | |
264 WriteBits(depth[code], bits[code], storage_ix, storage); | |
265 WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage); | |
266 WriteBits(depth[64], bits[64], storage_ix, storage); | |
267 ++histo[code]; | |
268 ++histo[64]; | |
269 } else { | |
270 WriteBits(depth[39], bits[39], storage_ix, storage); | |
271 WriteBits(24, copylen - 2120, storage_ix, storage); | |
272 WriteBits(depth[64], bits[64], storage_ix, storage); | |
273 ++histo[47]; | |
274 ++histo[64]; | |
275 } | |
276 } | |
277 | |
278 inline void EmitDistance(size_t distance, | |
279 const uint8_t depth[128], | |
280 const uint16_t bits[128], | |
281 uint32_t histo[128], | |
282 size_t* storage_ix, uint8_t* storage) { | |
283 distance += 3; | |
284 const uint32_t nbits = Log2FloorNonZero(distance) - 1u; | |
285 const size_t prefix = (distance >> nbits) & 1; | |
286 const size_t offset = (2 + prefix) << nbits; | |
287 const size_t distcode = 2 * (nbits - 1) + prefix + 80; | |
288 WriteBits(depth[distcode], bits[distcode], storage_ix, storage); | |
289 WriteBits(nbits, distance - offset, storage_ix, storage); | |
290 ++histo[distcode]; | |
291 } | |
292 | |
293 inline void EmitLiterals(const uint8_t* input, const size_t len, | |
294 const uint8_t depth[256], const uint16_t bits[256], | |
295 size_t* storage_ix, uint8_t* storage) { | |
296 for (size_t j = 0; j < len; j++) { | |
297 const uint8_t lit = input[j]; | |
298 WriteBits(depth[lit], bits[lit], storage_ix, storage); | |
299 } | |
300 } | |
301 | |
302 // REQUIRES: len <= 1 << 20. | |
303 static void StoreMetaBlockHeader( | |
304 size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) { | |
305 // ISLAST | |
306 WriteBits(1, 0, storage_ix, storage); | |
307 if (len <= (1U << 16)) { | |
308 // MNIBBLES is 4 | |
309 WriteBits(2, 0, storage_ix, storage); | |
310 WriteBits(16, len - 1, storage_ix, storage); | |
311 } else { | |
312 // MNIBBLES is 5 | |
313 WriteBits(2, 1, storage_ix, storage); | |
314 WriteBits(20, len - 1, storage_ix, storage); | |
315 } | |
316 // ISUNCOMPRESSED | |
317 WriteBits(1, is_uncompressed, storage_ix, storage); | |
318 } | |
319 | |
320 static void UpdateBits(size_t n_bits, | |
321 uint32_t bits, | |
322 size_t pos, | |
323 uint8_t *array) { | |
324 while (n_bits > 0) { | |
325 size_t byte_pos = pos >> 3; | |
326 size_t n_unchanged_bits = pos & 7; | |
327 size_t n_changed_bits = std::min(n_bits, 8 - n_unchanged_bits); | |
328 size_t total_bits = n_unchanged_bits + n_changed_bits; | |
329 uint32_t mask = (~((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1); | |
330 uint32_t unchanged_bits = array[byte_pos] & mask; | |
331 uint32_t changed_bits = bits & ((1 << n_changed_bits) - 1); | |
332 array[byte_pos] = | |
333 static_cast<uint8_t>((changed_bits << n_unchanged_bits) | | |
334 unchanged_bits); | |
335 n_bits -= n_changed_bits; | |
336 bits >>= n_changed_bits; | |
337 pos += n_changed_bits; | |
338 } | |
339 } | |
340 | |
341 static void RewindBitPosition(const size_t new_storage_ix, | |
342 size_t* storage_ix, uint8_t* storage) { | |
343 const size_t bitpos = new_storage_ix & 7; | |
344 const size_t mask = (1u << bitpos) - 1; | |
345 storage[new_storage_ix >> 3] &= static_cast<uint8_t>(mask); | |
346 *storage_ix = new_storage_ix; | |
347 } | |
348 | |
349 static bool ShouldMergeBlock(const uint8_t* data, size_t len, | |
350 const uint8_t* depths) { | |
351 size_t histo[256] = { 0 }; | |
352 static const size_t kSampleRate = 43; | |
353 for (size_t i = 0; i < len; i += kSampleRate) { | |
354 ++histo[data[i]]; | |
355 } | |
356 const size_t total = (len + kSampleRate - 1) / kSampleRate; | |
357 double r = (FastLog2(total) + 0.5) * static_cast<double>(total) + 200; | |
358 for (size_t i = 0; i < 256; ++i) { | |
