Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(196)

Side by Side Diff: third_party/brotli/enc/block_splitter.cc

Issue 2537133002: Update brotli to v1.0.0-snapshot. (Closed)
Patch Set: Fixed typo Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/brotli/enc/block_splitter.c ('k') | third_party/brotli/enc/block_splitter_inc.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /* Copyright 2013 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 // Block split point selection utilities.
8
9 #include "./block_splitter.h"
10
11 #include <assert.h>
12 #include <math.h>
13
14 #include <algorithm>
15 #include <cstring>
16 #include <vector>
17
18 #include "./cluster.h"
19 #include "./command.h"
20 #include "./fast_log.h"
21 #include "./histogram.h"
22
23 namespace brotli {
24
25 static const size_t kMaxLiteralHistograms = 100;
26 static const size_t kMaxCommandHistograms = 50;
27 static const double kLiteralBlockSwitchCost = 28.1;
28 static const double kCommandBlockSwitchCost = 13.5;
29 static const double kDistanceBlockSwitchCost = 14.6;
30 static const size_t kLiteralStrideLength = 70;
31 static const size_t kCommandStrideLength = 40;
32 static const size_t kSymbolsPerLiteralHistogram = 544;
33 static const size_t kSymbolsPerCommandHistogram = 530;
34 static const size_t kSymbolsPerDistanceHistogram = 544;
35 static const size_t kMinLengthForBlockSplitting = 128;
36 static const size_t kIterMulForRefining = 2;
37 static const size_t kMinItersForRefining = 100;
38
39 void CopyLiteralsToByteArray(const Command* cmds,
40 const size_t num_commands,
41 const uint8_t* data,
42 const size_t offset,
43 const size_t mask,
44 std::vector<uint8_t>* literals) {
45 // Count how many we have.
46 size_t total_length = 0;
47 for (size_t i = 0; i < num_commands; ++i) {
48 total_length += cmds[i].insert_len_;
49 }
50 if (total_length == 0) {
51 return;
52 }
53
54 // Allocate.
55 literals->resize(total_length);
56
57 // Loop again, and copy this time.
58 size_t pos = 0;
59 size_t from_pos = offset & mask;
60 for (size_t i = 0; i < num_commands && pos < total_length; ++i) {
61 size_t insert_len = cmds[i].insert_len_;
62 if (from_pos + insert_len > mask) {
63 size_t head_size = mask + 1 - from_pos;
64 memcpy(&(*literals)[pos], data + from_pos, head_size);
65 from_pos = 0;
66 pos += head_size;
67 insert_len -= head_size;
68 }
69 if (insert_len > 0) {
70 memcpy(&(*literals)[pos], data + from_pos, insert_len);
71 pos += insert_len;
72 }
73 from_pos = (from_pos + insert_len + cmds[i].copy_len()) & mask;
74 }
75 }
76
77 inline static unsigned int MyRand(unsigned int* seed) {
78 *seed *= 16807U;
79 if (*seed == 0) {
80 *seed = 1;
81 }
82 return *seed;
83 }
84
85 template<typename HistogramType, typename DataType>
86 void InitialEntropyCodes(const DataType* data, size_t length,
87 size_t stride,
88 size_t num_histograms,
89 HistogramType* histograms) {
90 for (size_t i = 0; i < num_histograms; ++i) {
91 histograms[i].Clear();
92 }
93 unsigned int seed = 7;
94 size_t block_length = length / num_histograms;
95 for (size_t i = 0; i < num_histograms; ++i) {
96 size_t pos = length * i / num_histograms;
97 if (i != 0) {
98 pos += MyRand(&seed) % block_length;
99 }
100 if (pos + stride >= length) {
101 pos = length - stride - 1;
102 }
103 histograms[i].Add(data + pos, stride);
104 }
105 }
106
107 template<typename HistogramType, typename DataType>
108 void RandomSample(unsigned int* seed,
109 const DataType* data,
110 size_t length,
111 size_t stride,
112 HistogramType* sample) {
113 size_t pos = 0;
114 if (stride >= length) {
115 pos = 0;
116 stride = length;
117 } else {
118 pos = MyRand(seed) % (length - stride + 1);
119 }
120 sample->Add(data + pos, stride);
121 }
122
123 template<typename HistogramType, typename DataType>
124 void RefineEntropyCodes(const DataType* data, size_t length,
125 size_t stride,
126 size_t num_histograms,
127 HistogramType* histograms) {
128 size_t iters =
129 kIterMulForRefining * length / stride + kMinItersForRefining;
130 unsigned int seed = 7;
131 iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms;
132 for (size_t iter = 0; iter < iters; ++iter) {
133 HistogramType sample;
134 RandomSample(&seed, data, length, stride, &sample);
135 size_t ix = iter % num_histograms;
136 histograms[ix].AddHistogram(sample);
137 }
138 }
139
140 inline static double BitCost(size_t count) {
141 return count == 0 ? -2.0 : FastLog2(count);
142 }
143
144 // Assigns a block id from the range [0, vec.size()) to each data element
145 // in data[0..length) and fills in block_id[0..length) with the assigned values.
