OLD | NEW |
(Empty) | |
| 1 /* Copyright 2015 Google Inc. All Rights Reserved. |
| 2 |
| 3 Distributed under MIT license. |
| 4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 5 */ |
| 6 |
| 7 /* Function for fast encoding of an input fragment, independently from the input |
| 8 history. This function uses one-pass processing: when we find a backward |
| 9 match, we immediately emit the corresponding command and literal codes to |
| 10 the bit stream. |
| 11 |
| 12 Adapted from the CompressFragment() function in |
| 13 https://github.com/google/snappy/blob/master/snappy.cc */ |
| 14 |
| 15 #include "./compress_fragment.h" |
| 16 |
| 17 #include <string.h> /* memcmp, memcpy, memset */ |
| 18 |
| 19 #include "../common/constants.h" |
| 20 #include <brotli/types.h> |
| 21 #include "./brotli_bit_stream.h" |
| 22 #include "./entropy_encode.h" |
| 23 #include "./fast_log.h" |
| 24 #include "./find_match_length.h" |
| 25 #include "./memory.h" |
| 26 #include "./port.h" |
| 27 #include "./write_bits.h" |
| 28 |
| 29 |
| 30 #if defined(__cplusplus) || defined(c_plusplus) |
| 31 extern "C" { |
| 32 #endif |
| 33 |
| 34 /* Same as MaxBackwardLimit(18) */ |
| 35 #define MAX_DISTANCE ((1 << 18) - BROTLI_WINDOW_GAP) |
| 36 |
| 37 /* kHashMul32 multiplier has these properties: |
| 38 * The multiplier must be odd. Otherwise we may lose the highest bit. |
| 39 * No long streaks of ones or zeros. |
| 40 * There is no effort to ensure that it is a prime, the oddity is enough |
| 41 for this use. |
| 42 * The number has been tuned heuristically against compression benchmarks. */ |
| 43 static const uint32_t kHashMul32 = 0x1e35a7bd; |
| 44 |
| 45 static BROTLI_INLINE uint32_t Hash(const uint8_t* p, size_t shift) { |
| 46 const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 24) * kHashMul32; |
| 47 return (uint32_t)(h >> shift); |
| 48 } |
| 49 |
| 50 static BROTLI_INLINE uint32_t HashBytesAtOffset( |
| 51 uint64_t v, int offset, size_t shift) { |
| 52 assert(offset >= 0); |
| 53 assert(offset <= 3); |
| 54 { |
| 55 const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32; |
| 56 return (uint32_t)(h >> shift); |
| 57 } |
| 58 } |
| 59 |
| 60 static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2) { |
| 61 return TO_BROTLI_BOOL( |
| 62 BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && |
| 63 p1[4] == p2[4]); |
| 64 } |
| 65 |
| 66 /* Builds a literal prefix code into "depths" and "bits" based on the statistics |
| 67 of the "input" string and stores it into the bit stream. |
| 68 Note that the prefix code here is built from the pre-LZ77 input, therefore |
| 69 we can only approximate the statistics of the actual literal stream. |
| 70 Moreover, for long inputs we build a histogram from a sample of the input |
| 71 and thus have to assign a non-zero depth for each literal. |
| 72 Returns estimated compression ratio millibytes/char for encoding given input |
| 73 with generated code. */ |
| 74 static size_t BuildAndStoreLiteralPrefixCode(MemoryManager* m, |
| 75 const uint8_t* input, |
| 76 const size_t input_size, |
| 77 uint8_t depths[256], |
| 78 uint16_t bits[256], |
| 79 size_t* storage_ix, |
| 80 uint8_t* storage) { |
| 81 uint32_t histogram[256] = { 0 }; |
| 82 size_t histogram_total; |
| 83 size_t i; |
| 84 if (input_size < (1 << 15)) { |
| 85 for (i = 0; i < input_size; ++i) { |
| 86 ++histogram[input[i]]; |
| 87 } |
| 88 histogram_total = input_size; |
| 89 for (i = 0; i < 256; ++i) { |
| 90 /* We weigh the first 11 samples with weight 3 to account for the |
| 91 balancing effect of the LZ77 phase on the histogram. */ |
| 92 const uint32_t adjust = 2 * BROTLI_MIN(uint32_t, histogram[i], 11u); |
| 93 histogram[i] += adjust; |
| 94 histogram_total += adjust; |
| 95 } |
| 96 } else { |
| 97 static const size_t kSampleRate = 29; |
| 98 for (i = 0; i < input_size; i += kSampleRate) { |
| 99 ++histogram[input[i]]; |
| 100 } |
| 101 histogram_total = (input_size + kSampleRate - 1) / kSampleRate; |
| 102 for (i = 0; i < 256; ++i) { |
| 103 /* We add 1 to each population count to avoid 0 bit depths (since this is |