359 r -= static_cast<double>(histo[i]) * (depths[i] + FastLog2(histo[i])); | |
360 } | |
361 return r >= 0.0; | |
362 } | |
363 | |
364 inline bool ShouldUseUncompressedMode(const uint8_t* metablock_start, | |
365 const uint8_t* next_emit, | |
366 const size_t insertlen, | |
367 const uint8_t literal_depths[256]) { | |
368 const size_t compressed = static_cast<size_t>(next_emit - metablock_start); | |
369 if (compressed * 50 > insertlen) { | |
370 return false; | |
371 } | |
372 static const double kAcceptableLossForUncompressibleSpeedup = 0.02; | |
373 static const double kMinEntropy = | |
374 8 * (1.0 - kAcceptableLossForUncompressibleSpeedup); | |
375 uint32_t sum = 0; | |
376 for (int i = 0; i < 256; ++i) { | |
377 const uint32_t n = literal_depths[i]; | |
378 sum += n << (15 - n); | |
379 } | |
380 return sum > static_cast<uint32_t>((1 << 15) * kMinEntropy); | |
381 } | |
382 | |
383 static void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end, | |
384 const size_t storage_ix_start, | |
385 size_t* storage_ix, uint8_t* storage) { | |
386 const size_t len = static_cast<size_t>(end - begin); | |
387 RewindBitPosition(storage_ix_start, storage_ix, storage); | |
388 StoreMetaBlockHeader(len, 1, storage_ix, storage); | |
389 *storage_ix = (*storage_ix + 7u) & ~7u; | |
390 memcpy(&storage[*storage_ix >> 3], begin, len); | |
391 *storage_ix += len << 3; | |
392 storage[*storage_ix >> 3] = 0; | |
393 } | |
394 | |
395 void BrotliCompressFragmentFast(const uint8_t* input, size_t input_size, | |
396 bool is_last, | |
397 int* table, size_t table_size, | |
398 uint8_t cmd_depth[128], uint16_t cmd_bits[128], | |
399 size_t* cmd_code_numbits, uint8_t* cmd_code, | |
400 size_t* storage_ix, uint8_t* storage) { | |
401 if (input_size == 0) { | |
402 assert(is_last); | |
403 WriteBits(1, 1, storage_ix, storage); // islast | |
404 WriteBits(1, 1, storage_ix, storage); // isempty | |
405 *storage_ix = (*storage_ix + 7u) & ~7u; | |
406 return; | |
407 } | |
408 | |
409 // "next_emit" is a pointer to the first byte that is not covered by a | |
410 // previous copy. Bytes between "next_emit" and the start of the next copy or | |
411 // the end of the input will be emitted as literal bytes. | |
412 const uint8_t* next_emit = input; | |
413 // Save the start of the first block for position and distance computations. | |
414 const uint8_t* base_ip = input; | |
415 | |
416 static const size_t kFirstBlockSize = 3 << 15; | |
417 static const size_t kMergeBlockSize = 1 << 16; | |
418 | |
419 const uint8_t* metablock_start = input; | |
420 size_t block_size = std::min(input_size, kFirstBlockSize); | |
421 size_t total_block_size = block_size; | |
422 // Save the bit position of the MLEN field of the meta-block header, so that | |
423 // we can update it later if we decide to extend this meta-block. | |
424 size_t mlen_storage_ix = *storage_ix + 3; | |
425 StoreMetaBlockHeader(block_size, 0, storage_ix, storage); | |
426 // No block splits, no contexts. | |
427 WriteBits(13, 0, storage_ix, storage); | |
428 | |
429 uint8_t lit_depth[256] = { 0 }; | |
430 uint16_t lit_bits[256] = { 0 }; | |
431 BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits, | |
432 storage_ix, storage); | |
433 | |
434 // Store the pre-compressed command and distance prefix codes. | |
435 for (size_t i = 0; i + 7 < *cmd_code_numbits; i += 8) { | |
436 WriteBits(8, cmd_code[i >> 3], storage_ix, storage); | |
437 } | |
438 WriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3], | |
439 storage_ix, storage); | |
440 | |
441 emit_commands: | |
442 // Initialize the command and distance histograms. We will gather | |
443 // statistics of command and distance codes during the processing | |
444 // of this block and use it to update the command and distance | |