146 // Returns the number of blocks, i.e. one plus the number of block switches.
147 template<typename DataType, int kSize>
148 size_t FindBlocks(const DataType* data, const size_t length,
149 const double block_switch_bitcost,
150 const size_t num_histograms,
151 const Histogram<kSize>* histograms,
152 double* insert_cost,
153 double* cost,
154 uint8_t* switch_signal,
155 uint8_t *block_id) {
156 if (num_histograms <= 1) {
157 for (size_t i = 0; i < length; ++i) {
158 block_id[i] = 0;
159 }
160 return 1;
161 }
162 const size_t bitmaplen = (num_histograms + 7) >> 3;
163 assert(num_histograms <= 256);
164 memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * num_histograms);
165 for (size_t j = 0; j < num_histograms; ++j) {
166 insert_cost[j] = FastLog2(static_cast<uint32_t>(
167 histograms[j].total_count_));
168 }
169 for (size_t i = kSize; i != 0;) {
170 --i;
171 for (size_t j = 0; j < num_histograms; ++j) {
172 insert_cost[i * num_histograms + j] =
173 insert_cost[j] - BitCost(histograms[j].data_[i]);
174 }
175 }
176 memset(cost, 0, sizeof(cost[0]) * num_histograms);
177 memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmaplen);
178 // After each iteration of this loop, cost[k] will contain the difference
179 // between the minimum cost of arriving at the current byte position using
180 // entropy code k, and the minimum cost of arriving at the current byte
181 // position. This difference is capped at the block switch cost, and if it
182 // reaches block switch cost, it means that when we trace back from the last
183 // position, we need to switch here.
184 for (size_t byte_ix = 0; byte_ix < length; ++byte_ix) {
185 size_t ix = byte_ix * bitmaplen;
186 size_t insert_cost_ix = data[byte_ix] * num_histograms;
187 double min_cost = 1e99;
188 for (size_t k = 0; k < num_histograms; ++k) {
189 // We are coding the symbol in data[byte_ix] with entropy code k.
190 cost[k] += insert_cost[insert_cost_ix + k];
191 if (cost[k] < min_cost) {
192 min_cost = cost[k];
193 block_id[byte_ix] = static_cast<uint8_t>(k);
194 }
195 }
196 double block_switch_cost = block_switch_bitcost;
197 // More blocks for the beginning.
198 if (byte_ix < 2000) {
199 block_switch_cost *= 0.77 + 0.07 * static_cast<double>(byte_ix) / 2000;
200 }
201 for (size_t k = 0; k < num_histograms; ++k) {
202 cost[k] -= min_cost;
203 if (cost[k] >= block_switch_cost) {
204 cost[k] = block_switch_cost;
205 const uint8_t mask = static_cast<uint8_t>(1u << (k & 7));
206 assert((k >> 3) < bitmaplen);
207 switch_signal[ix + (k >> 3)] |= mask;
208 }
209 }
210 }
211 // Now trace back from the last position and switch at the marked places.
