Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(330)

Side by Side Diff: third_party/brotli/enc/compress_fragment.cc

Issue 2537133002: Update brotli to v1.0.0-snapshot. (Closed)
Patch Set: Fixed typo Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /* Copyright 2015 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 // Function for fast encoding of an input fragment, independently from the input
8 // history. This function uses one-pass processing: when we find a backward
9 // match, we immediately emit the corresponding command and literal codes to
10 // the bit stream.
11 //
12 // Adapted from the CompressFragment() function in
13 // https://github.com/google/snappy/blob/master/snappy.cc
14
15 #include "./compress_fragment.h"
16
17 #include <algorithm>
18 #include <cstring>
19
20 #include "./brotli_bit_stream.h"
21 #include "./entropy_encode.h"
22 #include "./fast_log.h"
23 #include "./find_match_length.h"
24 #include "./port.h"
25 #include "./types.h"
26 #include "./write_bits.h"
27
28 namespace brotli {
29
30 // kHashMul32 multiplier has these properties:
31 // * The multiplier must be odd. Otherwise we may lose the highest bit.
32 // * No long streaks of 1s or 0s.
33 // * There is no effort to ensure that it is a prime, the oddity is enough
34 // for this use.
35 // * The number has been tuned heuristically against compression benchmarks.
36 static const uint32_t kHashMul32 = 0x1e35a7bd;
37
38 static inline uint32_t Hash(const uint8_t* p, size_t shift) {
39 const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 24) * kHashMul32;
40 return static_cast<uint32_t>(h >> shift);
41 }
42
43 static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) {
44 assert(offset >= 0);
45 assert(offset <= 3);
46 const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32;
47 return static_cast<uint32_t>(h >> shift);
48 }
49
50 static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) {
51 return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) &&
52 p1[4] == p2[4]);
53 }
54
55 // Builds a literal prefix code into "depths" and "bits" based on the statistics
56 // of the "input" string and stores it into the bit stream.
57 // Note that the prefix code here is built from the pre-LZ77 input, therefore
58 // we can only approximate the statistics of the actual literal stream.
59 // Moreover, for long inputs we build a histogram from a sample of the input
60 // and thus have to assign a non-zero depth for each literal.
61 static void BuildAndStoreLiteralPrefixCode(const uint8_t* input,
62 const size_t input_size,
63 uint8_t depths[256],
64 uint16_t bits[256],
65 size_t* storage_ix,
66 uint8_t* storage) {
67 uint32_t histogram[256] = { 0 };
68 size_t histogram_total;
69 if (input_size < (1 << 15)) {
70 for (size_t i = 0; i < input_size; ++i) {
71 ++histogram[input[i]];
72 }
73 histogram_total = input_size;
74 for (size_t i = 0; i < 256; ++i) {
75 // We weigh the first 11 samples with weight 3 to account for the
76 // balancing effect of the LZ77 phase on the histogram.
77 const uint32_t adjust = 2 * std::min(histogram[i], 11u);
78 histogram[i] += adjust;
79 histogram_total += adjust;
80 }
81 } else {
82 static const size_t kSampleRate = 29;
83 for (size_t i = 0; i < input_size; i += kSampleRate) {
84 ++histogram[input[i]];
85 }
86 histogram_total = (input_size + kSampleRate - 1) / kSampleRate;
87 for (size_t i = 0; i < 256; ++i) {
88 // We add 1 to each population count to avoid 0 bit depths (since this is
89 // only a sample and we don't know if the symbol appears or not), and we
90 // weigh the first 11 samples with weight 3 to account for the balancing
91 // effect of the LZ77 phase on the histogram (more frequent symbols are
92 // more likely to be in backward references instead as literals).
93 const uint32_t adjust = 1 + 2 * std::min(histogram[i], 11u);
94 histogram[i] += adjust;
95 histogram_total += adjust;
96 }
97 }
98 BuildAndStoreHuffmanTreeFast(histogram, histogram_total,
99 /* max_bits = */ 8,
100 depths, bits, storage_ix, storage);
101 }
102
103 // Builds a command and distance prefix code (each 64 symbols) into "depth" and
104 // "bits" based on "histogram" and stores it into the bit stream.
