Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Side by Side Diff: third_party/brotli/enc/bit_cost_inc.h

Issue 2537133002: Update brotli to v1.0.0-snapshot. (Closed)
Patch Set: Fixed typo Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/brotli/enc/bit_cost.c ('k') | third_party/brotli/enc/block_encoder_inc.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* NOLINT(build/header_guard) */
1 /* Copyright 2013 Google Inc. All Rights Reserved. 2 /* Copyright 2013 Google Inc. All Rights Reserved.
2 3
3 Distributed under MIT license. 4 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */ 6 */
6 7
7 // Functions to estimate the bit cost of Huffman trees. 8 /* template parameters: FN */
8 9
9 #ifndef BROTLI_ENC_BIT_COST_H_ 10 #define HistogramType FN(Histogram)
10 #define BROTLI_ENC_BIT_COST_H_
11 11
12 #include "./entropy_encode.h" 12 double FN(BrotliPopulationCost)(const HistogramType* histogram) {
13 #include "./fast_log.h"
14 #include "./types.h"
15
16 namespace brotli {
17
18 static inline double ShannonEntropy(const uint32_t *population, size_t size,
19 size_t *total) {
20 size_t sum = 0;
21 double retval = 0;
22 const uint32_t *population_end = population + size;
23 size_t p;
24 if (size & 1) {
25 goto odd_number_of_elements_left;
26 }
27 while (population < population_end) {
28 p = *population++;
29 sum += p;
30 retval -= static_cast<double>(p) * FastLog2(p);
31 odd_number_of_elements_left:
32 p = *population++;
33 sum += p;
34 retval -= static_cast<double>(p) * FastLog2(p);
35 }
36 if (sum) retval += static_cast<double>(sum) * FastLog2(sum);
37 *total = sum;
38 return retval;
39 }
40
41 static inline double BitsEntropy(const uint32_t *population, size_t size) {
42 size_t sum;
43 double retval = ShannonEntropy(population, size, &sum);
44 if (retval < sum) {
45 // At least one bit per literal is needed.
46 retval = static_cast<double>(sum);
47 }
48 return retval;
49 }
50
51 template<int kSize>
52 double PopulationCost(const Histogram<kSize>& histogram) {
53 static const double kOneSymbolHistogramCost = 12; 13 static const double kOneSymbolHistogramCost = 12;
54 static const double kTwoSymbolHistogramCost = 20; 14 static const double kTwoSymbolHistogramCost = 20;
55 static const double kThreeSymbolHistogramCost = 28; 15 static const double kThreeSymbolHistogramCost = 28;
56 static const double kFourSymbolHistogramCost = 37; 16 static const double kFourSymbolHistogramCost = 37;
57 if (histogram.total_count_ == 0) { 17 const size_t data_size = FN(HistogramDataSize)();
18 int count = 0;
19 size_t s[5];
20 double bits = 0.0;
21 size_t i;
22 if (histogram->total_count_ == 0) {
58 return kOneSymbolHistogramCost; 23 return kOneSymbolHistogramCost;
59 } 24 }
60 int count = 0; 25 for (i = 0; i < data_size; ++i) {
61 int s[5]; 26 if (histogram->data_[i] > 0) {
62 for (int i = 0; i < kSize; ++i) {
63 if (histogram.data_[i] > 0) {
64 s[count] = i; 27 s[count] = i;
65 ++count; 28 ++count;
66 if (count > 4) break; 29 if (count > 4) break;
67 } 30 }
68 } 31 }
69 if (count == 1) { 32 if (count == 1) {
70 return kOneSymbolHistogramCost; 33 return kOneSymbolHistogramCost;
71 } 34 }
72 if (count == 2) { 35 if (count == 2) {
73 return (kTwoSymbolHistogramCost + 36 return (kTwoSymbolHistogramCost + (double)histogram->total_count_);
74 static_cast<double>(histogram.total_count_));
75 } 37 }
76 if (count == 3) { 38 if (count == 3) {
77 const uint32_t histo0 = histogram.data_[s[0]]; 39 const uint32_t histo0 = histogram->data_[s[0]];
78 const uint32_t histo1 = histogram.data_[s[1]]; 40 const uint32_t histo1 = histogram->data_[s[1]];
79 const uint32_t histo2 = histogram.data_[s[2]]; 41 const uint32_t histo2 = histogram->data_[s[2]];
80 const uint32_t histomax = std::max(histo0, std::max(histo1, histo2)); 42 const uint32_t histomax =
43 BROTLI_MAX(uint32_t, histo0, BROTLI_MAX(uint32_t, histo1, histo2));
81 return (kThreeSymbolHistogramCost + 44 return (kThreeSymbolHistogramCost +
82 2 * (histo0 + histo1 + histo2) - histomax); 45 2 * (histo0 + histo1 + histo2) - histomax);
83 } 46 }
84 if (count == 4) { 47 if (count == 4) {
85 uint32_t histo[4]; 48 uint32_t histo[4];
86 for (int i = 0; i < 4; ++i) { 49 uint32_t h23;
87 histo[i] = histogram.data_[s[i]]; 50 uint32_t histomax;
51 for (i = 0; i < 4; ++i) {
52 histo[i] = histogram->data_[s[i]];
88 } 53 }
89 // Sort 54 /* Sort */
90 for (int i = 0; i < 4; ++i) { 55 for (i = 0; i < 4; ++i) {
91 for (int j = i + 1; j < 4; ++j) { 56 size_t j;
57 for (j = i + 1; j < 4; ++j) {