445 // prefix codes for the next block. | |
446 uint32_t cmd_histo[128] = { | |
447 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, | |
448 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, | |
449 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, | |
450 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
451 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
452 1, 1, 1, 1, 0, 0, 0, 0, | |
453 }; | |
454 | |
455 // "ip" is the input pointer. | |
456 const uint8_t* ip = input; | |
457 assert(table_size); | |
458 assert(table_size <= (1u << 31)); | |
459 assert((table_size & (table_size - 1)) == 0); // table must be power of two | |
460 const size_t shift = 64u - Log2FloorNonZero(table_size); | |
461 assert(table_size - 1 == static_cast<size_t>( | |
462 MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift)); | |
463 const uint8_t* ip_end = input + block_size; | |
464 | |
465 int last_distance = -1; | |
466 const size_t kInputMarginBytes = 16; | |
467 const size_t kMinMatchLen = 5; | |
468 if (PREDICT_TRUE(block_size >= kInputMarginBytes)) { | |
469 // For the last block, we need to keep a 16 bytes margin so that we can be | |
470 // sure that all distances are at most window size - 16. | |
471 // For all other blocks, we only need to keep a margin of 5 bytes so that | |
472 // we don't go over the block size with a copy. | |
473 const size_t len_limit = std::min(block_size - kMinMatchLen, | |
474 input_size - kInputMarginBytes); | |
475 const uint8_t* ip_limit = input + len_limit; | |
476 | |
477 for (uint32_t next_hash = Hash(++ip, shift); ; ) { | |
478 assert(next_emit < ip); | |
479 // Step 1: Scan forward in the input looking for a 5-byte-long match. | |
480 // If we get close to exhausting the input then goto emit_remainder. | |
481 // | |
482 // Heuristic match skipping: If 32 bytes are scanned with no matches | |
483 // found, start looking only at every other byte. If 32 more bytes are | |
484 // scanned, look at every third byte, etc.. When a match is found, | |
485 // immediately go back to looking at every byte. This is a small loss | |
486 // (~5% performance, ~0.1% density) for compressible data due to more | |
487 // bookkeeping, but for non-compressible data (such as JPEG) it's a huge | |
488 // win since the compressor quickly "realizes" the data is incompressible | |
489 // and doesn't bother looking for matches everywhere. | |
490 // | |
491 // The "skip" variable keeps track of how many bytes there are since the | |
492 // last match; dividing it by 32 (ie. right-shifting by five) gives the | |
493 // number of bytes to move ahead for each iteration. | |
494 uint32_t skip = 32; | |
495 | |
496 const uint8_t* next_ip = ip; | |
497 const uint8_t* candidate; | |
498 do { | |
499 ip = next_ip; | |
500 uint32_t hash = next_hash; | |
501 assert(hash == Hash(ip, shift)); | |
502 uint32_t bytes_between_hash_lookups = skip++ >> 5; | |
503 next_ip = ip + bytes_between_hash_lookups; | |
504 if (PREDICT_FALSE(next_ip > ip_limit)) { | |
505 goto emit_remainder; | |
506 } | |
507 next_hash = Hash(next_ip, shift); | |
508 candidate = ip - last_distance; | |
509 if (IsMatch(ip, candidate)) { | |
510 if (PREDICT_TRUE(candidate < ip)) { | |
511 table[hash] = static_cast<int>(ip - base_ip); | |
512 break; | |
513 } | |
514 } | |
515 candidate = base_ip + table[hash]; | |
516 assert(candidate >= base_ip); | |
517 assert(candidate < ip); | |
518 | |
519 table[hash] = static_cast<int>(ip - base_ip); | |
520 } while (PREDICT_TRUE(!IsMatch(ip, candidate))); | |
521 | |
522 // Step 2: Emit the found match together with the literal bytes from | |
523 // "next_emit" to the bit stream, and then see if we can find a next macth | |
524 // immediately afterwards. Repeat until we find no match for the input | |