105 static void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128],
106 uint8_t depth[128],
107 uint16_t bits[128],
108 size_t* storage_ix,
109 uint8_t* storage) {
110 // Tree size for building a tree over 64 symbols is 2 * 64 + 1.
111 static const size_t kTreeSize = 129;
112 HuffmanTree tree[kTreeSize];
113 CreateHuffmanTree(histogram, 64, 15, tree, depth);
114 CreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
115 // We have to jump through a few hoopes here in order to compute
116 // the command bits because the symbols are in a different order than in
117 // the full alphabet. This looks complicated, but having the symbols
118 // in this order in the command bits saves a few branches in the Emit*
119 // functions.
120 uint8_t cmd_depth[64];
121 uint16_t cmd_bits[64];
122 memcpy(cmd_depth, depth, 24);
123 memcpy(cmd_depth + 24, depth + 40, 8);
124 memcpy(cmd_depth + 32, depth + 24, 8);
125 memcpy(cmd_depth + 40, depth + 48, 8);
126 memcpy(cmd_depth + 48, depth + 32, 8);
127 memcpy(cmd_depth + 56, depth + 56, 8);
128 ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
129 memcpy(bits, cmd_bits, 48);
130 memcpy(bits + 24, cmd_bits + 32, 16);
131 memcpy(bits + 32, cmd_bits + 48, 16);
132 memcpy(bits + 40, cmd_bits + 24, 16);
133 memcpy(bits + 48, cmd_bits + 40, 16);
134 memcpy(bits + 56, cmd_bits + 56, 16);
135 ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
136 {
137 // Create the bit length array for the full command alphabet.
138 uint8_t cmd_depth[704] = { 0 };
139 memcpy(cmd_depth, depth, 8);
140 memcpy(cmd_depth + 64, depth + 8, 8);
141 memcpy(cmd_depth + 128, depth + 16, 8);
142 memcpy(cmd_depth + 192, depth + 24, 8);
143 memcpy(cmd_depth + 384, depth + 32, 8);
144 for (size_t i = 0; i < 8; ++i) {
145 cmd_depth[128 + 8 * i] = depth[40 + i];
146 cmd_depth[256 + 8 * i] = depth[48 + i];
147 cmd_depth[448 + 8 * i] = depth[56 + i];
148 }
149 StoreHuffmanTree(cmd_depth, 704, tree, storage_ix, storage);
150 }
151 StoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage);
152 }
153
154 // REQUIRES: insertlen < 6210
155 inline void EmitInsertLen(size_t insertlen,
156 const uint8_t depth[128],
157 const uint16_t bits[128],
158 uint32_t histo[128],
159 size_t* storage_ix,
160 uint8_t* storage) {
161 if (insertlen < 6) {
162 const size_t code = insertlen + 40;
163 WriteBits(depth[code], bits[code], storage_ix, storage);
164 ++histo[code];
165 } else if (insertlen < 130) {
166 insertlen -= 2;
167 const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u;
168 const size_t prefix = insertlen >> nbits;
169 const size_t inscode = (nbits << 1) + prefix + 42;
170 WriteBits(depth[inscode], bits[inscode], storage_ix, storage);
171 WriteBits(nbits, insertlen - (prefix << nbits), storage_ix, storage);
172 ++histo[inscode];
173 } else if (insertlen < 2114) {
174 insertlen -= 66;
175 const uint32_t nbits = Log2FloorNonZero(insertlen);
176 const size_t code = nbits + 50;
177 WriteBits(depth[code], bits[code], storage_ix, storage);
178 WriteBits(nbits, insertlen - (1 << nbits), storage_ix, storage);
179 ++histo[code];
180 } else {
181 WriteBits(depth[61], bits[61], storage_ix, storage);
182 WriteBits(12, insertlen - 2114, storage_ix, storage);
183 ++histo[21];
184 }
185 }
186
187 inline void EmitLongInsertLen(size_t insertlen,
188 const uint8_t depth[128],
189 const uint16_t bits[128],
190 uint32_t histo[128],
191 size_t* storage_ix,
192 uint8_t* storage) {
193 if (insertlen < 22594) {
194 WriteBits(depth[62], bits[62], storage_ix, storage);
195 WriteBits(14, insertlen - 6210, storage_ix, storage);
196 ++histo[22];
197 } else {
198 WriteBits(depth[63], bits[63], storage_ix, storage);