| 104 only a sample and we don't know if the symbol appears or not), and we |
| 105 weigh the first 11 samples with weight 3 to account for the balancing |
| 106 effect of the LZ77 phase on the histogram (more frequent symbols are |
| 107 more likely to be in backward references instead as literals). */ |
| 108 const uint32_t adjust = 1 + 2 * BROTLI_MIN(uint32_t, histogram[i], 11u); |
| 109 histogram[i] += adjust; |
| 110 histogram_total += adjust; |
| 111 } |
| 112 } |
| 113 BrotliBuildAndStoreHuffmanTreeFast(m, histogram, histogram_total, |
| 114 /* max_bits = */ 8, |
| 115 depths, bits, storage_ix, storage); |
| 116 if (BROTLI_IS_OOM(m)) return 0; |
| 117 { |
| 118 size_t literal_ratio = 0; |
| 119 for (i = 0; i < 256; ++i) { |
| 120 if (histogram[i]) literal_ratio += histogram[i] * depths[i]; |
| 121 } |
| 122 /* Estimated encoding ratio, millibytes per symbol. */ |
| 123 return (literal_ratio * 125) / histogram_total; |
| 124 } |
| 125 } |
| 126 |
| 127 /* Builds a command and distance prefix code (each 64 symbols) into "depth" and |
| 128 "bits" based on "histogram" and stores it into the bit stream. */ |
| 129 static void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128], |
| 130 uint8_t depth[128], uint16_t bits[128], size_t* storage_ix, |
| 131 uint8_t* storage) { |
| 132 /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */ |
| 133 HuffmanTree tree[129]; |
| 134 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS] = { 0 }; |
| 135 uint16_t cmd_bits[64]; |
| 136 |
| 137 BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth); |
| 138 BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]); |
| 139 /* We have to jump through a few hoops here in order to compute |
| 140 the command bits because the symbols are in a different order than in |
| 141 the full alphabet. This looks complicated, but having the symbols |
| 142 in this order in the command bits saves a few branches in the Emit* |
| 143 functions. */ |
| 144 memcpy(cmd_depth, depth, 24); |
| 145 memcpy(cmd_depth + 24, depth + 40, 8); |
| 146 memcpy(cmd_depth + 32, depth + 24, 8); |
| 147 memcpy(cmd_depth + 40, depth + 48, 8); |
| 148 memcpy(cmd_depth + 48, depth + 32, 8); |
| 149 memcpy(cmd_depth + 56, depth + 56, 8); |
| 150 BrotliConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); |
| 151 memcpy(bits, cmd_bits, 48); |
| 152 memcpy(bits + 24, cmd_bits + 32, 16); |
| 153 memcpy(bits + 32, cmd_bits + 48, 16); |
| 154 memcpy(bits + 40, cmd_bits + 24, 16); |
| 155 memcpy(bits + 48, cmd_bits + 40, 16); |
| 156 memcpy(bits + 56, cmd_bits + 56, 16); |
| 157 BrotliConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); |
| 158 { |
| 159 /* Create the bit length array for the full command alphabet. */ |
| 160 size_t i; |
| 161 memset(cmd_depth, 0, 64); /* only 64 first values were used */ |
| 162 memcpy(cmd_depth, depth, 8); |
| 163 memcpy(cmd_depth + 64, depth + 8, 8); |
| 164 memcpy(cmd_depth + 128, depth + 16, 8); |
| 165 memcpy(cmd_depth + 192, depth + 24, 8); |
| 166 memcpy(cmd_depth + 384, depth + 32, 8); |
| 167 for (i = 0; i < 8; ++i) { |
| 168 cmd_depth[128 + 8 * i] = depth[40 + i]; |
| 169 cmd_depth[256 + 8 * i] = depth[48 + i]; |
| 170 cmd_depth[448 + 8 * i] = depth[56 + i]; |
| 171 } |
| 172 BrotliStoreHuffmanTree( |
| 173 cmd_depth, BROTLI_NUM_COMMAND_SYMBOLS, tree, storage_ix, storage); |
| 174 } |
| 175 BrotliStoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage); |
| 176 } |
| 177 |
| 178 /* REQUIRES: insertlen < 6210 */ |
| 179 static BROTLI_INLINE void EmitInsertLen(size_t insertlen, |
| 180 const uint8_t depth[128], |
| 181 const uint16_t bits[128], |
| 182 uint32_t histo[128], |
| 183 size_t* storage_ix, |
| 184 uint8_t* storage) { |
| 185 if (insertlen < 6) { |
| 186 const size_t code = insertlen + 40; |
| 187 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 188 ++histo[code]; |
| 189 } else if (insertlen < 130) { |
| 190 const size_t tail = insertlen - 2; |
| 191 const uint32_t nbits = Log2FloorNonZero(tail) - 1u; |
| 192 const size_t prefix = tail >> nbits; |
