OLD | NEW |
(Empty) | |
| 1 /* Copyright 2014 Google Inc. All Rights Reserved. |
| 2 |
| 3 Distributed under MIT license. |
| 4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 5 */ |
| 6 |
| 7 /* Brotli bit stream functions to support the low level format. There are no |
| 8 compression algorithms here, just the right ordering of bits to match the |
| 9 specs. */ |
| 10 |
| 11 #include "./brotli_bit_stream.h" |
| 12 |
| 13 #include <string.h> /* memcpy, memset */ |
| 14 |
| 15 #include "../common/constants.h" |
| 16 #include <brotli/types.h> |
| 17 #include "./context.h" |
| 18 #include "./entropy_encode.h" |
| 19 #include "./entropy_encode_static.h" |
| 20 #include "./fast_log.h" |
| 21 #include "./memory.h" |
| 22 #include "./port.h" |
| 23 #include "./write_bits.h" |
| 24 |
| 25 #if defined(__cplusplus) || defined(c_plusplus) |
| 26 extern "C" { |
| 27 #endif |
| 28 |
| 29 #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1) |
| 30 /* The size of Huffman dictionary for distances assuming that NPOSTFIX = 0 and |
| 31 NDIRECT = 0. */ |
| 32 #define SIMPLE_DISTANCE_ALPHABET_SIZE (BROTLI_NUM_DISTANCE_SHORT_CODES + \ |
| 33 (2 * BROTLI_MAX_DISTANCE_BITS)) |
| 34 /* SIMPLE_DISTANCE_ALPHABET_SIZE == 64 */ |
| 35 #define SIMPLE_DISTANCE_ALPHABET_BITS 6 |
| 36 |
| 37 /* Represents the range of values belonging to a prefix code: |
| 38 [offset, offset + 2^nbits) */ |
| 39 typedef struct PrefixCodeRange { |
| 40 uint32_t offset; |
| 41 uint32_t nbits; |
| 42 } PrefixCodeRange; |
| 43 |
| 44 static const PrefixCodeRange |
| 45 kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = { |
| 46 { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3}, |
| 47 {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5}, |
| 48 {177, 5}, { 209, 5}, { 241, 6}, { 305, 6}, { 369, 7}, { 497, 8}, |
| 49 {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24} |
| 50 }; |
| 51 |
| 52 static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) { |
| 53 uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0); |
| 54 while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) && |
| 55 len >= kBlockLengthPrefixCode[code + 1].offset) ++code; |
| 56 return code; |
| 57 } |
| 58 |
| 59 static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code, |
| 60 uint32_t* n_extra, uint32_t* extra) { |
| 61 *code = BlockLengthPrefixCode(len); |
| 62 *n_extra = kBlockLengthPrefixCode[*code].nbits; |
| 63 *extra = len - kBlockLengthPrefixCode[*code].offset; |
| 64 } |
| 65 |
| 66 typedef struct BlockTypeCodeCalculator { |
| 67 size_t last_type; |
| 68 size_t second_last_type; |
| 69 } BlockTypeCodeCalculator; |
| 70 |
| 71 static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) { |
| 72 self->last_type = 1; |
| 73 self->second_last_type = 0; |
| 74 } |
| 75 |
| 76 static BROTLI_INLINE size_t NextBlockTypeCode( |
| 77 BlockTypeCodeCalculator* calculator, uint8_t type) { |
| 78 size_t type_code = (type == calculator->last_type + 1) ? 1u : |
| 79 (type == calculator->second_last_type) ? 0u : type + 2u; |
| 80 calculator->second_last_type = calculator->last_type; |
| 81 calculator->last_type = type; |
| 82 return type_code; |
| 83 } |
| 84 |
| 85 /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3) |
| 86 REQUIRES: length > 0 |
| 87 REQUIRES: length <= (1 << 24) */ |
| 88 static void BrotliEncodeMlen(size_t length, uint64_t* bits, |
| 89 size_t* numbits, uint64_t* nibblesbits) { |
| 90 size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1; |
| 91 size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; |
| 92 assert(length > 0); |
| 93 assert(length <= (1 << 24)); |
| 94 assert(lg <= 24); |
| 95 *nibblesbits = mnibbles - 4; |
| 96 *numbits = mnibbles * 4; |
| 97 *bits = length - 1; |
| 98 } |
| 99 |
| 100 static BROTLI_INLINE void StoreCommandExtra( |
| 101 const Command* cmd, size_t* storage_ix, uint8_t* storage) { |
| 102 uint32_t copylen_code = CommandCopyLenCode(cmd); |
| 103 uint16_t inscode = GetInsertLengthCode(cmd->insert_len_); |
| 104 uint16_t copycode = GetCopyLengthCode(copylen_code); |
| 105 uint32_t insnumextra = GetInsertExtra(inscode); |
| 106 uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode); |
| 107 uint64_t copyextraval = copylen_code - GetCopyBase(copycode); |
| 108 uint64_t bits = (copyextraval << insnumextra) | insextraval; |
| 109 BrotliWriteBits( |
| 110 insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage); |
| 111 } |
| 112 |
| 113 /* Data structure that stores almost everything that is needed to encode each |
| 114 block switch command. */ |
| 115 typedef struct BlockSplitCode { |
| 116 BlockTypeCodeCalculator type_code_calculator; |
| 117 uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| 118 uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| 119 uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| 120 uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| 121 } BlockSplitCode; |
| 122 |
| 123 /* Stores a number between 0 and 255. */ |
| 124 static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) { |
| 125 if (n == 0) { |
| 126 BrotliWriteBits(1, 0, storage_ix, storage); |
| 127 } else { |
| 128 size_t nbits = Log2FloorNonZero(n); |
| 129 BrotliWriteBits(1, 1, storage_ix, storage); |
| 130 BrotliWriteBits(3, nbits, storage_ix, storage); |
| 131 BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage); |
| 132 } |
| 133 } |
| 134 |
| 135 /* Stores the compressed meta-block header. |
| 136 REQUIRES: length > 0 |
| 137 REQUIRES: length <= (1 << 24) */ |
| 138 static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block, |
| 139 size_t length, |
| 140 size_t* storage_ix, |
| 141 uint8_t* storage) { |
| 142 uint64_t lenbits; |
| 143 size_t nlenbits; |
| 144 uint64_t nibblesbits; |
| 145 |
| 146 /* Write ISLAST bit. */ |
| 147 BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage); |
| 148 /* Write ISEMPTY bit. */ |
| 149 if (is_final_block) { |
| 150 BrotliWriteBits(1, 0, storage_ix, storage); |
| 151 } |
| 152 |
| 153 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
| 154 BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
| 155 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
| 156 |
| 157 if (!is_final_block) { |
| 158 /* Write ISUNCOMPRESSED bit. */ |
| 159 BrotliWriteBits(1, 0, storage_ix, storage); |
| 160 } |
| 161 } |