199 WriteBits(24, insertlen - 22594, storage_ix, storage);
200 ++histo[23];
201 }
202 }
203
204 inline void EmitCopyLen(size_t copylen,
205 const uint8_t depth[128],
206 const uint16_t bits[128],
207 uint32_t histo[128],
208 size_t* storage_ix,
209 uint8_t* storage) {
210 if (copylen < 10) {
211 WriteBits(depth[copylen + 14], bits[copylen + 14], storage_ix, storage);
212 ++histo[copylen + 14];
213 } else if (copylen < 134) {
214 copylen -= 6;
215 const uint32_t nbits = Log2FloorNonZero(copylen) - 1u;
216 const size_t prefix = copylen >> nbits;
217 const size_t code = (nbits << 1) + prefix + 20;
218 WriteBits(depth[code], bits[code], storage_ix, storage);
219 WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage);
220 ++histo[code];
221 } else if (copylen < 2118) {
222 copylen -= 70;
223 const uint32_t nbits = Log2FloorNonZero(copylen);
224 const size_t code = nbits + 28;
225 WriteBits(depth[code], bits[code], storage_ix, storage);
226 WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage);
227 ++histo[code];
228 } else {
229 WriteBits(depth[39], bits[39], storage_ix, storage);
230 WriteBits(24, copylen - 2118, storage_ix, storage);
231 ++histo[47];
232 }
233 }
234
235 inline void EmitCopyLenLastDistance(size_t copylen,
236 const uint8_t depth[128],
237 const uint16_t bits[128],
238 uint32_t histo[128],
239 size_t* storage_ix,
240 uint8_t* storage) {
241 if (copylen < 12) {
242 WriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage);
243 ++histo[copylen - 4];
244 } else if (copylen < 72) {
245 copylen -= 8;
246 const uint32_t nbits = Log2FloorNonZero(copylen) - 1;
247 const size_t prefix = copylen >> nbits;
248 const size_t code = (nbits << 1) + prefix + 4;
249 WriteBits(depth[code], bits[code], storage_ix, storage);
250 WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage);
251 ++histo[code];
252 } else if (copylen < 136) {
253 copylen -= 8;
254 const size_t code = (copylen >> 5) + 30;
255 WriteBits(depth[code], bits[code], storage_ix, storage);
256 WriteBits(5, copylen & 31, storage_ix, storage);
257 WriteBits(depth[64], bits[64], storage_ix, storage);
258 ++histo[code];
259 ++histo[64];
260 } else if (copylen < 2120) {
261 copylen -= 72;
262 const uint32_t nbits = Log2FloorNonZero(copylen);
263 const size_t code = nbits + 28;
264 WriteBits(depth[code], bits[code], storage_ix, storage);
265 WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage);
266 WriteBits(depth[64], bits[64], storage_ix, storage);
267 ++histo[code];
268 ++histo[64];
269 } else {
270 WriteBits(depth[39], bits[39], storage_ix, storage);
271 WriteBits(24, copylen - 2120, storage_ix, storage);
272 WriteBits(depth[64], bits[64], storage_ix, storage);
273 ++histo[47];
274 ++histo[64];
275 }
276 }
277
278 inline void EmitDistance(size_t distance,
279 const uint8_t depth[128],
280 const uint16_t bits[128],
281 uint32_t histo[128],
282 size_t* storage_ix, uint8_t* storage) {
283 distance += 3;
284 const uint32_t nbits = Log2FloorNonZero(distance) - 1u;
285 const size_t prefix = (distance >> nbits) & 1;
286 const size_t offset = (2 + prefix) << nbits;
287 const size_t distcode = 2 * (nbits - 1) + prefix + 80;
288 WriteBits(depth[distcode], bits[distcode], storage_ix, storage);
289 WriteBits(nbits, distance - offset, storage_ix, storage);
290 ++histo[distcode];
291 }
292
293 inline void EmitLiterals(const uint8_t* input, const size_t len,
294 const uint8_t depth[256], const uint16_t bits[256],
295 size_t* storage_ix, uint8_t* storage) {
296 for (size_t j = 0; j < len; j++) {
297 const uint8_t lit = input[j];
298 WriteBits(depth[lit], bits[lit], storage_ix, storage);
299 }
300 }
301
302 // REQUIRES: len <= 1 << 20.