525 // without emitting some literal bytes. | |
526 uint64_t input_bytes; | |
527 | |
528 { | |
529 // We have a 5-byte match at ip, and we need to emit bytes in | |
530 // [next_emit, ip). | |
531 const uint8_t* base = ip; | |
532 size_t matched = 5 + FindMatchLengthWithLimit( | |
533 candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5); | |
534 ip += matched; | |
535 int distance = static_cast<int>(base - candidate); /* > 0 */ | |
536 size_t insert = static_cast<size_t>(base - next_emit); | |
537 assert(0 == memcmp(base, candidate, matched)); | |
538 if (PREDICT_TRUE(insert < 6210)) { | |
539 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, | |
540 storage_ix, storage); | |
541 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, | |
542 lit_depth)) { | |
543 EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3, | |
544 storage_ix, storage); | |
545 input_size -= static_cast<size_t>(base - input); | |
546 input = base; | |
547 next_emit = input; | |
548 goto next_block; | |
549 } else { | |
550 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, | |
551 storage_ix, storage); | |
552 } | |
553 EmitLiterals(next_emit, insert, lit_depth, lit_bits, | |
554 storage_ix, storage); | |
555 if (distance == last_distance) { | |
556 WriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage); | |
557 ++cmd_histo[64]; | |
558 } else { | |
559 EmitDistance(static_cast<size_t>(distance), cmd_depth, cmd_bits, | |
560 cmd_histo, storage_ix, storage); | |
561 last_distance = distance; | |
562 } | |
563 EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo, | |
564 storage_ix, storage); | |
565 | |
566 next_emit = ip; | |
567 if (PREDICT_FALSE(ip >= ip_limit)) { | |
568 goto emit_remainder; | |
569 } | |
570 // We could immediately start working at ip now, but to improve | |
571 // compression we first update "table" with the hashes of some positions | |
572 // within the last copy. | |
573 input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); | |
574 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); | |
575 table[prev_hash] = static_cast<int>(ip - base_ip - 3); | |
576 prev_hash = HashBytesAtOffset(input_bytes, 1, shift); | |
577 table[prev_hash] = static_cast<int>(ip - base_ip - 2); | |
578 prev_hash = HashBytesAtOffset(input_bytes, 2, shift); | |
579 table[prev_hash] = static_cast<int>(ip - base_ip - 1); | |
580 | |
581 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); | |
582 candidate = base_ip + table[cur_hash]; | |
583 table[cur_hash] = static_cast<int>(ip - base_ip); | |
584 } | |
585 | |
586 while (IsMatch(ip, candidate)) { | |
587 // We have a 5-byte match at ip, and no need to emit any literal bytes | |
588 // prior to ip. | |
589 const uint8_t* base = ip; | |
590 size_t matched = 5 + FindMatchLengthWithLimit( | |
591 candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5); | |
592 ip += matched; | |
593 last_distance = static_cast<int>(base - candidate); /* > 0 */ | |
594 assert(0 == memcmp(base, candidate, matched)); | |
595 EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo, | |
596 storage_ix, storage); | |
597 EmitDistance(static_cast<size_t>(last_distance), cmd_depth, cmd_bits, | |
598 cmd_histo, storage_ix, storage); | |
599 | |
600 next_emit = ip; | |
601 if (PREDICT_FALSE(ip >= ip_limit)) { | |
602 goto emit_remainder; | |
603 } | |
604 // We could immediately start working at ip now, but to improve | |
605 // compression we first update "table" with the hashes of some positions | |
606 // within the last copy. | |
607 input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); | |
608 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); | |
609 table[prev_hash] = static_cast<int>(ip - base_ip - 3); | |