| 162 |
| 163 /* Stores the uncompressed meta-block header. |
| 164 REQUIRES: length > 0 |
| 165 REQUIRES: length <= (1 << 24) */ |
| 166 static void BrotliStoreUncompressedMetaBlockHeader(size_t length, |
| 167 size_t* storage_ix, |
| 168 uint8_t* storage) { |
| 169 uint64_t lenbits; |
| 170 size_t nlenbits; |
| 171 uint64_t nibblesbits; |
| 172 |
| 173 /* Write ISLAST bit. |
| 174 Uncompressed block cannot be the last one, so set to 0. */ |
| 175 BrotliWriteBits(1, 0, storage_ix, storage); |
| 176 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); |
| 177 BrotliWriteBits(2, nibblesbits, storage_ix, storage); |
| 178 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage); |
| 179 /* Write ISUNCOMPRESSED bit. */ |
| 180 BrotliWriteBits(1, 1, storage_ix, storage); |
| 181 } |
| 182 |
| 183 static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask( |
| 184 const int num_codes, const uint8_t* code_length_bitdepth, |
| 185 size_t* storage_ix, uint8_t* storage) { |
| 186 static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = { |
| 187 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| 188 }; |
| 189 /* The bit lengths of the Huffman code over the code length alphabet |
| 190 are compressed with the following static Huffman code: |
| 191 Symbol Code |
| 192 ------ ---- |
| 193 0 00 |
| 194 1 1110 |
| 195 2 110 |
| 196 3 01 |
| 197 4 10 |
| 198 5 1111 */ |
| 199 static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { |
| 200 0, 7, 3, 2, 1, 15 |
| 201 }; |
| 202 static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { |
| 203 2, 4, 3, 2, 2, 4 |
| 204 }; |
| 205 |
| 206 size_t skip_some = 0; /* skips none. */ |
| 207 |
| 208 /* Throw away trailing zeros: */ |
| 209 size_t codes_to_store = BROTLI_CODE_LENGTH_CODES; |
| 210 if (num_codes > 1) { |
| 211 for (; codes_to_store > 0; --codes_to_store) { |
| 212 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| 213 break; |
| 214 } |
| 215 } |
| 216 } |
| 217 if (code_length_bitdepth[kStorageOrder[0]] == 0 && |
| 218 code_length_bitdepth[kStorageOrder[1]] == 0) { |
| 219 skip_some = 2; /* skips two. */ |
| 220 if (code_length_bitdepth[kStorageOrder[2]] == 0) { |
| 221 skip_some = 3; /* skips three. */ |
| 222 } |
| 223 } |
| 224 BrotliWriteBits(2, skip_some, storage_ix, storage); |
| 225 { |
| 226 size_t i; |
| 227 for (i = skip_some; i < codes_to_store; ++i) { |
| 228 size_t l = code_length_bitdepth[kStorageOrder[i]]; |
| 229 BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], |
| 230 kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); |
| 231 } |
| 232 } |
| 233 } |
| 234 |
| 235 static void BrotliStoreHuffmanTreeToBitMask( |
| 236 const size_t huffman_tree_size, const uint8_t* huffman_tree, |
| 237 const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth, |
| 238 const uint16_t* code_length_bitdepth_symbols, |
| 239 size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) { |
| 240 size_t i; |
| 241 for (i = 0; i < huffman_tree_size; ++i) { |
| 242 size_t ix = huffman_tree[i]; |
| 243 BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], |
| 244 storage_ix, storage); |
| 245 /* Extra bits */ |
| 246 switch (ix) { |
| 247 case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH: |
| 248 BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); |
| 249 break; |
| 250 case BROTLI_REPEAT_ZERO_CODE_LENGTH: |
| 251 BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); |
| 252 break; |
| 253 } |
| 254 } |
| 255 } |
| 256 |
| 257 static void StoreSimpleHuffmanTree(const uint8_t* depths, |
| 258 size_t symbols[4], |
| 259 size_t num_symbols, |
| 260 size_t max_bits, |
| 261 size_t *storage_ix, uint8_t *storage) { |
| 262 /* value of 1 indicates a simple Huffman code */ |
| 263 BrotliWriteBits(2, 1, storage_ix, storage); |
| 264 BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */ |
| 265 |
| 266 { |
| 267 /* Sort */ |
| 268 size_t i; |
| 269 for (i = 0; i < num_symbols; i++) { |
| 270 size_t j; |
| 271 for (j = i + 1; j < num_symbols; j++) { |
| 272 if (depths[symbols[j]] < depths[symbols[i]]) { |
| 273 BROTLI_SWAP(size_t, symbols, j, i); |
| 274 } |
| 275 } |
| 276 } |
| 277 } |
| 278 |
| 279 if (num_symbols == 2) { |
| 280 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 281 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 282 } else if (num_symbols == 3) { |
| 283 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 284 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 285 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| 286 } else { |
| 287 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 288 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 289 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| 290 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
| 291 /* tree-select */ |
| 292 BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
| 293 } |
| 294 } |
| 295 |
| 296 /* num = alphabet size |
| 297 depths = symbol depths */ |
| 298 void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num, |
| 299 HuffmanTree* tree, |
| 300 size_t *storage_ix, uint8_t *storage) { |
| 301 /* Write the Huffman tree into the brotli-representation. |
| 302 The command alphabet is the largest, so this allocation will fit all |
| 303 alphabets. */ |
| 304 uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 305 uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 306 size_t huffman_tree_size = 0; |
| 307 uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
| 308 uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES]; |
| 309 uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 }; |
| 310 size_t i; |
| 311 int num_codes = 0; |
| 312 size_t code = 0; |
| 313 |
| 314 assert(num <= BROTLI_NUM_COMMAND_SYMBOLS); |
| 315 |
| 316 BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree, |
| 317 huffman_tree_extra_bits); |
| 318 |
| 319 /* Calculate the statistics of the Huffman tree in brotli-representation. */ |
| 320 for (i = 0; i < huffman_tree_size; ++i) { |
| 321 ++huffman_tree_histogram[huffman_tree[i]]; |
| 322 } |
| 323 |
| 324 for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) { |
| 325 if (huffman_tree_histogram[i]) { |
| 326 if (num_codes == 0) { |
| 327 code = i; |
| 328 num_codes = 1; |
| 329 } else if (num_codes == 1) { |
| 330 num_codes = 2; |