303 static void StoreMetaBlockHeader(
304 size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) {
305 // ISLAST
306 WriteBits(1, 0, storage_ix, storage);
307 if (len <= (1U << 16)) {
308 // MNIBBLES is 4
309 WriteBits(2, 0, storage_ix, storage);
310 WriteBits(16, len - 1, storage_ix, storage);
311 } else {
312 // MNIBBLES is 5
313 WriteBits(2, 1, storage_ix, storage);
314 WriteBits(20, len - 1, storage_ix, storage);
315 }
316 // ISUNCOMPRESSED
317 WriteBits(1, is_uncompressed, storage_ix, storage);
318 }
319
320 static void UpdateBits(size_t n_bits,
321 uint32_t bits,
322 size_t pos,
323 uint8_t *array) {
324 while (n_bits > 0) {
325 size_t byte_pos = pos >> 3;
326 size_t n_unchanged_bits = pos & 7;
327 size_t n_changed_bits = std::min(n_bits, 8 - n_unchanged_bits);
328 size_t total_bits = n_unchanged_bits + n_changed_bits;
329 uint32_t mask = (~((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1);
330 uint32_t unchanged_bits = array[byte_pos] & mask;
331 uint32_t changed_bits = bits & ((1 << n_changed_bits) - 1);
332 array[byte_pos] =
333 static_cast<uint8_t>((changed_bits << n_unchanged_bits) |
334 unchanged_bits);
335 n_bits -= n_changed_bits;
336 bits >>= n_changed_bits;
337 pos += n_changed_bits;
338 }
339 }
340
341 static void RewindBitPosition(const size_t new_storage_ix,
342 size_t* storage_ix, uint8_t* storage) {
343 const size_t bitpos = new_storage_ix & 7;
344 const size_t mask = (1u << bitpos) - 1;
345 storage[new_storage_ix >> 3] &= static_cast<uint8_t>(mask);
346 *storage_ix = new_storage_ix;
347 }
348
349 static bool ShouldMergeBlock(const uint8_t* data, size_t len,
350 const uint8_t* depths) {
351 size_t histo[256] = { 0 };
352 static const size_t kSampleRate = 43;
353 for (size_t i = 0; i < len; i += kSampleRate) {
354 ++histo[data[i]];
355 }
356 const size_t total = (len + kSampleRate - 1) / kSampleRate;
357 double r = (FastLog2(total) + 0.5) * static_cast<double>(total) + 200;
358 for (size_t i = 0; i < 256; ++i) {
359 r -= static_cast<double>(histo[i]) * (depths[i] + FastLog2(histo[i]));
360 }
361 return r >= 0.0;
362 }
363
364 inline bool ShouldUseUncompressedMode(const uint8_t* metablock_start,
365 const uint8_t* next_emit,
366 const size_t insertlen,
367 const uint8_t literal_depths[256]) {
368 const size_t compressed = static_cast<size_t>(next_emit - metablock_start);
369 if (compressed * 50 > insertlen) {
370 return false;
371 }
372 static const double kAcceptableLossForUncompressibleSpeedup = 0.02;
373 static const double kMinEntropy =
374 8 * (1.0 - kAcceptableLossForUncompressibleSpeedup);
375 uint32_t sum = 0;
376 for (int i = 0; i < 256; ++i) {
377 const uint32_t n = literal_depths[i];
378 sum += n << (15 - n);
379 }
380 return sum > static_cast<uint32_t>((1 << 15) * kMinEntropy);
381 }
382
383 static void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end,
384 const size_t storage_ix_start,
385 size_t* storage_ix, uint8_t* storage) {
386 const size_t len = static_cast<size_t>(end - begin);
387 RewindBitPosition(storage_ix_start, storage_ix, storage);
388 StoreMetaBlockHeader(len, 1, storage_ix, storage);
389 *storage_ix = (*storage_ix + 7u) & ~7u;
390 memcpy(&storage[*storage_ix >> 3], begin, len);
391 *storage_ix += len << 3;
392 storage[*storage_ix >> 3] = 0;
393 }
394
395 void BrotliCompressFragmentFast(const uint8_t* input, size_t input_size,
396 bool is_last,
397 int* table, size_t table_size,
398 uint8_t cmd_depth[128], uint16_t cmd_bits[128],
399 size_t* cmd_code_numbits, uint8_t* cmd_code,
400 size_t* storage_ix, uint8_t* storage) {
401 if (input_size == 0) {
402 assert(is_last);
403 WriteBits(1, 1, storage_ix, storage); // islast
404 WriteBits(1, 1, storage_ix, storage); // isempty
405 *storage_ix = (*storage_ix + 7u) & ~7u;
406 return;
407 }
408
409 // "next_emit" is a pointer to the first byte that is not covered by a
410 // previous copy. Bytes between "next_emit" and the start of the next copy or
411 // the end of the input will be emitted as literal bytes.
