OLD | NEW |
(Empty) | |
| 1 /* NOLINT(build/header_guard) */ |
| 2 /* Copyright 2013 Google Inc. All Rights Reserved. |
| 3 |
| 4 Distributed under MIT license. |
| 5 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| 6 */ |
| 7 |
| 8 /* template parameters: FN, DataType */ |
| 9 |
| 10 #define HistogramType FN(Histogram) |
| 11 |
| 12 static void FN(InitialEntropyCodes)(const DataType* data, size_t length, |
| 13 size_t stride, |
| 14 size_t num_histograms, |
| 15 HistogramType* histograms) { |
| 16 unsigned int seed = 7; |
| 17 size_t block_length = length / num_histograms; |
| 18 size_t i; |
| 19 FN(ClearHistograms)(histograms, num_histograms); |
| 20 for (i = 0; i < num_histograms; ++i) { |
| 21 size_t pos = length * i / num_histograms; |
| 22 if (i != 0) { |
| 23 pos += MyRand(&seed) % block_length; |
| 24 } |
| 25 if (pos + stride >= length) { |
| 26 pos = length - stride - 1; |
| 27 } |
| 28 FN(HistogramAddVector)(&histograms[i], data + pos, stride); |
| 29 } |
| 30 } |
| 31 |
| 32 static void FN(RandomSample)(unsigned int* seed, |
| 33 const DataType* data, |
| 34 size_t length, |
| 35 size_t stride, |
| 36 HistogramType* sample) { |
| 37 size_t pos = 0; |
| 38 if (stride >= length) { |
| 39 pos = 0; |
| 40 stride = length; |
| 41 } else { |
| 42 pos = MyRand(seed) % (length - stride + 1); |
| 43 } |
| 44 FN(HistogramAddVector)(sample, data + pos, stride); |
| 45 } |
| 46 |
| 47 static void FN(RefineEntropyCodes)(const DataType* data, size_t length, |
| 48 size_t stride, |
| 49 size_t num_histograms, |
| 50 HistogramType* histograms) { |
| 51 size_t iters = |
| 52 kIterMulForRefining * length / stride + kMinItersForRefining; |
| 53 unsigned int seed = 7; |
| 54 size_t iter; |
| 55 iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms; |
| 56 for (iter = 0; iter < iters; ++iter) { |
| 57 HistogramType sample; |
| 58 FN(HistogramClear)(&sample); |
| 59 FN(RandomSample)(&seed, data, length, stride, &sample); |
| 60 FN(HistogramAddHistogram)(&histograms[iter % num_histograms], &sample); |
| 61 } |
| 62 } |
| 63 |
| 64 /* Assigns a block id from the range [0, num_histograms) to each data element |
| 65 in data[0..length) and fills in block_id[0..length) with the assigned values. |
| 66 Returns the number of blocks, i.e. one plus the number of block switches. */ |
| 67 static size_t FN(FindBlocks)(const DataType* data, const size_t length, |
| 68 const double block_switch_bitcost, |
| 69 const size_t num_histograms, |
| 70 const HistogramType* histograms, |
| 71 double* insert_cost, |
| 72 double* cost, |
| 73 uint8_t* switch_signal, |
| 74 uint8_t *block_id) { |
| 75 const size_t data_size = FN(HistogramDataSize)(); |
| 76 const size_t bitmaplen = (num_histograms + 7) >> 3; |
| 77 size_t num_blocks = 1; |
| 78 size_t i; |
| 79 size_t j; |
| 80 assert(num_histograms <= 256); |
| 81 if (num_histograms <= 1) { |
| 82 for (i = 0; i < length; ++i) { |
| 83 block_id[i] = 0; |
| 84 } |
| 85 return 1; |
| 86 } |
| 87 memset(insert_cost, 0, sizeof(insert_cost[0]) * data_size * num_histograms); |
| 88 for (i = 0; i < num_histograms; ++i) { |
| 89 insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_); |
| 90 } |
| 91 for (i = data_size; i != 0;) { |
| 92 --i; |
| 93 for (j = 0; j < num_histograms; ++j) { |
| 94 insert_cost[i * num_histograms + j] = |
| 95 insert_cost[j] - BitCost(histograms[j].data_[i]); |