| 331 break; |
| 332 } |
| 333 } |
| 334 } |
| 335 |
| 336 /* Calculate another Huffman tree to use for compressing both the |
| 337 earlier Huffman tree with. */ |
| 338 BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES, |
| 339 5, tree, code_length_bitdepth); |
| 340 BrotliConvertBitDepthsToSymbols(code_length_bitdepth, |
| 341 BROTLI_CODE_LENGTH_CODES, |
| 342 code_length_bitdepth_symbols); |
| 343 |
| 344 /* Now, we have all the data, let's start storing it */ |
| 345 BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, |
| 346 storage_ix, storage); |
| 347 |
| 348 if (num_codes == 1) { |
| 349 code_length_bitdepth[code] = 0; |
| 350 } |
| 351 |
| 352 /* Store the real Huffman tree now. */ |
| 353 BrotliStoreHuffmanTreeToBitMask(huffman_tree_size, |
| 354 huffman_tree, |
| 355 huffman_tree_extra_bits, |
| 356 code_length_bitdepth, |
| 357 code_length_bitdepth_symbols, |
| 358 storage_ix, storage); |
| 359 } |
| 360 |
| 361 /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and |
| 362 bits[0:length] and stores the encoded tree to the bit stream. */ |
| 363 static void BuildAndStoreHuffmanTree(const uint32_t *histogram, |
| 364 const size_t length, |
| 365 HuffmanTree* tree, |
| 366 uint8_t* depth, |
| 367 uint16_t* bits, |
| 368 size_t* storage_ix, |
| 369 uint8_t* storage) { |
| 370 size_t count = 0; |
| 371 size_t s4[4] = { 0 }; |
| 372 size_t i; |
| 373 size_t max_bits = 0; |
| 374 for (i = 0; i < length; i++) { |
| 375 if (histogram[i]) { |
| 376 if (count < 4) { |
| 377 s4[count] = i; |
| 378 } else if (count > 4) { |
| 379 break; |
| 380 } |
| 381 count++; |
| 382 } |
| 383 } |
| 384 |
| 385 { |
| 386 size_t max_bits_counter = length - 1; |
| 387 while (max_bits_counter) { |
| 388 max_bits_counter >>= 1; |
| 389 ++max_bits; |
| 390 } |
| 391 } |
| 392 |
| 393 if (count <= 1) { |
| 394 BrotliWriteBits(4, 1, storage_ix, storage); |
| 395 BrotliWriteBits(max_bits, s4[0], storage_ix, storage); |
| 396 depth[s4[0]] = 0; |
| 397 bits[s4[0]] = 0; |
| 398 return; |
| 399 } |
| 400 |
| 401 memset(depth, 0, length * sizeof(depth[0])); |
| 402 BrotliCreateHuffmanTree(histogram, length, 15, tree, depth); |
| 403 BrotliConvertBitDepthsToSymbols(depth, length, bits); |
| 404 |
| 405 if (count <= 4) { |
| 406 StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); |
| 407 } else { |
| 408 BrotliStoreHuffmanTree(depth, length, tree, storage_ix, storage); |
| 409 } |
| 410 } |
| 411 |
| 412 static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree( |
| 413 const HuffmanTree* v0, const HuffmanTree* v1) { |
| 414 return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_); |
| 415 } |
| 416 |
| 417 void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m, |
| 418 const uint32_t* histogram, |
| 419 const size_t histogram_total, |
| 420 const size_t max_bits, |
| 421 uint8_t* depth, uint16_t* bits, |
| 422 size_t* storage_ix, |
| 423 uint8_t* storage) { |
| 424 size_t count = 0; |
| 425 size_t symbols[4] = { 0 }; |
| 426 size_t length = 0; |
| 427 size_t total = histogram_total; |
| 428 while (total != 0) { |
| 429 if (histogram[length]) { |
| 430 if (count < 4) { |
| 431 symbols[count] = length; |
| 432 } |
| 433 ++count; |
| 434 total -= histogram[length]; |
| 435 } |
| 436 ++length; |
| 437 } |
| 438 |
| 439 if (count <= 1) { |
| 440 BrotliWriteBits(4, 1, storage_ix, storage); |
| 441 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 442 depth[symbols[0]] = 0; |
| 443 bits[symbols[0]] = 0; |
| 444 return; |
| 445 } |
| 446 |
| 447 memset(depth, 0, length * sizeof(depth[0])); |
| 448 { |
| 449 const size_t max_tree_size = 2 * length + 1; |
| 450 HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size); |
| 451 uint32_t count_limit; |
| 452 if (BROTLI_IS_OOM(m)) return; |
| 453 for (count_limit = 1; ; count_limit *= 2) { |
| 454 HuffmanTree* node = tree; |
| 455 size_t l; |
| 456 for (l = length; l != 0;) { |
| 457 --l; |
| 458 if (histogram[l]) { |
| 459 if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) { |
| 460 InitHuffmanTree(node, histogram[l], -1, (int16_t)l); |
| 461 } else { |
| 462 InitHuffmanTree(node, count_limit, -1, (int16_t)l); |
| 463 } |
| 464 ++node; |
| 465 } |
| 466 } |
| 467 { |
| 468 const int n = (int)(node - tree); |
| 469 HuffmanTree sentinel; |
| 470 int i = 0; /* Points to the next leaf node. */ |
| 471 int j = n + 1; /* Points to the next non-leaf node. */ |
| 472 int k; |
| 473 |
| 474 SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree); |
| 475 /* The nodes are: |
| 476 [0, n): the sorted leaf nodes that we start with. |
| 477 [n]: we add a sentinel here. |
| 478 [n + 1, 2n): new parent nodes are added here, starting from |
| 479 (n+1). These are naturally in ascending order. |
| 480 [2n]: we add a sentinel at the end as well. |
| 481 There will be (2n+1) elements at the end. */ |
| 482 InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1); |
| 483 *node++ = sentinel; |
| 484 *node++ = sentinel; |
| 485 |
| 486 for (k = n - 1; k > 0; --k) { |
| 487 int left, right; |
| 488 if (tree[i].total_count_ <= tree[j].total_count_) { |
| 489 left = i; |
| 490 ++i; |
| 491 } else { |
| 492 left = j; |
| 493 ++j; |
| 494 } |
| 495 if (tree[i].total_count_ <= tree[j].total_count_) { |
| 496 right = i; |
| 497 ++i; |
| 498 } else { |
| 499 right = j; |
| 500 ++j; |
| 501 } |
| 502 /* The sentinel node becomes the parent node. */ |
| 503 node[-1].total_count_ = |
| 504 tree[left].total_count_ + tree[right].total_count_; |
| 505 node[-1].index_left_ = (int16_t)left; |
| 506 node[-1].index_right_or_value_ = (int16_t)right; |
| 507 /* Add back the last sentinel node. */ |
| 508 *node++ = sentinel; |
| 509 } |
| 510 if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) { |
| 511 /* We need to pack the Huffman tree in 14 bits. If this was not |
| 512 successful, add fake entities to the lowest values and retry. */ |
| 513 break; |
| 514 } |
| 515 } |
| 516 } |
| 517 BROTLI_FREE(m, tree); |
| 518 } |
| 519 BrotliConvertBitDepthsToSymbols(depth, length, bits); |
| 520 if (count <= 4) { |
| 521 size_t i; |
| 522 /* value of 1 indicates a simple Huffman code */ |
| 523 BrotliWriteBits(2, 1, storage_ix, storage); |
| 524 BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */ |
| 525 |
| 526 /* Sort */ |
| 527 for (i = 0; i < count; i++) { |