412 const uint8_t* next_emit = input;
413 // Save the start of the first block for position and distance computations.
414 const uint8_t* base_ip = input;
415
416 static const size_t kFirstBlockSize = 3 << 15;
417 static const size_t kMergeBlockSize = 1 << 16;
418
419 const uint8_t* metablock_start = input;
420 size_t block_size = std::min(input_size, kFirstBlockSize);
421 size_t total_block_size = block_size;
422 // Save the bit position of the MLEN field of the meta-block header, so that
423 // we can update it later if we decide to extend this meta-block.
424 size_t mlen_storage_ix = *storage_ix + 3;
425 StoreMetaBlockHeader(block_size, 0, storage_ix, storage);
426 // No block splits, no contexts.
427 WriteBits(13, 0, storage_ix, storage);
428
429 uint8_t lit_depth[256] = { 0 };
430 uint16_t lit_bits[256] = { 0 };
431 BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits,
432 storage_ix, storage);
433
434 // Store the pre-compressed command and distance prefix codes.
435 for (size_t i = 0; i + 7 < *cmd_code_numbits; i += 8) {
436 WriteBits(8, cmd_code[i >> 3], storage_ix, storage);
437 }
438 WriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3],
439 storage_ix, storage);
440
441 emit_commands:
442 // Initialize the command and distance histograms. We will gather
443 // statistics of command and distance codes during the processing
444 // of this block and use it to update the command and distance
445 // prefix codes for the next block.
446 uint32_t cmd_histo[128] = {
447 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
448 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
449 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
450 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
451 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
452 1, 1, 1, 1, 0, 0, 0, 0,
453 };
454
455 // "ip" is the input pointer.
456 const uint8_t* ip = input;
457 assert(table_size);
458 assert(table_size <= (1u << 31));
459 assert((table_size & (table_size - 1)) == 0); // table must be power of two
460 const size_t shift = 64u - Log2FloorNonZero(table_size);
461 assert(table_size - 1 == static_cast<size_t>(
462 MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift));
463 const uint8_t* ip_end = input + block_size;
464
465 int last_distance = -1;
466 const size_t kInputMarginBytes = 16;
467 const size_t kMinMatchLen = 5;
468 if (PREDICT_TRUE(block_size >= kInputMarginBytes)) {
469 // For the last block, we need to keep a 16 bytes margin so that we can be
470 // sure that all distances are at most window size - 16.
471 // For all other blocks, we only need to keep a margin of 5 bytes so that
472 // we don't go over the block size with a copy.
473 const size_t len_limit = std::min(block_size - kMinMatchLen,
474 input_size - kInputMarginBytes);
475 const uint8_t* ip_limit = input + len_limit;
476
477 for (uint32_t next_hash = Hash(++ip, shift); ; ) {
478 assert(next_emit < ip);
479 // Step 1: Scan forward in the input looking for a 5-byte-long match.
480 // If we get close to exhausting the input then goto emit_remainder.