| 96 } |
| 97 } |
| 98 memset(cost, 0, sizeof(cost[0]) * num_histograms); |
| 99 memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmaplen); |
| 100 /* After each iteration of this loop, cost[k] will contain the difference |
| 101 between the minimum cost of arriving at the current byte position using |
| 102 entropy code k, and the minimum cost of arriving at the current byte |
| 103 position. This difference is capped at the block switch cost, and if it |
| 104 reaches block switch cost, it means that when we trace back from the last |
| 105 position, we need to switch here. */ |
| 106 for (i = 0; i < length; ++i) { |
| 107 const size_t byte_ix = i; |
| 108 size_t ix = byte_ix * bitmaplen; |
| 109 size_t insert_cost_ix = data[byte_ix] * num_histograms; |
| 110 double min_cost = 1e99; |
| 111 double block_switch_cost = block_switch_bitcost; |
| 112 size_t k; |
| 113 for (k = 0; k < num_histograms; ++k) { |
| 114 /* We are coding the symbol in data[byte_ix] with entropy code k. */ |
| 115 cost[k] += insert_cost[insert_cost_ix + k]; |
| 116 if (cost[k] < min_cost) { |
| 117 min_cost = cost[k]; |
| 118 block_id[byte_ix] = (uint8_t)k; |
| 119 } |
| 120 } |
| 121 /* More blocks for the beginning. */ |
| 122 if (byte_ix < 2000) { |
| 123 block_switch_cost *= 0.77 + 0.07 * (double)byte_ix / 2000; |
| 124 } |
| 125 for (k = 0; k < num_histograms; ++k) { |
| 126 cost[k] -= min_cost; |
| 127 if (cost[k] >= block_switch_cost) { |
| 128 const uint8_t mask = (uint8_t)(1u << (k & 7)); |
| 129 cost[k] = block_switch_cost; |
| 130 assert((k >> 3) < bitmaplen); |
| 131 switch_signal[ix + (k >> 3)] |= mask; |
| 132 } |
| 133 } |
| 134 } |
| 135 { /* Trace back from the last position and switch at the marked places. */ |
| 136 size_t byte_ix = length - 1; |
| 137 size_t ix = byte_ix * bitmaplen; |
| 138 uint8_t cur_id = block_id[byte_ix]; |
| 139 while (byte_ix > 0) { |
| 140 const uint8_t mask = (uint8_t)(1u << (cur_id & 7)); |
| 141 assert(((size_t)cur_id >> 3) < bitmaplen); |
| 142 --byte_ix; |
| 143 ix -= bitmaplen; |
| 144 if (switch_signal[ix + (cur_id >> 3)] & mask) { |
| 145 if (cur_id != block_id[byte_ix]) { |
| 146 cur_id = block_id[byte_ix]; |
| 147 ++num_blocks; |
| 148 } |
| 149 } |
| 150 block_id[byte_ix] = cur_id; |
| 151 } |
| 152 } |
| 153 return num_blocks; |
| 154 } |
| 155 |
| 156 static size_t FN(RemapBlockIds)(uint8_t* block_ids, const size_t length, |
| 157 uint16_t* new_id, const size_t num_histograms) { |
| 158 static const uint16_t kInvalidId = 256; |
| 159 uint16_t next_id = 0; |
| 160 size_t i; |
| 161 for (i = 0; i < num_histograms; ++i) { |
| 162 new_id[i] = kInvalidId; |
| 163 } |
| 164 for (i = 0; i < length; ++i) { |
| 165 assert(block_ids[i] < num_histograms); |
| 166 if (new_id[block_ids[i]] == kInvalidId) { |
| 167 new_id[block_ids[i]] = next_id++; |
| 168 } |
| 169 } |
| 170 for (i = 0; i < length; ++i) { |
| 171 block_ids[i] = (uint8_t)new_id[block_ids[i]]; |
| 172 assert(block_ids[i] < num_histograms); |
| 173 } |
| 174 assert(next_id <= num_histograms); |
| 175 return next_id; |
| 176 } |
| 177 |
| 178 static void FN(BuildBlockHistograms)(const DataType* data, const size_t length, |
| 179 const uint8_t* block_ids, |
| 180 const size_t num_histograms, |
| 181 HistogramType* histograms) { |
| 182 size_t i; |
| 183 FN(ClearHistograms)(histograms, num_histograms); |