92 if (histo[j] > histo[i]) { 58 if (histo[j] > histo[i]) {
93 std::swap(histo[j], histo[i]); 59 BROTLI_SWAP(uint32_t, histo, j, i);
94 } 60 }
95 } 61 }
96 } 62 }
97 const uint32_t h23 = histo[2] + histo[3]; 63 h23 = histo[2] + histo[3];
98 const uint32_t histomax = std::max(h23, histo[0]); 64 histomax = BROTLI_MAX(uint32_t, h23, histo[0]);
99 return (kFourSymbolHistogramCost + 65 return (kFourSymbolHistogramCost +
100 3 * h23 + 2 * (histo[0] + histo[1]) - histomax); 66 3 * h23 + 2 * (histo[0] + histo[1]) - histomax);
101 } 67 }
102 68
103 // In this loop we compute the entropy of the histogram and simultaneously 69 {
104 // build a simplified histogram of the code length codes where we use the 70 /* In this loop we compute the entropy of the histogram and simultaneously
105 // zero repeat code 17, but we don't use the non-zero repeat code 16. 71 build a simplified histogram of the code length codes where we use the
106 double bits = 0; 72 zero repeat code 17, but we don't use the non-zero repeat code 16. */
107 size_t max_depth = 1; 73 size_t max_depth = 1;
108 uint32_t depth_histo[kCodeLengthCodes] = { 0 }; 74 uint32_t depth_histo[BROTLI_CODE_LENGTH_CODES] = { 0 };
109 const double log2total = FastLog2(histogram.total_count_); 75 const double log2total = FastLog2(histogram->total_count_);
110 for (size_t i = 0; i < kSize;) { 76 for (i = 0; i < data_size;) {
111 if (histogram.data_[i] > 0) { 77 if (histogram->data_[i] > 0) {
112 // Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) = 78 /* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
113 // = log2(total_count) - log2(count(symbol)) 79 = log2(total_count) - log2(count(symbol)) */
114 double log2p = log2total - FastLog2(histogram.data_[i]); 80 double log2p = log2total - FastLog2(histogram->data_[i]);
115 // Approximate the bit depth by round(-log2(P(symbol))) 81 /* Approximate the bit depth by round(-log2(P(symbol))) */
116 size_t depth = static_cast<size_t>(log2p + 0.5); 82 size_t depth = (size_t)(log2p + 0.5);
117 bits += histogram.data_[i] * log2p; 83 bits += histogram->data_[i] * log2p;
118 if (depth > 15) { 84 if (depth > 15) {
119 depth = 15; 85 depth = 15;
120 } 86 }
121 if (depth > max_depth) { 87 if (depth > max_depth) {
122 max_depth = depth; 88 max_depth = depth;
123 } 89 }
124 ++depth_histo[depth]; 90 ++depth_histo[depth];
125 ++i; 91 ++i;
126 } else {
127 // Compute the run length of zeros and add the appropriate number of 0 and
128 // 17 code length codes to the code length code histogram.
129 uint32_t reps = 1;
130 for (size_t k = i + 1; k < kSize && histogram.data_[k] == 0; ++k) {
131 ++reps;
132 }
133 i += reps;
134 if (i == kSize) {
135 // Don't add any cost for the last zero run, since these are encoded
136 // only implicitly.
137 break;
138 }
139 if (reps < 3) {
140 depth_histo[0] += reps;
141 } else { 92 } else {
142 reps -= 2; 93 /* Compute the run length of zeros and add the appropriate number of 0
143 while (reps > 0) { 94 and 17 code length codes to the code length code histogram. */
144 ++depth_histo[17]; 95 uint32_t reps = 1;
145 // Add the 3 extra bits for the 17 code length code. 96 size_t k;
146 bits += 3; 97 for (k = i + 1; k < data_size && histogram->data_[k] == 0; ++k) {
147 reps >>= 3; 98 ++reps;
99 }
100 i += reps;
101 if (i == data_size) {
102 /* Don't add any cost for the last zero run, since these are encoded
103 only implicitly. */
104 break;
105 }
106 if (reps < 3) {
107 depth_histo[0] += reps;
108 } else {
109 reps -= 2;
110 while (reps > 0) {
111 ++depth_histo[BROTLI_REPEAT_ZERO_CODE_LENGTH];
112 /* Add the 3 extra bits for the 17 code length code. */
113 bits += 3;
114 reps >>= 3;
115 }
148 } 116 }
149 } 117 }
150 } 118 }
119 /* Add the estimated encoding cost of the code length code histogram. */
120 bits += (double)(18 + 2 * max_depth);
121 /* Add the entropy of the code length code histogram. */
122 bits += BitsEntropy(depth_histo, BROTLI_CODE_LENGTH_CODES);
151 } 123 }
152 // Add the estimated encoding cost of the code length code histogram.
153 bits += static_cast<double>(18 + 2 * max_depth);
154 // Add the entropy of the code length code histogram.
155 bits += BitsEntropy(depth_histo, kCodeLengthCodes);
156 return bits; 124 return bits;
157 } 125 }
158 126
159 } // namespace brotli 127 #undef HistogramType
160
161 #endif // BROTLI_ENC_BIT_COST_H_
OLDNEW
« no previous file with comments | « third_party/brotli/enc/bit_cost.c ('k') | third_party/brotli/enc/block_encoder_inc.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698