| 193 const size_t inscode = (nbits << 1) + prefix + 42; |
| 194 BrotliWriteBits(depth[inscode], bits[inscode], storage_ix, storage); |
| 195 BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage); |
| 196 ++histo[inscode]; |
| 197 } else if (insertlen < 2114) { |
| 198 const size_t tail = insertlen - 66; |
| 199 const uint32_t nbits = Log2FloorNonZero(tail); |
| 200 const size_t code = nbits + 50; |
| 201 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 202 BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage); |
| 203 ++histo[code]; |
| 204 } else { |
| 205 BrotliWriteBits(depth[61], bits[61], storage_ix, storage); |
| 206 BrotliWriteBits(12, insertlen - 2114, storage_ix, storage); |
| 207 ++histo[21]; |
| 208 } |
| 209 } |
| 210 |
| 211 static BROTLI_INLINE void EmitLongInsertLen(size_t insertlen, |
| 212 const uint8_t depth[128], |
| 213 const uint16_t bits[128], |
| 214 uint32_t histo[128], |
| 215 size_t* storage_ix, |
| 216 uint8_t* storage) { |
| 217 if (insertlen < 22594) { |
| 218 BrotliWriteBits(depth[62], bits[62], storage_ix, storage); |
| 219 BrotliWriteBits(14, insertlen - 6210, storage_ix, storage); |
| 220 ++histo[22]; |
| 221 } else { |
| 222 BrotliWriteBits(depth[63], bits[63], storage_ix, storage); |
| 223 BrotliWriteBits(24, insertlen - 22594, storage_ix, storage); |
| 224 ++histo[23]; |
| 225 } |
| 226 } |
| 227 |
| 228 static BROTLI_INLINE void EmitCopyLen(size_t copylen, |
| 229 const uint8_t depth[128], |
| 230 const uint16_t bits[128], |
| 231 uint32_t histo[128], |
| 232 size_t* storage_ix, |
| 233 uint8_t* storage) { |
| 234 if (copylen < 10) { |
| 235 BrotliWriteBits( |
| 236 depth[copylen + 14], bits[copylen + 14], storage_ix, storage); |
| 237 ++histo[copylen + 14]; |
| 238 } else if (copylen < 134) { |
| 239 const size_t tail = copylen - 6; |
| 240 const uint32_t nbits = Log2FloorNonZero(tail) - 1u; |
| 241 const size_t prefix = tail >> nbits; |
| 242 const size_t code = (nbits << 1) + prefix + 20; |
| 243 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 244 BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage); |
| 245 ++histo[code]; |
| 246 } else if (copylen < 2118) { |
| 247 const size_t tail = copylen - 70; |
| 248 const uint32_t nbits = Log2FloorNonZero(tail); |
| 249 const size_t code = nbits + 28; |
| 250 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 251 BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage); |
| 252 ++histo[code]; |
| 253 } else { |
| 254 BrotliWriteBits(depth[39], bits[39], storage_ix, storage); |
| 255 BrotliWriteBits(24, copylen - 2118, storage_ix, storage); |
| 256 ++histo[47]; |
| 257 } |
| 258 } |
| 259 |
| 260 static BROTLI_INLINE void EmitCopyLenLastDistance(size_t copylen, |
| 261 const uint8_t depth[128], |
| 262 const uint16_t bits[128], |
| 263 uint32_t histo[128], |
| 264 size_t* storage_ix, |
| 265 uint8_t* storage) { |
| 266 if (copylen < 12) { |
| 267 BrotliWriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage); |
| 268 ++histo[copylen - 4]; |
| 269 } else if (copylen < 72) { |
| 270 const size_t tail = copylen - 8; |
| 271 const uint32_t nbits = Log2FloorNonZero(tail) - 1; |
| 272 const size_t prefix = tail >> nbits; |
| 273 const size_t code = (nbits << 1) + prefix + 4; |
| 274 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 275 BrotliWriteBits(nbits, tail - (prefix << nbits), storage_ix, storage); |
| 276 ++histo[code]; |
| 277 } else if (copylen < 136) { |
| 278 const size_t tail = copylen - 8; |
| 279 const size_t code = (tail >> 5) + 30; |
| 280 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 281 BrotliWriteBits(5, tail & 31, storage_ix, storage); |
| 282 BrotliWriteBits(depth[64], bits[64], storage_ix, storage); |
| 283 ++histo[code]; |
| 284 ++histo[64]; |
| 285 } else if (copylen < 2120) { |
| 286 const size_t tail = copylen - 72; |
| 287 const uint32_t nbits = Log2FloorNonZero(tail); |
| 288 const size_t code = nbits + 28; |
| 289 BrotliWriteBits(depth[code], bits[code], storage_ix, storage); |
| 290 BrotliWriteBits(nbits, tail - ((size_t)1 << nbits), storage_ix, storage); |