| 184 for (i = 0; i < length; ++i) { |
| 185 FN(HistogramAdd)(&histograms[block_ids[i]], data[i]); |
| 186 } |
| 187 } |
| 188 |
| 189 static void FN(ClusterBlocks)(MemoryManager* m, |
| 190 const DataType* data, const size_t length, |
| 191 const size_t num_blocks, |
| 192 uint8_t* block_ids, |
| 193 BlockSplit* split) { |
| 194 uint32_t* histogram_symbols = BROTLI_ALLOC(m, uint32_t, num_blocks); |
| 195 uint32_t* block_lengths = BROTLI_ALLOC(m, uint32_t, num_blocks); |
| 196 const size_t expected_num_clusters = CLUSTERS_PER_BATCH * |
| 197 (num_blocks + HISTOGRAMS_PER_BATCH - 1) / HISTOGRAMS_PER_BATCH; |
| 198 size_t all_histograms_size = 0; |
| 199 size_t all_histograms_capacity = expected_num_clusters; |
| 200 HistogramType* all_histograms = |
| 201 BROTLI_ALLOC(m, HistogramType, all_histograms_capacity); |
| 202 size_t cluster_size_size = 0; |
| 203 size_t cluster_size_capacity = expected_num_clusters; |
| 204 uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, cluster_size_capacity); |
| 205 size_t num_clusters = 0; |
| 206 HistogramType* histograms = BROTLI_ALLOC(m, HistogramType, |
| 207 BROTLI_MIN(size_t, num_blocks, HISTOGRAMS_PER_BATCH)); |
| 208 size_t max_num_pairs = |
| 209 HISTOGRAMS_PER_BATCH * HISTOGRAMS_PER_BATCH / 2; |
| 210 size_t pairs_capacity = max_num_pairs + 1; |
| 211 HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity); |
| 212 size_t pos = 0; |
| 213 uint32_t* clusters; |
| 214 size_t num_final_clusters; |
| 215 static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX; |
| 216 uint32_t* new_index; |
| 217 uint8_t max_type = 0; |
| 218 size_t i; |
| 219 uint32_t sizes[HISTOGRAMS_PER_BATCH] = { 0 }; |
| 220 uint32_t new_clusters[HISTOGRAMS_PER_BATCH] = { 0 }; |
| 221 uint32_t symbols[HISTOGRAMS_PER_BATCH] = { 0 }; |
| 222 uint32_t remap[HISTOGRAMS_PER_BATCH] = { 0 }; |
| 223 |
| 224 if (BROTLI_IS_OOM(m)) return; |
| 225 |
| 226 memset(block_lengths, 0, num_blocks * sizeof(uint32_t)); |
| 227 |
| 228 { |
| 229 size_t block_idx = 0; |
| 230 for (i = 0; i < length; ++i) { |
| 231 assert(block_idx < num_blocks); |
| 232 ++block_lengths[block_idx]; |
| 233 if (i + 1 == length || block_ids[i] != block_ids[i + 1]) { |
| 234 ++block_idx; |
| 235 } |
| 236 } |
| 237 assert(block_idx == num_blocks); |
| 238 } |
| 239 |
| 240 for (i = 0; i < num_blocks; i += HISTOGRAMS_PER_BATCH) { |
| 241 const size_t num_to_combine = |
| 242 BROTLI_MIN(size_t, num_blocks - i, HISTOGRAMS_PER_BATCH); |
| 243 size_t num_new_clusters; |
| 244 size_t j; |
| 245 for (j = 0; j < num_to_combine; ++j) { |
| 246 size_t k; |
| 247 FN(HistogramClear)(&histograms[j]); |
| 248 for (k = 0; k < block_lengths[i + j]; ++k) { |
| 249 FN(HistogramAdd)(&histograms[j], data[pos++]); |
| 250 } |
| 251 histograms[j].bit_cost_ = FN(BrotliPopulationCost)(&histograms[j]); |
| 252 new_clusters[j] = (uint32_t)j; |
| 253 symbols[j] = (uint32_t)j; |
| 254 sizes[j] = 1; |
| 255 } |
| 256 num_new_clusters = FN(BrotliHistogramCombine)( |
| 257 histograms, sizes, symbols, new_clusters, pairs, num_to_combine, |
| 258 num_to_combine, HISTOGRAMS_PER_BATCH, max_num_pairs); |
| 259 BROTLI_ENSURE_CAPACITY(m, HistogramType, all_histograms, |
| 260 all_histograms_capacity, all_histograms_size + num_new_clusters); |
| 261 BROTLI_ENSURE_CAPACITY(m, uint32_t, cluster_size, |
| 262 cluster_size_capacity, cluster_size_size + num_new_clusters); |