212 size_t byte_ix = length - 1;
213 size_t ix = byte_ix * bitmaplen;
214 uint8_t cur_id = block_id[byte_ix];
215 size_t num_blocks = 1;
216 while (byte_ix > 0) {
217 --byte_ix;
218 ix -= bitmaplen;
219 const uint8_t mask = static_cast<uint8_t>(1u << (cur_id & 7));
220 assert((static_cast<size_t>(cur_id) >> 3) < bitmaplen);
221 if (switch_signal[ix + (cur_id >> 3)] & mask) {
222 if (cur_id != block_id[byte_ix]) {
223 cur_id = block_id[byte_ix];
224 ++num_blocks;
225 }
226 }
227 block_id[byte_ix] = cur_id;
228 }
229 return num_blocks;
230 }
231
232 static size_t RemapBlockIds(uint8_t* block_ids, const size_t length,
233 uint16_t* new_id, const size_t num_histograms) {
234 static const uint16_t kInvalidId = 256;
235 for (size_t i = 0; i < num_histograms; ++i) {
236 new_id[i] = kInvalidId;
237 }
238 uint16_t next_id = 0;
239 for (size_t i = 0; i < length; ++i) {
240 assert(block_ids[i] < num_histograms);
241 if (new_id[block_ids[i]] == kInvalidId) {
242 new_id[block_ids[i]] = next_id++;
243 }
244 }
245 for (size_t i = 0; i < length; ++i) {
246 block_ids[i] = static_cast<uint8_t>(new_id[block_ids[i]]);
247 assert(block_ids[i] < num_histograms);
248 }
249 assert(next_id <= num_histograms);
250 return next_id;
251 }
252
253 template<typename HistogramType, typename DataType>
254 void BuildBlockHistograms(const DataType* data, const size_t length,
255 const uint8_t* block_ids,
256 const size_t num_histograms,
257 HistogramType* histograms) {
258 for (size_t i = 0; i < num_histograms; ++i) {
259 histograms[i].Clear();
260 }
261 for (size_t i = 0; i < length; ++i) {
262 histograms[block_ids[i]].Add(data[i]);
263 }
264 }
265
266 template<typename HistogramType, typename DataType>
267 void ClusterBlocks(const DataType* data, const size_t length,
268 const size_t num_blocks,
269 uint8_t* block_ids,
270 BlockSplit* split) {
271 static const size_t kMaxNumberOfBlockTypes = 256;
272 static const size_t kHistogramsPerBatch = 64;
273 static const size_t kClustersPerBatch = 16;
274 std::vector<uint32_t> histogram_symbols(num_blocks);
275 std::vector<uint32_t> block_lengths(num_blocks);
276
277 size_t block_idx = 0;
278 for (size_t i = 0; i < length; ++i) {
279 assert(block_idx < num_blocks);
280 ++block_lengths[block_idx];
281 if (i + 1 == length || block_ids[i] != block_ids[i + 1]) {
282 ++block_idx;
283 }
284 }
285 assert(block_idx == num_blocks);
286
287 const size_t expected_num_clusters =
288 kClustersPerBatch *
289 (num_blocks + kHistogramsPerBatch - 1) / kHistogramsPerBatch;
290 std::vector<HistogramType> all_histograms;
291 std::vector<uint32_t> cluster_size;
292 all_histograms.reserve(expected_num_clusters);
293 cluster_size.reserve(expected_num_clusters);
294 size_t num_clusters = 0;
295 std::vector<HistogramType> histograms(
296 std::min(num_blocks, kHistogramsPerBatch));
297 size_t max_num_pairs = kHistogramsPerBatch * kHistogramsPerBatch / 2;
298 std::vector<HistogramPair> pairs(max_num_pairs + 1);
299 size_t pos = 0;
300 for (size_t i = 0; i < num_blocks; i += kHistogramsPerBatch) {
301 const size_t num_to_combine = std::min(num_blocks - i, kHistogramsPerBatch);
302 uint32_t sizes[kHistogramsPerBatch];
303 uint32_t clusters[kHistogramsPerBatch];
304 uint32_t symbols[kHistogramsPerBatch];
305 uint32_t remap[kHistogramsPerBatch];
306 for (size_t j = 0; j < num_to_combine; ++j) {
307 histograms[j].Clear();
308 for (size_t k = 0; k < block_lengths[i + j]; ++k) {
309 histograms[j].Add(data[pos++]);
310 }
311 histograms[j].bit_cost_ = PopulationCost(histograms[j]);
312 symbols[j] = clusters[j] = static_cast<uint32_t>(j);
313 sizes[j] = 1;