| 291 BrotliWriteBits(depth[64], bits[64], storage_ix, storage); |
| 292 ++histo[code]; |
| 293 ++histo[64]; |
| 294 } else { |
| 295 BrotliWriteBits(depth[39], bits[39], storage_ix, storage); |
| 296 BrotliWriteBits(24, copylen - 2120, storage_ix, storage); |
| 297 BrotliWriteBits(depth[64], bits[64], storage_ix, storage); |
| 298 ++histo[47]; |
| 299 ++histo[64]; |
| 300 } |
| 301 } |
| 302 |
| 303 static BROTLI_INLINE void EmitDistance(size_t distance, |
| 304 const uint8_t depth[128], |
| 305 const uint16_t bits[128], |
| 306 uint32_t histo[128], |
| 307 size_t* storage_ix, uint8_t* storage) { |
| 308 const size_t d = distance + 3; |
| 309 const uint32_t nbits = Log2FloorNonZero(d) - 1u; |
| 310 const size_t prefix = (d >> nbits) & 1; |
| 311 const size_t offset = (2 + prefix) << nbits; |
| 312 const size_t distcode = 2 * (nbits - 1) + prefix + 80; |
| 313 BrotliWriteBits(depth[distcode], bits[distcode], storage_ix, storage); |
| 314 BrotliWriteBits(nbits, d - offset, storage_ix, storage); |
| 315 ++histo[distcode]; |
| 316 } |
| 317 |
| 318 static BROTLI_INLINE void EmitLiterals(const uint8_t* input, const size_t len, |
| 319 const uint8_t depth[256], |
| 320 const uint16_t bits[256], |
| 321 size_t* storage_ix, uint8_t* storage) { |
| 322 size_t j; |
| 323 for (j = 0; j < len; j++) { |
| 324 const uint8_t lit = input[j]; |
| 325 BrotliWriteBits(depth[lit], bits[lit], storage_ix, storage); |
| 326 } |
| 327 } |
| 328 |
| 329 /* REQUIRES: len <= 1 << 20. */ |
| 330 static void BrotliStoreMetaBlockHeader( |
| 331 size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix, |
| 332 uint8_t* storage) { |
| 333 /* ISLAST */ |
| 334 BrotliWriteBits(1, 0, storage_ix, storage); |
| 335 if (len <= (1U << 16)) { |
| 336 /* MNIBBLES is 4 */ |
| 337 BrotliWriteBits(2, 0, storage_ix, storage); |
| 338 BrotliWriteBits(16, len - 1, storage_ix, storage); |
| 339 } else { |
| 340 /* MNIBBLES is 5 */ |
| 341 BrotliWriteBits(2, 1, storage_ix, storage); |
| 342 BrotliWriteBits(20, len - 1, storage_ix, storage); |
| 343 } |
| 344 /* ISUNCOMPRESSED */ |
| 345 BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage); |
| 346 } |
| 347 |
| 348 static void UpdateBits(size_t n_bits, uint32_t bits, size_t pos, |
| 349 uint8_t *array) { |
| 350 while (n_bits > 0) { |
| 351 size_t byte_pos = pos >> 3; |
| 352 size_t n_unchanged_bits = pos & 7; |
| 353 size_t n_changed_bits = BROTLI_MIN(size_t, n_bits, 8 - n_unchanged_bits); |
| 354 size_t total_bits = n_unchanged_bits + n_changed_bits; |
| 355 uint32_t mask = |
| 356 (~((1u << total_bits) - 1u)) | ((1u << n_unchanged_bits) - 1u); |
| 357 uint32_t unchanged_bits = array[byte_pos] & mask; |
| 358 uint32_t changed_bits = bits & ((1u << n_changed_bits) - 1u); |
| 359 array[byte_pos] = |
| 360 (uint8_t)((changed_bits << n_unchanged_bits) | unchanged_bits); |
| 361 n_bits -= n_changed_bits; |
| 362 bits >>= n_changed_bits; |
| 363 pos += n_changed_bits; |
| 364 } |
| 365 } |
| 366 |
| 367 static void RewindBitPosition(const size_t new_storage_ix, |
| 368 size_t* storage_ix, uint8_t* storage) { |
| 369 const size_t bitpos = new_storage_ix & 7; |
| 370 const size_t mask = (1u << bitpos) - 1; |
| 371 storage[new_storage_ix >> 3] &= (uint8_t)mask; |
| 372 *storage_ix = new_storage_ix; |
| 373 } |
| 374 |
| 375 static BROTLI_BOOL ShouldMergeBlock( |
| 376 const uint8_t* data, size_t len, const uint8_t* depths) { |
| 377 size_t histo[256] = { 0 }; |
| 378 static const size_t kSampleRate = 43; |
| 379 size_t i; |
| 380 for (i = 0; i < len; i += kSampleRate) { |
| 381 ++histo[data[i]]; |
| 382 } |
| 383 { |
| 384 const size_t total = (len + kSampleRate - 1) / kSampleRate; |
| 385 double r = (FastLog2(total) + 0.5) * (double)total + 200; |
| 386 for (i = 0; i < 256; ++i) { |
| 387 r -= (double)histo[i] * (depths[i] + FastLog2(histo[i])); |
| 388 } |
| 389 return TO_BROTLI_BOOL(r >= 0.0); |
| 390 } |
| 391 } |
| 392 |
| 393 /* Acceptable loss for uncompressible speedup is 2% */ |
| 394 #define MIN_RATIO 980 |
| 395 |
| 396 static BROTLI_INLINE BROTLI_BOOL ShouldUseUncompressedMode( |