481 //
482 // Heuristic match skipping: If 32 bytes are scanned with no matches
483 // found, start looking only at every other byte. If 32 more bytes are
484 // scanned, look at every third byte, etc.. When a match is found,
485 // immediately go back to looking at every byte. This is a small loss
486 // (~5% performance, ~0.1% density) for compressible data due to more
487 // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
488 // win since the compressor quickly "realizes" the data is incompressible
489 // and doesn't bother looking for matches everywhere.
490 //
491 // The "skip" variable keeps track of how many bytes there are since the
492 // last match; dividing it by 32 (ie. right-shifting by five) gives the
493 // number of bytes to move ahead for each iteration.
494 uint32_t skip = 32;
495
496 const uint8_t* next_ip = ip;
497 const uint8_t* candidate;
498 do {
499 ip = next_ip;
500 uint32_t hash = next_hash;
501 assert(hash == Hash(ip, shift));
502 uint32_t bytes_between_hash_lookups = skip++ >> 5;
503 next_ip = ip + bytes_between_hash_lookups;
504 if (PREDICT_FALSE(next_ip > ip_limit)) {
505 goto emit_remainder;
506 }
507 next_hash = Hash(next_ip, shift);
508 candidate = ip - last_distance;
509 if (IsMatch(ip, candidate)) {
510 if (PREDICT_TRUE(candidate < ip)) {
511 table[hash] = static_cast<int>(ip - base_ip);
512 break;
513 }
514 }
515 candidate = base_ip + table[hash];
516 assert(candidate >= base_ip);
517 assert(candidate < ip);
518
519 table[hash] = static_cast<int>(ip - base_ip);
520 } while (PREDICT_TRUE(!IsMatch(ip, candidate)));
521
522 // Step 2: Emit the found match together with the literal bytes from
523 // "next_emit" to the bit stream, and then see if we can find a next macth
524 // immediately afterwards. Repeat until we find no match for the input
525 // without emitting some literal bytes.
526 uint64_t input_bytes;
527
528 {
529 // We have a 5-byte match at ip, and we need to emit bytes in
530 // [next_emit, ip).
531 const uint8_t* base = ip;
532 size_t matched = 5 + FindMatchLengthWithLimit(
533 candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5);
534 ip += matched;
535 int distance = static_cast<int>(base - candidate); /* > 0 */
536 size_t insert = static_cast<size_t>(base - next_emit);
537 assert(0 == memcmp(base, candidate, matched));
538 if (PREDICT_TRUE(insert < 6210)) {
539 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
540 storage_ix, storage);
541 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
542 lit_depth)) {
543 EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3,
544 storage_ix, storage);
545 input_size -= static_cast<size_t>(base - input);
546 input = base;
547 next_emit = input;
548 goto next_block;
549 } else {
550 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
551 storage_ix, storage);
552 }
553 EmitLiterals(next_emit, insert, lit_depth, lit_bits,
554 storage_ix, storage);
555 if (distance == last_distance) {
556 WriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage);
557 ++cmd_histo[64];
558 } else {
559 EmitDistance(static_cast<size_t>(distance), cmd_depth, cmd_bits,
560 cmd_histo, storage_ix, storage);
561 last_distance = distance;
562 }
563 EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo,
564 storage_ix, storage);
565
566 next_emit = ip;
567 if (PREDICT_FALSE(ip >= ip_limit)) {
568 goto emit_remainder;
569 }
570 // We could immediately start working at ip now, but to improve
571 // compression we first update "table" with the hashes of some positions
572 // within the last copy.
573 input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3);
574 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
575 table[prev_hash] = static_cast<int>(ip - base_ip - 3);
576 prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
577 table[prev_hash] = static_cast<int>(ip - base_ip - 2);
578 prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
579 table[prev_hash] = static_cast<int>(ip - base_ip - 1);
580
581 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
582 candidate = base_ip + table[cur_hash];
583 table[cur_hash] = static_cast<int>(ip - base_ip);
584 }
585
586 while (IsMatch(ip, candidate)) {
587 // We have a 5-byte match at ip, and no need to emit any literal bytes
588 // prior to ip.