| 528 size_t j; |
| 529 for (j = i + 1; j < count; j++) { |
| 530 if (depth[symbols[j]] < depth[symbols[i]]) { |
| 531 BROTLI_SWAP(size_t, symbols, j, i); |
| 532 } |
| 533 } |
| 534 } |
| 535 |
| 536 if (count == 2) { |
| 537 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 538 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 539 } else if (count == 3) { |
| 540 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 541 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 542 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| 543 } else { |
| 544 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage); |
| 545 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage); |
| 546 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage); |
| 547 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage); |
| 548 /* tree-select */ |
| 549 BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); |
| 550 } |
| 551 } else { |
| 552 uint8_t previous_value = 8; |
| 553 size_t i; |
| 554 /* Complex Huffman Tree */ |
| 555 StoreStaticCodeLengthCode(storage_ix, storage); |
| 556 |
| 557 /* Actual RLE coding. */ |
| 558 for (i = 0; i < length;) { |
| 559 const uint8_t value = depth[i]; |
| 560 size_t reps = 1; |
| 561 size_t k; |
| 562 for (k = i + 1; k < length && depth[k] == value; ++k) { |
| 563 ++reps; |
| 564 } |
| 565 i += reps; |
| 566 if (value == 0) { |
| 567 BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps], |
| 568 storage_ix, storage); |
| 569 } else { |
| 570 if (previous_value != value) { |
| 571 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
| 572 storage_ix, storage); |
| 573 --reps; |
| 574 } |
| 575 if (reps < 3) { |
| 576 while (reps != 0) { |
| 577 reps--; |
| 578 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], |
| 579 storage_ix, storage); |
| 580 } |
| 581 } else { |
| 582 reps -= 3; |
| 583 BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps], |
| 584 storage_ix, storage); |
| 585 } |
| 586 previous_value = value; |
| 587 } |
| 588 } |
| 589 } |
| 590 } |
| 591 |
| 592 static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) { |
| 593 size_t i = 0; |
| 594 for (; i < v_size; ++i) { |
| 595 if (v[i] == value) return i; |
| 596 } |
| 597 return i; |
| 598 } |
| 599 |
| 600 static void MoveToFront(uint8_t* v, size_t index) { |
| 601 uint8_t value = v[index]; |
| 602 size_t i; |
| 603 for (i = index; i != 0; --i) { |
| 604 v[i] = v[i - 1]; |
| 605 } |
| 606 v[0] = value; |
| 607 } |
| 608 |
| 609 static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in, |
| 610 const size_t v_size, |
| 611 uint32_t* v_out) { |
| 612 size_t i; |
| 613 uint8_t mtf[256]; |
| 614 uint32_t max_value; |
| 615 if (v_size == 0) { |
| 616 return; |
| 617 } |
| 618 max_value = v_in[0]; |
| 619 for (i = 1; i < v_size; ++i) { |
| 620 if (v_in[i] > max_value) max_value = v_in[i]; |
| 621 } |
| 622 assert(max_value < 256u); |
| 623 for (i = 0; i <= max_value; ++i) { |
| 624 mtf[i] = (uint8_t)i; |
| 625 } |
| 626 { |
| 627 size_t mtf_size = max_value + 1; |
| 628 for (i = 0; i < v_size; ++i) { |
| 629 size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]); |
| 630 assert(index < mtf_size); |
| 631 v_out[i] = (uint32_t)index; |
| 632 MoveToFront(mtf, index); |
| 633 } |
| 634 } |
| 635 } |
| 636 |
| 637 /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of |
| 638 the run length plus extra bits (lower 9 bits is the prefix code and the rest |
| 639 are the extra bits). Non-zero values in v[] are shifted by |
| 640 *max_length_prefix. Will not create prefix codes bigger than the initial |
| 641 value of *max_run_length_prefix. The prefix code of run length L is simply |
| 642 Log2Floor(L) and the number of extra bits is the same as the prefix code. */ |
| 643 static void RunLengthCodeZeros(const size_t in_size, |
| 644 uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size, |
| 645 uint32_t* BROTLI_RESTRICT max_run_length_prefix) { |
| 646 uint32_t max_reps = 0; |
| 647 size_t i; |
| 648 uint32_t max_prefix; |
| 649 for (i = 0; i < in_size;) { |
| 650 uint32_t reps = 0; |
| 651 for (; i < in_size && v[i] != 0; ++i) ; |
| 652 for (; i < in_size && v[i] == 0; ++i) { |
| 653 ++reps; |
| 654 } |
| 655 max_reps = BROTLI_MAX(uint32_t, reps, max_reps); |
| 656 } |
| 657 max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0; |
| 658 max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix); |
| 659 *max_run_length_prefix = max_prefix; |
| 660 *out_size = 0; |
| 661 for (i = 0; i < in_size;) { |
| 662 assert(*out_size <= i); |
| 663 if (v[i] != 0) { |
| 664 v[*out_size] = v[i] + *max_run_length_prefix; |
| 665 ++i; |
| 666 ++(*out_size); |
| 667 } else { |
| 668 uint32_t reps = 1; |
| 669 size_t k; |
| 670 for (k = i + 1; k < in_size && v[k] == 0; ++k) { |
| 671 ++reps; |
| 672 } |
| 673 i += reps; |
| 674 while (reps != 0) { |
| 675 if (reps < (2u << max_prefix)) { |
| 676 uint32_t run_length_prefix = Log2FloorNonZero(reps); |
| 677 const uint32_t extra_bits = reps - (1u << run_length_prefix); |
| 678 v[*out_size] = run_length_prefix + (extra_bits << 9); |
| 679 ++(*out_size); |
| 680 break; |
| 681 } else { |
| 682 const uint32_t extra_bits = (1u << max_prefix) - 1u; |
| 683 v[*out_size] = max_prefix + (extra_bits << 9); |
| 684 reps -= (2u << max_prefix) - 1u; |
| 685 ++(*out_size); |
| 686 } |
| 687 } |
| 688 } |
| 689 } |
| 690 } |
| 691 |
| 692 #define SYMBOL_BITS 9 |
| 693 |
| 694 static void EncodeContextMap(MemoryManager* m, |
| 695 const uint32_t* context_map, |
| 696 size_t context_map_size, |
| 697 size_t num_clusters, |
| 698 HuffmanTree* tree, |
| 699 size_t* storage_ix, uint8_t* storage) { |
| 700 size_t i; |
| 701 uint32_t* rle_symbols; |
| 702 uint32_t max_run_length_prefix = 6; |
| 703 size_t num_rle_symbols = 0; |
| 704 uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 705 static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u; |
| 706 uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 707 uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 708 |
| 709 StoreVarLenUint8(num_clusters - 1, storage_ix, storage); |
| 710 |
| 711 if (num_clusters == 1) { |
| 712 return; |
| 713 } |
| 714 |
| 715 rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size); |
| 716 if (BROTLI_IS_OOM(m)) return; |