| 397 const uint8_t* metablock_start, const uint8_t* next_emit, |
| 398 const size_t insertlen, const size_t literal_ratio) { |
| 399 const size_t compressed = (size_t)(next_emit - metablock_start); |
| 400 if (compressed * 50 > insertlen) { |
| 401 return BROTLI_FALSE; |
| 402 } else { |
| 403 return TO_BROTLI_BOOL(literal_ratio > MIN_RATIO); |
| 404 } |
| 405 } |
| 406 |
| 407 static void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end, |
| 408 const size_t storage_ix_start, |
| 409 size_t* storage_ix, uint8_t* storage) { |
| 410 const size_t len = (size_t)(end - begin); |
| 411 RewindBitPosition(storage_ix_start, storage_ix, storage); |
| 412 BrotliStoreMetaBlockHeader(len, 1, storage_ix, storage); |
| 413 *storage_ix = (*storage_ix + 7u) & ~7u; |
| 414 memcpy(&storage[*storage_ix >> 3], begin, len); |
| 415 *storage_ix += len << 3; |
| 416 storage[*storage_ix >> 3] = 0; |
| 417 } |
| 418 |
| 419 static uint32_t kCmdHistoSeed[128] = { |
| 420 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, |
| 421 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, |
| 422 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, |
| 423 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 424 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 425 1, 1, 1, 1, 0, 0, 0, 0, |
| 426 }; |
| 427 |
| 428 static BROTLI_INLINE void BrotliCompressFragmentFastImpl( |
| 429 MemoryManager* m, const uint8_t* input, size_t input_size, |
| 430 BROTLI_BOOL is_last, int* table, size_t table_bits, uint8_t cmd_depth[128], |
| 431 uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code, |
| 432 size_t* storage_ix, uint8_t* storage) { |
| 433 uint32_t cmd_histo[128]; |
| 434 const uint8_t* ip_end; |
| 435 |
| 436 /* "next_emit" is a pointer to the first byte that is not covered by a |
| 437 previous copy. Bytes between "next_emit" and the start of the next copy or |
| 438 the end of the input will be emitted as literal bytes. */ |
| 439 const uint8_t* next_emit = input; |
| 440 /* Save the start of the first block for position and distance computations. |
| 441 */ |
| 442 const uint8_t* base_ip = input; |
| 443 |
| 444 static const size_t kFirstBlockSize = 3 << 15; |
| 445 static const size_t kMergeBlockSize = 1 << 16; |
| 446 |
| 447 const size_t kInputMarginBytes = BROTLI_WINDOW_GAP; |
| 448 const size_t kMinMatchLen = 5; |
| 449 |
| 450 const uint8_t* metablock_start = input; |
| 451 size_t block_size = BROTLI_MIN(size_t, input_size, kFirstBlockSize); |
| 452 size_t total_block_size = block_size; |
| 453 /* Save the bit position of the MLEN field of the meta-block header, so that |
| 454 we can update it later if we decide to extend this meta-block. */ |
| 455 size_t mlen_storage_ix = *storage_ix + 3; |
| 456 |
| 457 uint8_t lit_depth[256]; |
| 458 uint16_t lit_bits[256]; |
| 459 |
| 460 size_t literal_ratio; |
| 461 |
| 462 const uint8_t* ip; |
| 463 int last_distance; |
| 464 |
| 465 const size_t shift = 64u - table_bits; |
| 466 |
| 467 if (input_size == 0) { |
| 468 assert(is_last); |
| 469 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
| 470 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
| 471 *storage_ix = (*storage_ix + 7u) & ~7u; |
| 472 return; |
| 473 } |
| 474 |
| 475 BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage); |
| 476 /* No block splits, no contexts. */ |
| 477 BrotliWriteBits(13, 0, storage_ix, storage); |
| 478 |
| 479 literal_ratio = BuildAndStoreLiteralPrefixCode( |
| 480 m, input, block_size, lit_depth, lit_bits, storage_ix, storage); |
| 481 if (BROTLI_IS_OOM(m)) return; |
| 482 |
| 483 { |
| 484 /* Store the pre-compressed command and distance prefix codes. */ |
| 485 size_t i; |
| 486 for (i = 0; i + 7 < *cmd_code_numbits; i += 8) { |
| 487 BrotliWriteBits(8, cmd_code[i >> 3], storage_ix, storage); |
| 488 } |
| 489 } |
| 490 BrotliWriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3], |
| 491 storage_ix, storage); |
| 492 |
| 493 emit_commands: |
| 494 /* Initialize the command and distance histograms. We will gather |
| 495 statistics of command and distance codes during the processing |