589 const uint8_t* base = ip;
590 size_t matched = 5 + FindMatchLengthWithLimit(
591 candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5);
592 ip += matched;
593 last_distance = static_cast<int>(base - candidate); /* > 0 */
594 assert(0 == memcmp(base, candidate, matched));
595 EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo,
596 storage_ix, storage);
597 EmitDistance(static_cast<size_t>(last_distance), cmd_depth, cmd_bits,
598 cmd_histo, storage_ix, storage);
599
600 next_emit = ip;
601 if (PREDICT_FALSE(ip >= ip_limit)) {
602 goto emit_remainder;
603 }
604 // We could immediately start working at ip now, but to improve
605 // compression we first update "table" with the hashes of some positions
606 // within the last copy.
607 input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3);
608 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
609 table[prev_hash] = static_cast<int>(ip - base_ip - 3);
610 prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
611 table[prev_hash] = static_cast<int>(ip - base_ip - 2);
612 prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
613 table[prev_hash] = static_cast<int>(ip - base_ip - 1);
614
615 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
616 candidate = base_ip + table[cur_hash];
617 table[cur_hash] = static_cast<int>(ip - base_ip);
618 }
619
620 next_hash = Hash(++ip, shift);
621 }
622 }
623
624 emit_remainder:
625 assert(next_emit <= ip_end);
626 input += block_size;
627 input_size -= block_size;
628 block_size = std::min(input_size, kMergeBlockSize);
629
630 // Decide if we want to continue this meta-block instead of emitting the
631 // last insert-only command.
632 if (input_size > 0 &&
633 total_block_size + block_size <= (1 << 20) &&
634 ShouldMergeBlock(input, block_size, lit_depth)) {
635 assert(total_block_size > (1 << 16));
636 // Update the size of the current meta-block and continue emitting commands.
637 // We can do this because the current size and the new size both have 5
638 // nibbles.
639 total_block_size += block_size;
640 UpdateBits(20, static_cast<uint32_t>(total_block_size - 1),
641 mlen_storage_ix, storage);
642 goto emit_commands;
643 }
644
645 // Emit the remaining bytes as literals.
646 if (next_emit < ip_end) {
647 const size_t insert = static_cast<size_t>(ip_end - next_emit);
648 if (PREDICT_TRUE(insert < 6210)) {
649 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
650 storage_ix, storage);
651 EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage);
652 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
653 lit_depth)) {
654 EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3,
655 storage_ix, storage);
656 } else {
657 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
658 storage_ix, storage);
659 EmitLiterals(next_emit, insert, lit_depth, lit_bits,
660 storage_ix, storage);
661 }
662 }
663 next_emit = ip_end;
664
665 next_block:
666 // If we have more data, write a new meta-block header and prefix codes and
667 // then continue emitting commands.
668 if (input_size > 0) {
669 metablock_start = input;
670 block_size = std::min(input_size, kFirstBlockSize);
671 total_block_size = block_size;
672 // Save the bit position of the MLEN field of the meta-block header, so that
673 // we can update it later if we decide to extend this meta-block.
674 mlen_storage_ix = *storage_ix + 3;
675 StoreMetaBlockHeader(block_size, 0, storage_ix, storage);
676 // No block splits, no contexts.
677 WriteBits(13, 0, storage_ix, storage);
678 memset(lit_depth, 0, sizeof(lit_depth));
679 memset(lit_bits, 0, sizeof(lit_bits));
680 BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits,
681 storage_ix, storage);
682 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
683 storage_ix, storage);
684 goto emit_commands;
685 }
686
687 if (is_last) {
688 WriteBits(1, 1, storage_ix, storage); // islast
689 WriteBits(1, 1, storage_ix, storage); // isempty
690 *storage_ix = (*storage_ix + 7u) & ~7u;
691 } else {
692 // If this is not the last block, update the command and distance prefix
693 // codes for the next block and store the compressed forms.
694 cmd_code[0] = 0;
695 *cmd_code_numbits = 0;
696 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
697 cmd_code_numbits, cmd_code);
698 }
699 }
700
701 } // namespace brotli
OLDNEW
« no previous file with comments | « third_party/brotli/enc/compress_fragment.c ('k') | third_party/brotli/enc/compress_fragment_two_pass.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698