| 717 MoveToFrontTransform(context_map, context_map_size, rle_symbols); |
| 718 RunLengthCodeZeros(context_map_size, rle_symbols, |
| 719 &num_rle_symbols, &max_run_length_prefix); |
| 720 memset(histogram, 0, sizeof(histogram)); |
| 721 for (i = 0; i < num_rle_symbols; ++i) { |
| 722 ++histogram[rle_symbols[i] & kSymbolMask]; |
| 723 } |
| 724 { |
| 725 BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0); |
| 726 BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage); |
| 727 if (use_rle) { |
| 728 BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage); |
| 729 } |
| 730 } |
| 731 BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix, |
| 732 tree, depths, bits, storage_ix, storage); |
| 733 for (i = 0; i < num_rle_symbols; ++i) { |
| 734 const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask; |
| 735 const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS; |
| 736 BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage); |
| 737 if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) { |
| 738 BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage); |
| 739 } |
| 740 } |
| 741 BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */ |
| 742 BROTLI_FREE(m, rle_symbols); |
| 743 } |
| 744 |
| 745 /* Stores the block switch command with index block_ix to the bit stream. */ |
| 746 static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code, |
| 747 const uint32_t block_len, |
| 748 const uint8_t block_type, |
| 749 BROTLI_BOOL is_first_block, |
| 750 size_t* storage_ix, |
| 751 uint8_t* storage) { |
| 752 size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type); |
| 753 size_t lencode; |
| 754 uint32_t len_nextra; |
| 755 uint32_t len_extra; |
| 756 if (!is_first_block) { |
| 757 BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode], |
| 758 storage_ix, storage); |
| 759 } |
| 760 GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra); |
| 761 |
| 762 BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode], |
| 763 storage_ix, storage); |
| 764 BrotliWriteBits(len_nextra, len_extra, storage_ix, storage); |
| 765 } |
| 766 |
| 767 /* Builds a BlockSplitCode data structure from the block split given by the |
| 768 vector of block types and block lengths and stores it to the bit stream. */ |
| 769 static void BuildAndStoreBlockSplitCode(const uint8_t* types, |
| 770 const uint32_t* lengths, |
| 771 const size_t num_blocks, |
| 772 const size_t num_types, |
| 773 HuffmanTree* tree, |
| 774 BlockSplitCode* code, |
| 775 size_t* storage_ix, |
| 776 uint8_t* storage) { |
| 777 uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS]; |
| 778 uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS]; |
| 779 size_t i; |
| 780 BlockTypeCodeCalculator type_code_calculator; |
| 781 memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0])); |
| 782 memset(length_histo, 0, sizeof(length_histo)); |
| 783 InitBlockTypeCodeCalculator(&type_code_calculator); |
| 784 for (i = 0; i < num_blocks; ++i) { |
| 785 size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]); |
| 786 if (i != 0) ++type_histo[type_code]; |
| 787 ++length_histo[BlockLengthPrefixCode(lengths[i])]; |
| 788 } |
| 789 StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| 790 if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */ |
| 791 BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, tree, |
| 792 &code->type_depths[0], &code->type_bits[0], |
| 793 storage_ix, storage); |
| 794 BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS, |
| 795 tree, &code->length_depths[0], |
| 796 &code->length_bits[0], storage_ix, storage); |
| 797 StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage); |
| 798 } |
| 799 } |
| 800 |
| 801 /* Stores a context map where the histogram type is always the block type. */ |
| 802 static void StoreTrivialContextMap(size_t num_types, |
| 803 size_t context_bits, |
| 804 HuffmanTree* tree, |
| 805 size_t* storage_ix, |
| 806 uint8_t* storage) { |
| 807 StoreVarLenUint8(num_types - 1, storage_ix, storage); |
| 808 if (num_types > 1) { |
| 809 size_t repeat_code = context_bits - 1u; |
| 810 size_t repeat_bits = (1u << repeat_code) - 1u; |
| 811 size_t alphabet_size = num_types + repeat_code; |
| 812 uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 813 uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 814 uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS]; |
| 815 size_t i; |
| 816 memset(histogram, 0, alphabet_size * sizeof(histogram[0])); |
| 817 /* Write RLEMAX. */ |
| 818 BrotliWriteBits(1, 1, storage_ix, storage); |
| 819 BrotliWriteBits(4, repeat_code - 1, storage_ix, storage); |
| 820 histogram[repeat_code] = (uint32_t)num_types; |
| 821 histogram[0] = 1; |
| 822 for (i = context_bits; i < alphabet_size; ++i) { |
| 823 histogram[i] = 1; |
| 824 } |
| 825 BuildAndStoreHuffmanTree(histogram, alphabet_size, tree, |
| 826 depths, bits, storage_ix, storage); |
| 827 for (i = 0; i < num_types; ++i) { |
| 828 size_t code = (i == 0 ? 0 : i + context_bits - 1); |
| 829 BrotliWriteBits(depths[code], bits[code], storage_ix, storage); |
| 830 BrotliWriteBits( |
| 831 depths[repeat_code], bits[repeat_code], storage_ix, storage); |
| 832 BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage); |
| 833 } |
| 834 /* Write IMTF (inverse-move-to-front) bit. */ |
| 835 BrotliWriteBits(1, 1, storage_ix, storage); |
| 836 } |
| 837 } |
| 838 |
| 839 /* Manages the encoding of one block category (literal, command or distance). */ |
| 840 typedef struct BlockEncoder { |
| 841 size_t alphabet_size_; |
| 842 size_t num_block_types_; |
| 843 const uint8_t* block_types_; /* Not owned. */ |
| 844 const uint32_t* block_lengths_; /* Not owned. */ |
| 845 size_t num_blocks_; |
| 846 BlockSplitCode block_split_code_; |
| 847 size_t block_ix_; |
| 848 size_t block_len_; |
| 849 size_t entropy_ix_; |
| 850 uint8_t* depths_; |
| 851 uint16_t* bits_; |
| 852 } BlockEncoder; |
| 853 |
| 854 static void InitBlockEncoder(BlockEncoder* self, size_t alphabet_size, |
| 855 size_t num_block_types, const uint8_t* block_types, |
| 856 const uint32_t* block_lengths, const size_t num_blocks) { |
| 857 self->alphabet_size_ = alphabet_size; |
| 858 self->num_block_types_ = num_block_types; |
| 859 self->block_types_ = block_types; |
| 860 self->block_lengths_ = block_lengths; |