610 prev_hash = HashBytesAtOffset(input_bytes, 1, shift); | |
611 table[prev_hash] = static_cast<int>(ip - base_ip - 2); | |
612 prev_hash = HashBytesAtOffset(input_bytes, 2, shift); | |
613 table[prev_hash] = static_cast<int>(ip - base_ip - 1); | |
614 | |
615 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); | |
616 candidate = base_ip + table[cur_hash]; | |
617 table[cur_hash] = static_cast<int>(ip - base_ip); | |
618 } | |
619 | |
620 next_hash = Hash(++ip, shift); | |
621 } | |
622 } | |
623 | |
624 emit_remainder: | |
625 assert(next_emit <= ip_end); | |
626 input += block_size; | |
627 input_size -= block_size; | |
628 block_size = std::min(input_size, kMergeBlockSize); | |
629 | |
630 // Decide if we want to continue this meta-block instead of emitting the | |
631 // last insert-only command. | |
632 if (input_size > 0 && | |
633 total_block_size + block_size <= (1 << 20) && | |
634 ShouldMergeBlock(input, block_size, lit_depth)) { | |
635 assert(total_block_size > (1 << 16)); | |
636 // Update the size of the current meta-block and continue emitting commands. | |
637 // We can do this because the current size and the new size both have 5 | |
638 // nibbles. | |
639 total_block_size += block_size; | |
640 UpdateBits(20, static_cast<uint32_t>(total_block_size - 1), | |
641 mlen_storage_ix, storage); | |
642 goto emit_commands; | |
643 } | |
644 | |
645 // Emit the remaining bytes as literals. | |
646 if (next_emit < ip_end) { | |
647 const size_t insert = static_cast<size_t>(ip_end - next_emit); | |
648 if (PREDICT_TRUE(insert < 6210)) { | |
649 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, | |
650 storage_ix, storage); | |
651 EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage); | |
652 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, | |
653 lit_depth)) { | |
654 EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3, | |
655 storage_ix, storage); | |
656 } else { | |
657 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, | |
658 storage_ix, storage); | |
659 EmitLiterals(next_emit, insert, lit_depth, lit_bits, | |
660 storage_ix, storage); | |
661 } | |
662 } | |
663 next_emit = ip_end; | |
664 | |
665 next_block: | |
666 // If we have more data, write a new meta-block header and prefix codes and | |
667 // then continue emitting commands. | |
668 if (input_size > 0) { | |
669 metablock_start = input; | |
670 block_size = std::min(input_size, kFirstBlockSize); | |
671 total_block_size = block_size; | |
672 // Save the bit position of the MLEN field of the meta-block header, so that | |
673 // we can update it later if we decide to extend this meta-block. | |
674 mlen_storage_ix = *storage_ix + 3; | |
675 StoreMetaBlockHeader(block_size, 0, storage_ix, storage); | |
676 // No block splits, no contexts. | |
677 WriteBits(13, 0, storage_ix, storage); | |
678 memset(lit_depth, 0, sizeof(lit_depth)); | |
679 memset(lit_bits, 0, sizeof(lit_bits)); | |
680 BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits, | |
681 storage_ix, storage); | |
682 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, | |
683 storage_ix, storage); | |
684 goto emit_commands; | |
685 } | |
686 | |
687 if (is_last) { | |
688 WriteBits(1, 1, storage_ix, storage); // islast | |
689 WriteBits(1, 1, storage_ix, storage); // isempty | |
690 *storage_ix = (*storage_ix + 7u) & ~7u; | |
691 } else { | |
692 // If this is not the last block, update the command and distance prefix | |
693 // codes for the next block and store the compressed forms. | |
694 cmd_code[0] = 0; | |
695 *cmd_code_numbits = 0; | |
696 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, | |
697 cmd_code_numbits, cmd_code); | |
698 } | |
699 } | |
700 | |
701 } // namespace brotli | |
OLD | NEW |