314 }
315 size_t num_new_clusters = HistogramCombine(
316 &histograms[0], sizes, symbols, clusters, &pairs[0], num_to_combine,
317 num_to_combine, kHistogramsPerBatch, max_num_pairs);
318 for (size_t j = 0; j < num_new_clusters; ++j) {
319 all_histograms.push_back(histograms[clusters[j]]);
320 cluster_size.push_back(sizes[clusters[j]]);
321 remap[clusters[j]] = static_cast<uint32_t>(j);
322 }
323 for (size_t j = 0; j < num_to_combine; ++j) {
324 histogram_symbols[i + j] =
325 static_cast<uint32_t>(num_clusters) + remap[symbols[j]];
326 }
327 num_clusters += num_new_clusters;
328 assert(num_clusters == cluster_size.size());
329 assert(num_clusters == all_histograms.size());
330 }
331
332 max_num_pairs =
333 std::min(64 * num_clusters, (num_clusters / 2) * num_clusters);
334 pairs.resize(max_num_pairs + 1);
335
336 std::vector<uint32_t> clusters(num_clusters);
337 for (size_t i = 0; i < num_clusters; ++i) {
338 clusters[i] = static_cast<uint32_t>(i);
339 }
340 size_t num_final_clusters =
341 HistogramCombine(&all_histograms[0], &cluster_size[0],
342 &histogram_symbols[0],
343 &clusters[0], &pairs[0], num_clusters,
344 num_blocks, kMaxNumberOfBlockTypes, max_num_pairs);
345
346 static const uint32_t kInvalidIndex = std::numeric_limits<uint32_t>::max();
347 std::vector<uint32_t> new_index(num_clusters, kInvalidIndex);
348 uint32_t next_index = 0;
349 pos = 0;
350 for (size_t i = 0; i < num_blocks; ++i) {
351 HistogramType histo;
352 for (size_t j = 0; j < block_lengths[i]; ++j) {
353 histo.Add(data[pos++]);
354 }
355 uint32_t best_out =
356 i == 0 ? histogram_symbols[0] : histogram_symbols[i - 1];
357 double best_bits = HistogramBitCostDistance(
358 histo, all_histograms[best_out]);
359 for (size_t j = 0; j < num_final_clusters; ++j) {
360 const double cur_bits = HistogramBitCostDistance(
361 histo, all_histograms[clusters[j]]);
362 if (cur_bits < best_bits) {
363 best_bits = cur_bits;
364 best_out = clusters[j];
365 }
366 }
367 histogram_symbols[i] = best_out;
368 if (new_index[best_out] == kInvalidIndex) {
369 new_index[best_out] = next_index++;
370 }
371 }
372 uint8_t max_type = 0;
373 uint32_t cur_length = 0;
374 block_idx = 0;
375 split->types.resize(num_blocks);
376 split->lengths.resize(num_blocks);
377 for (size_t i = 0; i < num_blocks; ++i) {
378 cur_length += block_lengths[i];
379 if (i + 1 == num_blocks ||
380 histogram_symbols[i] != histogram_symbols[i + 1]) {
381 const uint8_t id = static_cast<uint8_t>(new_index[histogram_symbols[i]]);
382 split->types[block_idx] = id;
383 split->lengths[block_idx] = cur_length;
384 max_type = std::max(max_type, id);
385 cur_length = 0;
386 ++block_idx;
387 }
388 }
389 split->types.resize(block_idx);
390 split->lengths.resize(block_idx);
391 split->num_types = static_cast<size_t>(max_type) + 1;
392 }
393
394 template<int kSize, typename DataType>
395 void SplitByteVector(const std::vector<DataType>& data,
396 const size_t literals_per_histogram,
397 const size_t max_histograms,
398 const size_t sampling_stride_length,
399 const double block_switch_cost,
400 BlockSplit* split) {
401 if (data.empty()) {
402 split->num_types = 1;
403 return;
404 } else if (data.size() < kMinLengthForBlockSplitting) {
405 split->num_types = 1;
406 split->types.push_back(0);
407 split->lengths.push_back(static_cast<uint32_t>(data.size()));
408 return;
409 }
410 size_t num_histograms = data.size() / literals_per_histogram + 1;
411 if (num_histograms > max_histograms) {
412 num_histograms = max_histograms;
413 }
414 Histogram<kSize>* histograms = new Histogram<kSize>[num_histograms];
415 // Find good entropy codes.