| 861 self->num_blocks_ = num_blocks; |
| 862 InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator); |
| 863 self->block_ix_ = 0; |
| 864 self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0]; |
| 865 self->entropy_ix_ = 0; |
| 866 self->depths_ = 0; |
| 867 self->bits_ = 0; |
| 868 } |
| 869 |
| 870 static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) { |
| 871 BROTLI_FREE(m, self->depths_); |
| 872 BROTLI_FREE(m, self->bits_); |
| 873 } |
| 874 |
| 875 /* Creates entropy codes of block lengths and block types and stores them |
| 876 to the bit stream. */ |
| 877 static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self, |
| 878 HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) { |
| 879 BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_, |
| 880 self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_, |
| 881 storage_ix, storage); |
| 882 } |
| 883 |
| 884 /* Stores the next symbol with the entropy code of the current block type. |
| 885 Updates the block type and block length at block boundaries. */ |
| 886 static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix, |
| 887 uint8_t* storage) { |
| 888 if (self->block_len_ == 0) { |
| 889 size_t block_ix = ++self->block_ix_; |
| 890 uint32_t block_len = self->block_lengths_[block_ix]; |
| 891 uint8_t block_type = self->block_types_[block_ix]; |
| 892 self->block_len_ = block_len; |
| 893 self->entropy_ix_ = block_type * self->alphabet_size_; |
| 894 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
| 895 storage_ix, storage); |
| 896 } |
| 897 --self->block_len_; |
| 898 { |
| 899 size_t ix = self->entropy_ix_ + symbol; |
| 900 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
| 901 } |
| 902 } |
| 903 |
| 904 /* Stores the next symbol with the entropy code of the current block type and |
| 905 context value. |
| 906 Updates the block type and block length at block boundaries. */ |
| 907 static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol, |
| 908 size_t context, const uint32_t* context_map, size_t* storage_ix, |
| 909 uint8_t* storage, const size_t context_bits) { |
| 910 if (self->block_len_ == 0) { |
| 911 size_t block_ix = ++self->block_ix_; |
| 912 uint32_t block_len = self->block_lengths_[block_ix]; |
| 913 uint8_t block_type = self->block_types_[block_ix]; |
| 914 self->block_len_ = block_len; |
| 915 self->entropy_ix_ = (size_t)block_type << context_bits; |
| 916 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0, |
| 917 storage_ix, storage); |
| 918 } |
| 919 --self->block_len_; |
| 920 { |
| 921 size_t histo_ix = context_map[self->entropy_ix_ + context]; |
| 922 size_t ix = histo_ix * self->alphabet_size_ + symbol; |
| 923 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage); |
| 924 } |
| 925 } |
| 926 |
| 927 #define FN(X) X ## Literal |
| 928 /* NOLINTNEXTLINE(build/include) */ |
| 929 #include "./block_encoder_inc.h" |
| 930 #undef FN |
| 931 |
| 932 #define FN(X) X ## Command |
| 933 /* NOLINTNEXTLINE(build/include) */ |
| 934 #include "./block_encoder_inc.h" |
| 935 #undef FN |
| 936 |
| 937 #define FN(X) X ## Distance |
| 938 /* NOLINTNEXTLINE(build/include) */ |
| 939 #include "./block_encoder_inc.h" |
| 940 #undef FN |
| 941 |
| 942 static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) { |
| 943 *storage_ix = (*storage_ix + 7u) & ~7u; |
| 944 storage[*storage_ix >> 3] = 0; |
| 945 } |
| 946 |
| 947 void BrotliStoreMetaBlock(MemoryManager* m, |
| 948 const uint8_t* input, |
| 949 size_t start_pos, |
| 950 size_t length, |
| 951 size_t mask, |
| 952 uint8_t prev_byte, |
| 953 uint8_t prev_byte2, |
| 954 BROTLI_BOOL is_last, |
| 955 uint32_t num_direct_distance_codes, |
| 956 uint32_t distance_postfix_bits, |
| 957 ContextType literal_context_mode, |
| 958 const Command *commands, |
| 959 size_t n_commands, |
| 960 const MetaBlockSplit* mb, |
| 961 size_t *storage_ix, |
| 962 uint8_t *storage) { |
| 963 size_t pos = start_pos; |
| 964 size_t i; |
| 965 size_t num_distance_codes = |
| 966 BROTLI_NUM_DISTANCE_SHORT_CODES + num_direct_distance_codes + |
| 967 (48u << distance_postfix_bits); |
| 968 HuffmanTree* tree; |
| 969 BlockEncoder literal_enc; |
| 970 BlockEncoder command_enc; |
| 971 BlockEncoder distance_enc; |
| 972 |
| 973 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| 974 |
| 975 tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); |
| 976 if (BROTLI_IS_OOM(m)) return; |
| 977 InitBlockEncoder(&literal_enc, 256, mb->literal_split.num_types, |
| 978 mb->literal_split.types, mb->literal_split.lengths, |
| 979 mb->literal_split.num_blocks); |
| 980 InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS, |
| 981 mb->command_split.num_types, mb->command_split.types, |
| 982 mb->command_split.lengths, mb->command_split.num_blocks); |
| 983 InitBlockEncoder(&distance_enc, num_distance_codes, |
| 984 mb->distance_split.num_types, mb->distance_split.types, |
| 985 mb->distance_split.lengths, mb->distance_split.num_blocks); |
| 986 |
| 987 BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage); |
| 988 BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage); |
| 989 BuildAndStoreBlockSwitchEntropyCodes( |
| 990 &distance_enc, tree, storage_ix, storage); |
| 991 |
| 992 BrotliWriteBits(2, distance_postfix_bits, storage_ix, storage); |
| 993 BrotliWriteBits(4, num_direct_distance_codes >> distance_postfix_bits, |
| 994 storage_ix, storage); |
| 995 for (i = 0; i < mb->literal_split.num_types; ++i) { |
| 996 BrotliWriteBits(2, literal_context_mode, storage_ix, storage); |
| 997 } |
| 998 |
| 999 if (mb->literal_context_map_size == 0) { |
| 1000 StoreTrivialContextMap(mb->literal_histograms_size, |
| 1001 BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage); |
| 1002 } else { |
| 1003 EncodeContextMap(m, |
| 1004 mb->literal_context_map, mb->literal_context_map_size, |
| 1005 mb->literal_histograms_size, tree, storage_ix, storage); |
| 1006 if (BROTLI_IS_OOM(m)) return; |
| 1007 } |
| 1008 |
| 1009 if (mb->distance_context_map_size == 0) { |
| 1010 StoreTrivialContextMap(mb->distance_histograms_size, |
| 1011 BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage); |
| 1012 } else { |
| 1013 EncodeContextMap(m, |
| 1014 mb->distance_context_map, mb->distance_context_map_size, |
| 1015 mb->distance_histograms_size, tree, storage_ix, storage); |