| 263 if (BROTLI_IS_OOM(m)) return; |
| 264 for (j = 0; j < num_new_clusters; ++j) { |
| 265 all_histograms[all_histograms_size++] = histograms[new_clusters[j]]; |
| 266 cluster_size[cluster_size_size++] = sizes[new_clusters[j]]; |
| 267 remap[new_clusters[j]] = (uint32_t)j; |
| 268 } |
| 269 for (j = 0; j < num_to_combine; ++j) { |
| 270 histogram_symbols[i + j] = (uint32_t)num_clusters + remap[symbols[j]]; |
| 271 } |
| 272 num_clusters += num_new_clusters; |
| 273 assert(num_clusters == cluster_size_size); |
| 274 assert(num_clusters == all_histograms_size); |
| 275 } |
| 276 BROTLI_FREE(m, histograms); |
| 277 |
| 278 max_num_pairs = |
| 279 BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters); |
| 280 if (pairs_capacity < max_num_pairs + 1) { |
| 281 BROTLI_FREE(m, pairs); |
| 282 pairs = BROTLI_ALLOC(m, HistogramPair, max_num_pairs + 1); |
| 283 if (BROTLI_IS_OOM(m)) return; |
| 284 } |
| 285 |
| 286 clusters = BROTLI_ALLOC(m, uint32_t, num_clusters); |
| 287 if (BROTLI_IS_OOM(m)) return; |
| 288 for (i = 0; i < num_clusters; ++i) { |
| 289 clusters[i] = (uint32_t)i; |
| 290 } |
| 291 num_final_clusters = FN(BrotliHistogramCombine)( |
| 292 all_histograms, cluster_size, histogram_symbols, clusters, pairs, |
| 293 num_clusters, num_blocks, BROTLI_MAX_NUMBER_OF_BLOCK_TYPES, |
| 294 max_num_pairs); |
| 295 BROTLI_FREE(m, pairs); |
| 296 BROTLI_FREE(m, cluster_size); |
| 297 |
| 298 new_index = BROTLI_ALLOC(m, uint32_t, num_clusters); |
| 299 if (BROTLI_IS_OOM(m)) return; |
| 300 for (i = 0; i < num_clusters; ++i) new_index[i] = kInvalidIndex; |
| 301 pos = 0; |
| 302 { |
| 303 uint32_t next_index = 0; |
| 304 for (i = 0; i < num_blocks; ++i) { |
| 305 HistogramType histo; |
| 306 size_t j; |
| 307 uint32_t best_out; |
| 308 double best_bits; |
| 309 FN(HistogramClear)(&histo); |
| 310 for (j = 0; j < block_lengths[i]; ++j) { |
| 311 FN(HistogramAdd)(&histo, data[pos++]); |
| 312 } |
| 313 best_out = (i == 0) ? histogram_symbols[0] : histogram_symbols[i - 1]; |
| 314 best_bits = |
| 315 FN(BrotliHistogramBitCostDistance)(&histo, &all_histograms[best_out]); |
| 316 for (j = 0; j < num_final_clusters; ++j) { |
| 317 const double cur_bits = FN(BrotliHistogramBitCostDistance)( |
| 318 &histo, &all_histograms[clusters[j]]); |
| 319 if (cur_bits < best_bits) { |
| 320 best_bits = cur_bits; |
| 321 best_out = clusters[j]; |
| 322 } |
| 323 } |
| 324 histogram_symbols[i] = best_out; |
| 325 if (new_index[best_out] == kInvalidIndex) { |
| 326 new_index[best_out] = next_index++; |
| 327 } |
| 328 } |
| 329 } |
| 330 BROTLI_FREE(m, clusters); |
| 331 BROTLI_FREE(m, all_histograms); |
| 332 BROTLI_ENSURE_CAPACITY( |
| 333 m, uint8_t, split->types, split->types_alloc_size, num_blocks); |
| 334 BROTLI_ENSURE_CAPACITY( |
| 335 m, uint32_t, split->lengths, split->lengths_alloc_size, num_blocks); |
| 336 if (BROTLI_IS_OOM(m)) return; |
| 337 { |
| 338 uint32_t cur_length = 0; |
| 339 size_t block_idx = 0; |
| 340 for (i = 0; i < num_blocks; ++i) { |
| 341 cur_length += block_lengths[i]; |
| 342 if (i + 1 == num_blocks || |
| 343 histogram_symbols[i] != histogram_symbols[i + 1]) { |
| 344 const uint8_t id = (uint8_t)new_index[histogram_symbols[i]]; |
| 345 split->types[block_idx] = id; |
| 346 split->lengths[block_idx] = cur_length; |
| 347 max_type = BROTLI_MAX(uint8_t, max_type, id); |