416 InitialEntropyCodes(&data[0], data.size(),
417 sampling_stride_length,
418 num_histograms, histograms);
419 RefineEntropyCodes(&data[0], data.size(),
420 sampling_stride_length,
421 num_histograms, histograms);
422 // Find a good path through literals with the good entropy codes.
423 std::vector<uint8_t> block_ids(data.size());
424 size_t num_blocks;
425 const size_t bitmaplen = (num_histograms + 7) >> 3;
426 double* insert_cost = new double[kSize * num_histograms];
427 double *cost = new double[num_histograms];
428 uint8_t* switch_signal = new uint8_t[data.size() * bitmaplen];
429 uint16_t* new_id = new uint16_t[num_histograms];
430 for (size_t i = 0; i < 10; ++i) {
431 num_blocks = FindBlocks(&data[0], data.size(),
432 block_switch_cost,
433 num_histograms, histograms,
434 insert_cost, cost, switch_signal,
435 &block_ids[0]);
436 num_histograms = RemapBlockIds(&block_ids[0], data.size(),
437 new_id, num_histograms);
438 BuildBlockHistograms(&data[0], data.size(), &block_ids[0],
439 num_histograms, histograms);
440 }
441 delete[] insert_cost;
442 delete[] cost;
443 delete[] switch_signal;
444 delete[] new_id;
445 delete[] histograms;
446 ClusterBlocks<Histogram<kSize> >(&data[0], data.size(), num_blocks,
447 &block_ids[0], split);
448 }
449
450 void SplitBlock(const Command* cmds,
451 const size_t num_commands,
452 const uint8_t* data,
453 const size_t pos,
454 const size_t mask,
455 BlockSplit* literal_split,
456 BlockSplit* insert_and_copy_split,
457 BlockSplit* dist_split) {
458 {
459 // Create a continuous array of literals.
460 std::vector<uint8_t> literals;
461 CopyLiteralsToByteArray(cmds, num_commands, data, pos, mask, &literals);
462 // Create the block split on the array of literals.
463 // Literal histograms have alphabet size 256.
464 SplitByteVector<256>(
465 literals,
466 kSymbolsPerLiteralHistogram, kMaxLiteralHistograms,
467 kLiteralStrideLength, kLiteralBlockSwitchCost,
468 literal_split);
469 }
470
471 {
472 // Compute prefix codes for commands.
473 std::vector<uint16_t> insert_and_copy_codes(num_commands);
474 for (size_t i = 0; i < num_commands; ++i) {
475 insert_and_copy_codes[i] = cmds[i].cmd_prefix_;
476 }
477 // Create the block split on the array of command prefixes.
478 SplitByteVector<kNumCommandPrefixes>(
479 insert_and_copy_codes,
480 kSymbolsPerCommandHistogram, kMaxCommandHistograms,
481 kCommandStrideLength, kCommandBlockSwitchCost,
482 insert_and_copy_split);
483 }
484
485 {
486 // Create a continuous array of distance prefixes.
487 std::vector<uint16_t> distance_prefixes(num_commands);
488 size_t pos = 0;
489 for (size_t i = 0; i < num_commands; ++i) {
490 const Command& cmd = cmds[i];
491 if (cmd.copy_len() && cmd.cmd_prefix_ >= 128) {
492 distance_prefixes[pos++] = cmd.dist_prefix_;
493 }
494 }
495 distance_prefixes.resize(pos);
496 // Create the block split on the array of distance prefixes.
497 SplitByteVector<kNumDistancePrefixes>(
498 distance_prefixes,
499 kSymbolsPerDistanceHistogram, kMaxCommandHistograms,
500 kCommandStrideLength, kDistanceBlockSwitchCost,
501 dist_split);
502 }
503 }
504
505 } // namespace brotli
OLDNEW
« no previous file with comments | « third_party/brotli/enc/block_splitter.c ('k') | third_party/brotli/enc/block_splitter_inc.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698