| 1016 if (BROTLI_IS_OOM(m)) return; |
| 1017 } |
| 1018 |
| 1019 BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms, |
| 1020 mb->literal_histograms_size, tree, storage_ix, storage); |
| 1021 if (BROTLI_IS_OOM(m)) return; |
| 1022 BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms, |
| 1023 mb->command_histograms_size, tree, storage_ix, storage); |
| 1024 if (BROTLI_IS_OOM(m)) return; |
| 1025 BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms, |
| 1026 mb->distance_histograms_size, tree, storage_ix, storage); |
| 1027 if (BROTLI_IS_OOM(m)) return; |
| 1028 BROTLI_FREE(m, tree); |
| 1029 |
| 1030 for (i = 0; i < n_commands; ++i) { |
| 1031 const Command cmd = commands[i]; |
| 1032 size_t cmd_code = cmd.cmd_prefix_; |
| 1033 StoreSymbol(&command_enc, cmd_code, storage_ix, storage); |
| 1034 StoreCommandExtra(&cmd, storage_ix, storage); |
| 1035 if (mb->literal_context_map_size == 0) { |
| 1036 size_t j; |
| 1037 for (j = cmd.insert_len_; j != 0; --j) { |
| 1038 StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage); |
| 1039 ++pos; |
| 1040 } |
| 1041 } else { |
| 1042 size_t j; |
| 1043 for (j = cmd.insert_len_; j != 0; --j) { |
| 1044 size_t context = Context(prev_byte, prev_byte2, literal_context_mode); |
| 1045 uint8_t literal = input[pos & mask]; |
| 1046 StoreSymbolWithContext(&literal_enc, literal, context, |
| 1047 mb->literal_context_map, storage_ix, storage, |
| 1048 BROTLI_LITERAL_CONTEXT_BITS); |
| 1049 prev_byte2 = prev_byte; |
| 1050 prev_byte = literal; |
| 1051 ++pos; |
| 1052 } |
| 1053 } |
| 1054 pos += CommandCopyLen(&cmd); |
| 1055 if (CommandCopyLen(&cmd)) { |
| 1056 prev_byte2 = input[(pos - 2) & mask]; |
| 1057 prev_byte = input[(pos - 1) & mask]; |
| 1058 if (cmd.cmd_prefix_ >= 128) { |
| 1059 size_t dist_code = cmd.dist_prefix_; |
| 1060 uint32_t distnumextra = cmd.dist_extra_ >> 24; |
| 1061 uint64_t distextra = cmd.dist_extra_ & 0xffffff; |
| 1062 if (mb->distance_context_map_size == 0) { |
| 1063 StoreSymbol(&distance_enc, dist_code, storage_ix, storage); |
| 1064 } else { |
| 1065 size_t context = CommandDistanceContext(&cmd); |
| 1066 StoreSymbolWithContext(&distance_enc, dist_code, context, |
| 1067 mb->distance_context_map, storage_ix, storage, |
| 1068 BROTLI_DISTANCE_CONTEXT_BITS); |
| 1069 } |
| 1070 BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
| 1071 } |
| 1072 } |
| 1073 } |
| 1074 CleanupBlockEncoder(m, &distance_enc); |
| 1075 CleanupBlockEncoder(m, &command_enc); |
| 1076 CleanupBlockEncoder(m, &literal_enc); |
| 1077 if (is_last) { |
| 1078 JumpToByteBoundary(storage_ix, storage); |
| 1079 } |
| 1080 } |
| 1081 |
| 1082 static void BuildHistograms(const uint8_t* input, |
| 1083 size_t start_pos, |
| 1084 size_t mask, |
| 1085 const Command *commands, |
| 1086 size_t n_commands, |
| 1087 HistogramLiteral* lit_histo, |
| 1088 HistogramCommand* cmd_histo, |
| 1089 HistogramDistance* dist_histo) { |
| 1090 size_t pos = start_pos; |
| 1091 size_t i; |
| 1092 for (i = 0; i < n_commands; ++i) { |
| 1093 const Command cmd = commands[i]; |
| 1094 size_t j; |
| 1095 HistogramAddCommand(cmd_histo, cmd.cmd_prefix_); |
| 1096 for (j = cmd.insert_len_; j != 0; --j) { |
| 1097 HistogramAddLiteral(lit_histo, input[pos & mask]); |
| 1098 ++pos; |
| 1099 } |
| 1100 pos += CommandCopyLen(&cmd); |
| 1101 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
| 1102 HistogramAddDistance(dist_histo, cmd.dist_prefix_); |
| 1103 } |
| 1104 } |
| 1105 } |
| 1106 |
| 1107 static void StoreDataWithHuffmanCodes(const uint8_t* input, |
| 1108 size_t start_pos, |
| 1109 size_t mask, |
| 1110 const Command *commands, |
| 1111 size_t n_commands, |
| 1112 const uint8_t* lit_depth, |
| 1113 const uint16_t* lit_bits, |
| 1114 const uint8_t* cmd_depth, |
| 1115 const uint16_t* cmd_bits, |
| 1116 const uint8_t* dist_depth, |
| 1117 const uint16_t* dist_bits, |
| 1118 size_t* storage_ix, |
| 1119 uint8_t* storage) { |
| 1120 size_t pos = start_pos; |
| 1121 size_t i; |
| 1122 for (i = 0; i < n_commands; ++i) { |
| 1123 const Command cmd = commands[i]; |
| 1124 const size_t cmd_code = cmd.cmd_prefix_; |
| 1125 size_t j; |
| 1126 BrotliWriteBits( |
| 1127 cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); |
| 1128 StoreCommandExtra(&cmd, storage_ix, storage); |
| 1129 for (j = cmd.insert_len_; j != 0; --j) { |
| 1130 const uint8_t literal = input[pos & mask]; |
| 1131 BrotliWriteBits( |
| 1132 lit_depth[literal], lit_bits[literal], storage_ix, storage); |
| 1133 ++pos; |
| 1134 } |
| 1135 pos += CommandCopyLen(&cmd); |
| 1136 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) { |
| 1137 const size_t dist_code = cmd.dist_prefix_; |
| 1138 const uint32_t distnumextra = cmd.dist_extra_ >> 24; |
| 1139 const uint32_t distextra = cmd.dist_extra_ & 0xffffff; |
| 1140 BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code], |
| 1141 storage_ix, storage); |
| 1142 BrotliWriteBits(distnumextra, distextra, storage_ix, storage); |
| 1143 } |
| 1144 } |
| 1145 } |
| 1146 |
| 1147 void BrotliStoreMetaBlockTrivial(MemoryManager* m, |
| 1148 const uint8_t* input, |
| 1149 size_t start_pos, |
| 1150 size_t length, |
| 1151 size_t mask, |
| 1152 BROTLI_BOOL is_last, |
| 1153 const Command *commands, |
| 1154 size_t n_commands, |
| 1155 size_t *storage_ix, |
| 1156 uint8_t *storage) { |
| 1157 HistogramLiteral lit_histo; |
| 1158 HistogramCommand cmd_histo; |
| 1159 HistogramDistance dist_histo; |
| 1160 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1161 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1162 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 1163 uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 1164 uint8_t dist_depth[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| 1165 uint16_t dist_bits[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| 1166 HuffmanTree* tree; |
| 1167 |
| 1168 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| 1169 |
| 1170 HistogramClearLiteral(&lit_histo); |
| 1171 HistogramClearCommand(&cmd_histo); |
| 1172 HistogramClearDistance(&dist_histo); |
| 1173 |
| 1174 BuildHistograms(input, start_pos, mask, commands, n_commands, |
| 1175 &lit_histo, &cmd_histo, &dist_histo); |
| 1176 |
| 1177 BrotliWriteBits(13, 0, storage_ix, storage); |
| 1178 |
| 1179 tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE); |