| 348 cur_length = 0; |
| 349 ++block_idx; |
| 350 } |
| 351 } |
| 352 split->num_blocks = block_idx; |
| 353 split->num_types = (size_t)max_type + 1; |
| 354 } |
| 355 BROTLI_FREE(m, new_index); |
| 356 BROTLI_FREE(m, block_lengths); |
| 357 BROTLI_FREE(m, histogram_symbols); |
| 358 } |
| 359 |
| 360 static void FN(SplitByteVector)(MemoryManager* m, |
| 361 const DataType* data, const size_t length, |
| 362 const size_t literals_per_histogram, |
| 363 const size_t max_histograms, |
| 364 const size_t sampling_stride_length, |
| 365 const double block_switch_cost, |
| 366 const BrotliEncoderParams* params, |
| 367 BlockSplit* split) { |
| 368 const size_t data_size = FN(HistogramDataSize)(); |
| 369 size_t num_histograms = length / literals_per_histogram + 1; |
| 370 HistogramType* histograms; |
| 371 if (num_histograms > max_histograms) { |
| 372 num_histograms = max_histograms; |
| 373 } |
| 374 if (length == 0) { |
| 375 split->num_types = 1; |
| 376 return; |
| 377 } else if (length < kMinLengthForBlockSplitting) { |
| 378 BROTLI_ENSURE_CAPACITY(m, uint8_t, |
| 379 split->types, split->types_alloc_size, split->num_blocks + 1); |
| 380 BROTLI_ENSURE_CAPACITY(m, uint32_t, |
| 381 split->lengths, split->lengths_alloc_size, split->num_blocks + 1); |
| 382 if (BROTLI_IS_OOM(m)) return; |
| 383 split->num_types = 1; |
| 384 split->types[split->num_blocks] = 0; |
| 385 split->lengths[split->num_blocks] = (uint32_t)length; |
| 386 split->num_blocks++; |
| 387 return; |
| 388 } |
| 389 histograms = BROTLI_ALLOC(m, HistogramType, num_histograms); |
| 390 if (BROTLI_IS_OOM(m)) return; |
| 391 /* Find good entropy codes. */ |
| 392 FN(InitialEntropyCodes)(data, length, |
| 393 sampling_stride_length, |
| 394 num_histograms, histograms); |
| 395 FN(RefineEntropyCodes)(data, length, |
| 396 sampling_stride_length, |
| 397 num_histograms, histograms); |
| 398 { |
| 399 /* Find a good path through literals with the good entropy codes. */ |
| 400 uint8_t* block_ids = BROTLI_ALLOC(m, uint8_t, length); |
| 401 size_t num_blocks; |
| 402 const size_t bitmaplen = (num_histograms + 7) >> 3; |
| 403 double* insert_cost = BROTLI_ALLOC(m, double, data_size * num_histograms); |
| 404 double* cost = BROTLI_ALLOC(m, double, num_histograms); |
| 405 uint8_t* switch_signal = BROTLI_ALLOC(m, uint8_t, length * bitmaplen); |
| 406 uint16_t* new_id = BROTLI_ALLOC(m, uint16_t, num_histograms); |
| 407 const size_t iters = params->quality < HQ_ZOPFLIFICATION_QUALITY ? 3 : 10; |
| 408 size_t i; |
| 409 if (BROTLI_IS_OOM(m)) return; |
| 410 for (i = 0; i < iters; ++i) { |
| 411 num_blocks = FN(FindBlocks)(data, length, |
| 412 block_switch_cost, |
| 413 num_histograms, histograms, |
| 414 insert_cost, cost, switch_signal, |
| 415 block_ids); |
| 416 num_histograms = FN(RemapBlockIds)(block_ids, length, |
| 417 new_id, num_histograms); |
| 418 FN(BuildBlockHistograms)(data, length, block_ids, |
| 419 num_histograms, histograms); |
| 420 } |
| 421 BROTLI_FREE(m, insert_cost); |
| 422 BROTLI_FREE(m, cost); |
| 423 BROTLI_FREE(m, switch_signal); |
| 424 BROTLI_FREE(m, new_id); |
| 425 BROTLI_FREE(m, histograms); |
| 426 FN(ClusterBlocks)(m, data, length, num_blocks, block_ids, split); |
| 427 if (BROTLI_IS_OOM(m)) return; |
| 428 BROTLI_FREE(m, block_ids); |
| 429 } |
| 430 } |
| 431 |
| 432 #undef HistogramType |
OLD | NEW |