| 496 of this block and use it to update the command and distance |
| 497 prefix codes for the next block. */ |
| 498 memcpy(cmd_histo, kCmdHistoSeed, sizeof(kCmdHistoSeed)); |
| 499 |
| 500 /* "ip" is the input pointer. */ |
| 501 ip = input; |
| 502 last_distance = -1; |
| 503 ip_end = input + block_size; |
| 504 |
| 505 if (BROTLI_PREDICT_TRUE(block_size >= kInputMarginBytes)) { |
| 506 /* For the last block, we need to keep a 16 bytes margin so that we can be |
| 507 sure that all distances are at most window size - 16. |
| 508 For all other blocks, we only need to keep a margin of 5 bytes so that |
| 509 we don't go over the block size with a copy. */ |
| 510 const size_t len_limit = BROTLI_MIN(size_t, block_size - kMinMatchLen, |
| 511 input_size - kInputMarginBytes); |
| 512 const uint8_t* ip_limit = input + len_limit; |
| 513 |
| 514 uint32_t next_hash; |
| 515 for (next_hash = Hash(++ip, shift); ; ) { |
| 516 /* Step 1: Scan forward in the input looking for a 5-byte-long match. |
| 517 If we get close to exhausting the input then goto emit_remainder. |
| 518 |
| 519 Heuristic match skipping: If 32 bytes are scanned with no matches |
| 520 found, start looking only at every other byte. If 32 more bytes are |
| 521 scanned, look at every third byte, etc.. When a match is found, |
| 522 immediately go back to looking at every byte. This is a small loss |
| 523 (~5% performance, ~0.1% density) for compressible data due to more |
| 524 bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
| 525 win since the compressor quickly "realizes" the data is incompressible |
| 526 and doesn't bother looking for matches everywhere. |
| 527 |
| 528 The "skip" variable keeps track of how many bytes there are since the |
| 529 last match; dividing it by 32 (i.e. right-shifting by five) gives the |
| 530 number of bytes to move ahead for each iteration. */ |
| 531 uint32_t skip = 32; |
| 532 |
| 533 const uint8_t* next_ip = ip; |
| 534 const uint8_t* candidate; |
| 535 assert(next_emit < ip); |
| 536 trawl: |
| 537 do { |
| 538 uint32_t hash = next_hash; |
| 539 uint32_t bytes_between_hash_lookups = skip++ >> 5; |
| 540 assert(hash == Hash(next_ip, shift)); |
| 541 ip = next_ip; |
| 542 next_ip = ip + bytes_between_hash_lookups; |
| 543 if (BROTLI_PREDICT_FALSE(next_ip > ip_limit)) { |
| 544 goto emit_remainder; |
| 545 } |
| 546 next_hash = Hash(next_ip, shift); |
| 547 candidate = ip - last_distance; |
| 548 if (IsMatch(ip, candidate)) { |
| 549 if (BROTLI_PREDICT_TRUE(candidate < ip)) { |
| 550 table[hash] = (int)(ip - base_ip); |
| 551 break; |
| 552 } |
| 553 } |
| 554 candidate = base_ip + table[hash]; |
| 555 assert(candidate >= base_ip); |
| 556 assert(candidate < ip); |
| 557 |
| 558 table[hash] = (int)(ip - base_ip); |
| 559 } while (BROTLI_PREDICT_TRUE(!IsMatch(ip, candidate))); |
| 560 |
| 561 /* Check copy distance. If candidate is not feasible, continue search. |
| 562 Checking is done outside of hot loop to reduce overhead. */ |
| 563 if (ip - candidate > MAX_DISTANCE) goto trawl; |
| 564 |
| 565 /* Step 2: Emit the found match together with the literal bytes from |
| 566 "next_emit" to the bit stream, and then see if we can find a next match |
| 567 immediately afterwards. Repeat until we find no match for the input |
| 568 without emitting some literal bytes. */ |
| 569 |
| 570 { |
| 571 /* We have a 5-byte match at ip, and we need to emit bytes in |
| 572 [next_emit, ip). */ |
| 573 const uint8_t* base = ip; |
| 574 size_t matched = 5 + FindMatchLengthWithLimit( |
| 575 candidate + 5, ip + 5, (size_t)(ip_end - ip) - 5); |
| 576 int distance = (int)(base - candidate); /* > 0 */ |
| 577 size_t insert = (size_t)(base - next_emit); |
| 578 ip += matched; |
| 579 assert(0 == memcmp(base, candidate, matched)); |
| 580 if (BROTLI_PREDICT_TRUE(insert < 6210)) { |
| 581 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, |
| 582 storage_ix, storage); |
| 583 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, |
| 584 literal_ratio)) { |
| 585 EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3, |