| 1180 if (BROTLI_IS_OOM(m)) return; |
| 1181 BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS, tree, |
| 1182 lit_depth, lit_bits, |
| 1183 storage_ix, storage); |
| 1184 BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, tree, |
| 1185 cmd_depth, cmd_bits, |
| 1186 storage_ix, storage); |
| 1187 BuildAndStoreHuffmanTree(dist_histo.data_, SIMPLE_DISTANCE_ALPHABET_SIZE, |
| 1188 tree, |
| 1189 dist_depth, dist_bits, |
| 1190 storage_ix, storage); |
| 1191 BROTLI_FREE(m, tree); |
| 1192 StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| 1193 n_commands, lit_depth, lit_bits, |
| 1194 cmd_depth, cmd_bits, |
| 1195 dist_depth, dist_bits, |
| 1196 storage_ix, storage); |
| 1197 if (is_last) { |
| 1198 JumpToByteBoundary(storage_ix, storage); |
| 1199 } |
| 1200 } |
| 1201 |
| 1202 void BrotliStoreMetaBlockFast(MemoryManager* m, |
| 1203 const uint8_t* input, |
| 1204 size_t start_pos, |
| 1205 size_t length, |
| 1206 size_t mask, |
| 1207 BROTLI_BOOL is_last, |
| 1208 const Command *commands, |
| 1209 size_t n_commands, |
| 1210 size_t *storage_ix, |
| 1211 uint8_t *storage) { |
| 1212 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); |
| 1213 |
| 1214 BrotliWriteBits(13, 0, storage_ix, storage); |
| 1215 |
| 1216 if (n_commands <= 128) { |
| 1217 uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 }; |
| 1218 size_t pos = start_pos; |
| 1219 size_t num_literals = 0; |
| 1220 size_t i; |
| 1221 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1222 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1223 for (i = 0; i < n_commands; ++i) { |
| 1224 const Command cmd = commands[i]; |
| 1225 size_t j; |
| 1226 for (j = cmd.insert_len_; j != 0; --j) { |
| 1227 ++histogram[input[pos & mask]]; |
| 1228 ++pos; |
| 1229 } |
| 1230 num_literals += cmd.insert_len_; |
| 1231 pos += CommandCopyLen(&cmd); |
| 1232 } |
| 1233 BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals, |
| 1234 /* max_bits = */ 8, |
| 1235 lit_depth, lit_bits, |
| 1236 storage_ix, storage); |
| 1237 if (BROTLI_IS_OOM(m)) return; |
| 1238 StoreStaticCommandHuffmanTree(storage_ix, storage); |
| 1239 StoreStaticDistanceHuffmanTree(storage_ix, storage); |
| 1240 StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| 1241 n_commands, lit_depth, lit_bits, |
| 1242 kStaticCommandCodeDepth, |
| 1243 kStaticCommandCodeBits, |
| 1244 kStaticDistanceCodeDepth, |
| 1245 kStaticDistanceCodeBits, |
| 1246 storage_ix, storage); |
| 1247 } else { |
| 1248 HistogramLiteral lit_histo; |
| 1249 HistogramCommand cmd_histo; |
| 1250 HistogramDistance dist_histo; |
| 1251 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1252 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS]; |
| 1253 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 1254 uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS]; |
| 1255 uint8_t dist_depth[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| 1256 uint16_t dist_bits[SIMPLE_DISTANCE_ALPHABET_SIZE]; |
| 1257 HistogramClearLiteral(&lit_histo); |
| 1258 HistogramClearCommand(&cmd_histo); |
| 1259 HistogramClearDistance(&dist_histo); |
| 1260 BuildHistograms(input, start_pos, mask, commands, n_commands, |
| 1261 &lit_histo, &cmd_histo, &dist_histo); |
| 1262 BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_, |
| 1263 lit_histo.total_count_, |
| 1264 /* max_bits = */ 8, |
| 1265 lit_depth, lit_bits, |
| 1266 storage_ix, storage); |
| 1267 if (BROTLI_IS_OOM(m)) return; |
| 1268 BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_, |
| 1269 cmd_histo.total_count_, |
| 1270 /* max_bits = */ 10, |
| 1271 cmd_depth, cmd_bits, |
| 1272 storage_ix, storage); |
| 1273 if (BROTLI_IS_OOM(m)) return; |
| 1274 BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_, |
| 1275 dist_histo.total_count_, |
| 1276 /* max_bits = */ |
| 1277 SIMPLE_DISTANCE_ALPHABET_BITS, |
| 1278 dist_depth, dist_bits, |
| 1279 storage_ix, storage); |
| 1280 if (BROTLI_IS_OOM(m)) return; |
| 1281 StoreDataWithHuffmanCodes(input, start_pos, mask, commands, |
| 1282 n_commands, lit_depth, lit_bits, |
| 1283 cmd_depth, cmd_bits, |
| 1284 dist_depth, dist_bits, |
| 1285 storage_ix, storage); |
| 1286 } |
| 1287 |
| 1288 if (is_last) { |
| 1289 JumpToByteBoundary(storage_ix, storage); |
| 1290 } |
| 1291 } |
| 1292 |
| 1293 /* This is for storing uncompressed blocks (simple raw storage of |
| 1294 bytes-as-bytes). */ |
| 1295 void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block, |
| 1296 const uint8_t * BROTLI_RESTRICT input, |
| 1297 size_t position, size_t mask, |
| 1298 size_t len, |
| 1299 size_t * BROTLI_RESTRICT storage_ix, |
| 1300 uint8_t * BROTLI_RESTRICT storage) { |
| 1301 size_t masked_pos = position & mask; |
| 1302 BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage); |
| 1303 JumpToByteBoundary(storage_ix, storage); |
| 1304 |
| 1305 if (masked_pos + len > mask + 1) { |
| 1306 size_t len1 = mask + 1 - masked_pos; |
| 1307 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); |
| 1308 *storage_ix += len1 << 3; |
| 1309 len -= len1; |
| 1310 masked_pos = 0; |
| 1311 } |
| 1312 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); |
| 1313 *storage_ix += len << 3; |
| 1314 |
| 1315 /* We need to clear the next 4 bytes to continue to be |
| 1316 compatible with BrotliWriteBits. */ |
| 1317 BrotliWriteBitsPrepareStorage(*storage_ix, storage); |
| 1318 |
| 1319 /* Since the uncompressed block itself may not be the final block, add an |
| 1320 empty one after this. */ |
| 1321 if (is_final_block) { |
| 1322 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */ |
| 1323 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */ |
| 1324 JumpToByteBoundary(storage_ix, storage); |
| 1325 } |
| 1326 } |
| 1327 |
| 1328 void BrotliStoreSyncMetaBlock(size_t* BROTLI_RESTRICT storage_ix, |
| 1329 uint8_t* BROTLI_RESTRICT storage) { |
| 1330 /* Empty metadata meta-block bit pattern: |
| 1331 1 bit: is_last (0) |
| 1332 2 bits: num nibbles (3) |
| 1333 1 bit: reserved (0) |
| 1334 2 bits: metadata length bytes (0) */ |
| 1335 BrotliWriteBits(6, 6, storage_ix, storage); |
| 1336 JumpToByteBoundary(storage_ix, storage); |
| 1337 } |
| 1338 |
| 1339 |
| 1340 #if defined(__cplusplus) || defined(c_plusplus) |
| 1341 } /* extern "C" */ |
| 1342 #endif |
OLD | NEW |