| 586 storage_ix, storage); |
| 587 input_size -= (size_t)(base - input); |
| 588 input = base; |
| 589 next_emit = input; |
| 590 goto next_block; |
| 591 } else { |
| 592 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, |
| 593 storage_ix, storage); |
| 594 } |
| 595 EmitLiterals(next_emit, insert, lit_depth, lit_bits, |
| 596 storage_ix, storage); |
| 597 if (distance == last_distance) { |
| 598 BrotliWriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage); |
| 599 ++cmd_histo[64]; |
| 600 } else { |
| 601 EmitDistance((size_t)distance, cmd_depth, cmd_bits, |
| 602 cmd_histo, storage_ix, storage); |
| 603 last_distance = distance; |
| 604 } |
| 605 EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo, |
| 606 storage_ix, storage); |
| 607 |
| 608 next_emit = ip; |
| 609 if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) { |
| 610 goto emit_remainder; |
| 611 } |
| 612 /* We could immediately start working at ip now, but to improve |
| 613 compression we first update "table" with the hashes of some positions |
| 614 within the last copy. */ |
| 615 { |
| 616 uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); |
| 617 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| 618 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); |
| 619 table[prev_hash] = (int)(ip - base_ip - 3); |
| 620 prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| 621 table[prev_hash] = (int)(ip - base_ip - 2); |
| 622 prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| 623 table[prev_hash] = (int)(ip - base_ip - 1); |
| 624 |
| 625 candidate = base_ip + table[cur_hash]; |
| 626 table[cur_hash] = (int)(ip - base_ip); |
| 627 } |
| 628 } |
| 629 |
| 630 while (IsMatch(ip, candidate)) { |
| 631 /* We have a 5-byte match at ip, and no need to emit any literal bytes |
| 632 prior to ip. */ |
| 633 const uint8_t* base = ip; |
| 634 size_t matched = 5 + FindMatchLengthWithLimit( |
| 635 candidate + 5, ip + 5, (size_t)(ip_end - ip) - 5); |
| 636 if (ip - candidate > MAX_DISTANCE) break; |
| 637 ip += matched; |
| 638 last_distance = (int)(base - candidate); /* > 0 */ |
| 639 assert(0 == memcmp(base, candidate, matched)); |
| 640 EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo, |
| 641 storage_ix, storage); |
| 642 EmitDistance((size_t)last_distance, cmd_depth, cmd_bits, |
| 643 cmd_histo, storage_ix, storage); |
| 644 |
| 645 next_emit = ip; |
| 646 if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) { |
| 647 goto emit_remainder; |
| 648 } |
| 649 /* We could immediately start working at ip now, but to improve |
| 650 compression we first update "table" with the hashes of some positions |
| 651 within the last copy. */ |
| 652 { |
| 653 uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); |
| 654 uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); |
| 655 uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); |
| 656 table[prev_hash] = (int)(ip - base_ip - 3); |
| 657 prev_hash = HashBytesAtOffset(input_bytes, 1, shift); |
| 658 table[prev_hash] = (int)(ip - base_ip - 2); |
| 659 prev_hash = HashBytesAtOffset(input_bytes, 2, shift); |
| 660 table[prev_hash] = (int)(ip - base_ip - 1); |
| 661 |
| 662 candidate = base_ip + table[cur_hash]; |
| 663 table[cur_hash] = (int)(ip - base_ip); |
| 664 } |
| 665 } |
| 666 |
| 667 next_hash = Hash(++ip, shift); |
| 668 } |
| 669 } |
| 670 |
| 671 emit_remainder: |
| 672 assert(next_emit <= ip_end); |
| 673 input += block_size; |
| 674 input_size -= block_size; |
| 675 block_size = BROTLI_MIN(size_t, input_size, kMergeBlockSize); |
| 676 |
| 677 /* Decide if we want to continue this meta-block instead of emitting the |
| 678 last insert-only command. */ |
| 679 if (input_size > 0 && |
| 680 total_block_size + block_size <= (1 << 20) && |
| 681 ShouldMergeBlock(input, block_size, lit_depth)) { |
| 682 assert(total_block_size > (1 << 16)); |
| 683 /* Update the size of the current meta-block and continue emitting commands. |
| 684 We can do this because the current size and the new size both have 5 |
| 685 nibbles. */ |
| 686 total_block_size += block_size; |
| 687 UpdateBits(20, (uint32_t)(total_block_size - 1), mlen_storage_ix, storage); |
| 688 goto emit_commands; |
| 689 } |
| 690 |
| 691 /* Emit the remaining bytes as literals. */ |
| 692 if (next_emit < ip_end) { |
| 693 const size_t insert = (size_t)(ip_end - next_emit); |
| 694 if (BROTLI_PREDICT_TRUE(insert < 6210)) { |
| 695 EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, |
| 696 storage_ix, storage); |
| 697 EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage); |
| 698 } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, |
| 699 literal_ratio)) { |
| 700 EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3, |
| 701 storage_ix, storage); |
| 702 } else { |
| 703 EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, |
| 704 storage_ix, storage); |
| 705 EmitLiterals(next_emit, insert, lit_depth, lit_bits, |
| 706 storage_ix, storage); |
| 707 } |
| 708 } |
| 709 next_emit = ip_end; |
| 710 |
| 711 next_block: |
| 712 /* If we have more data, write a new meta-block header and prefix codes and |
| 713 then continue emitting commands. */ |
| 714 if (input_size > 0) { |
| 715 metablock_start = input; |
| 716 block_size = BROTLI_MIN(size_t, input_size, kFirstBlockSize); |
| 717 total_block_size = block_size; |
| 718 /* Save the bit position of the MLEN field of the meta-block header, so that |
| 719 we can update it later if we decide to extend this meta-block. */ |
| 720 mlen_storage_ix = *storage_ix + 3; |
| 721 BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage); |
| 722 /* No block splits, no contexts. */ |
| 723 BrotliWriteBits(13, 0, storage_ix, storage); |
| 724 literal_ratio = BuildAndStoreLiteralPrefixCode( |
| 725 m, input, block_size, lit_depth, lit_bits, storage_ix, storage); |
| 726 if (BROTLI_IS_OOM(m)) return; |
| 727 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, |
| 728 storage_ix, storage); |
| 729 goto emit_commands; |
| 730 } |
| 731 |
| 732 if (is_last) { |
| 733 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
| 734 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
| 735 *storage_ix = (*storage_ix + 7u) & ~7u; |
| 736 } else { |
| 737 /* If this is not the last block, update the command and distance prefix |
| 738 codes for the next block and store the compressed forms. */ |
| 739 cmd_code[0] = 0; |
| 740 *cmd_code_numbits = 0; |
| 741 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, |
| 742 cmd_code_numbits, cmd_code); |
| 743 } |
| 744 } |
| 745 |
| 746 #define FOR_TABLE_BITS_(X) X(9) X(11) X(13) X(15) |
| 747 |
| 748 #define BAKE_METHOD_PARAM_(B) \ |
| 749 static BROTLI_NOINLINE void BrotliCompressFragmentFastImpl ## B( \ |
| 750 MemoryManager* m, const uint8_t* input, size_t input_size, \ |
| 751 BROTLI_BOOL is_last, int* table, uint8_t cmd_depth[128], \ |
| 752 uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code, \ |
| 753 size_t* storage_ix, uint8_t* storage) { \ |
| 754 BrotliCompressFragmentFastImpl(m, input, input_size, is_last, table, B, \ |
| 755 cmd_depth, cmd_bits, cmd_code_numbits, cmd_code, storage_ix, storage); \ |
| 756 } |
| 757 FOR_TABLE_BITS_(BAKE_METHOD_PARAM_) |
| 758 #undef BAKE_METHOD_PARAM_ |
| 759 |
| 760 void BrotliCompressFragmentFast( |
| 761 MemoryManager* m, const uint8_t* input, size_t input_size, |
| 762 BROTLI_BOOL is_last, int* table, size_t table_size, uint8_t cmd_depth[128], |
| 763 uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code, |
| 764 size_t* storage_ix, uint8_t* storage) { |
| 765 const size_t table_bits = Log2FloorNonZero(table_size); |
| 766 switch (table_bits) { |
| 767 #define CASE_(B) \ |
| 768 case B: \ |
| 769 BrotliCompressFragmentFastImpl ## B( \ |
| 770 m, input, input_size, is_last, table, cmd_depth, cmd_bits, \ |
| 771 cmd_code_numbits, cmd_code, storage_ix, storage); \ |
| 772 break; |
| 773 FOR_TABLE_BITS_(CASE_) |
| 774 #undef CASE_ |
| 775 default: assert(0); break; |
| 776 } |
| 777 } |
| 778 |
| 779 #undef FOR_TABLE_BITS_ |
| 780 |
| 781 #if defined(__cplusplus) || defined(c_plusplus) |
| 782 } /* extern "C" */ |
| 783 #endif |
OLD | NEW |