| Index: third_party/WebKit/Source/platform/heap/HeapCompact.cpp
|
| diff --git a/third_party/WebKit/Source/platform/heap/HeapCompact.cpp b/third_party/WebKit/Source/platform/heap/HeapCompact.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..0a8557f2f4230065be36296ff100b32818f0422d
|
| --- /dev/null
|
| +++ b/third_party/WebKit/Source/platform/heap/HeapCompact.cpp
|
| @@ -0,0 +1,479 @@
|
| +// Copyright 2016 Opera Software AS. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "platform/heap/HeapCompact.h"
|
| +
|
| +#include "platform/RuntimeEnabledFeatures.h"
|
| +#include "platform/heap/Heap.h"
|
| +#include "platform/heap/SparseHeapBitmap.h"
|
| +#include "wtf/CurrentTime.h"
|
| +#include "wtf/HashMap.h"
|
| +#include "wtf/HashSet.h"
|
| +#include "wtf/Vector.h"
|
| +
|
| +namespace blink {
|
| +
|
| +bool HeapCompact::s_forceCompactionGC = false;
|
| +
|
| +// The real worker behind heap compaction, recording references to movable
|
| +// objects ("slots".) When the objects end up being compacted and moved,
|
| +// relocate() will adjust the slots to point to the new location of the
|
| +// object along with handling fixups for interior pointers.
|
| +//
|
| +// The "fixups" object is created and maintained for the lifetime of one
|
| +// heap compaction-enhanced GC.
|
| +class HeapCompact::MovableObjectFixups final {
|
| + public:
|
| + static std::unique_ptr<MovableObjectFixups> create() {
|
| + return WTF::wrapUnique(new MovableObjectFixups);
|
| + }
|
| +
|
| + ~MovableObjectFixups() {}
|
| +
|
| + // For the arenas being compacted, record all pages belonging to them.
|
| + // This is needed to handle 'interior slots', pointers that themselves
|
| + // can move (independently from the reference the slot points to.)
|
| + void addCompactingPage(BasePage* page) {
|
| + DCHECK(!page->isLargeObjectPage());
|
| + m_relocatablePages.add(page);
|
| + }
|
| +
|
| + void addInteriorFixup(MovableReference* slot) {
|
| + auto it = m_interiorFixups.find(slot);
|
| + // Ephemeron fixpoint iterations may cause repeated registrations.
|
| + if (UNLIKELY(it != m_interiorFixups.end())) {
|
| + DCHECK(!it->value);
|
| + return;
|
| + }
|
| + m_interiorFixups.add(slot, nullptr);
|
| + LOG_HEAP_COMPACTION("Interior slot: %p\n", slot);
|
| + Address slotAddress = reinterpret_cast<Address>(slot);
|
| + if (!m_interiors) {
|
| + m_interiors = SparseHeapBitmap::create(slotAddress);
|
| + return;
|
| + }
|
| + m_interiors->add(slotAddress);
|
| + }
|
| +
|
| + void add(MovableReference* slot) {
|
| + MovableReference reference = *slot;
|
| + BasePage* refPage = pageFromObject(reference);
|
| + // Nothing to compact on a large object's page.
|
| + if (refPage->isLargeObjectPage())
|
| + return;
|
| +
|
| +#if DCHECK_IS_ON()
|
| + DCHECK(HeapCompact::isCompactableArena(refPage->arena()->arenaIndex()));
|
| + auto it = m_fixups.find(reference);
|
| + DCHECK(it == m_fixups.end() || it->value == slot);
|
| +#endif
|
| +
|
| + // TODO: when updateHeapResidency() becomes more discriminating about
|
| + // leaving out arenas that aren't worth compacting, a check for
|
| + // isCompactingArena() would be appropriate here, leaving early if
|
| + // |refPage|'s arena isn't in the set.
|
| +
|
| + m_fixups.add(reference, slot);
|
| +
|
| + // Note: |slot| will reside outside the Oilpan heap if it is a
|
| + // PersistentHeapCollectionBase. Hence pageFromObject() cannot be
|
| + // used, as it sanity checks the |BasePage| it returns. Simply
|
| + // derive the raw BasePage address here and check if it is a member
|
| + // of the compactable and relocatable page address set.
|
| + Address slotAddress = reinterpret_cast<Address>(slot);
|
| + BasePage* slotPage = reinterpret_cast<BasePage*>(
|
| + blinkPageAddress(slotAddress) + blinkGuardPageSize);
|
| + if (LIKELY(!m_relocatablePages.contains(slotPage)))
|
| + return;
|
| +#if ENABLE(ASSERT)
|
| + slotPage->contains(slotAddress);
|
| +#endif
|
| + // Unlikely case, the slot resides on a compacting arena's page.
|
| + // => It is an 'interior slot' (interior to a movable backing store.)
|
| + // Record it as an interior slot, which entails:
|
| + //
|
| + // - Storing it in the interior map, which maps the slot to
|
| + // its (eventual) location. Initially nullptr.
|
| + // - Mark it as being interior pointer within the page's
|
| + // "interior" bitmap. This bitmap is used when moving a backing
|
| + // store, quickly/ier checking if interior slots will have to
|
| + // be additionally redirected.
|
| + addInteriorFixup(slot);
|
| + }
|
| +
|
| + void addFixupCallback(MovableReference reference,
|
| + MovingObjectCallback callback,
|
| + void* callbackData) {
|
| + DCHECK(!m_fixupCallbacks.contains(reference));
|
| + m_fixupCallbacks.add(reference, std::pair<void*, MovingObjectCallback>(
|
| + callbackData, callback));
|
| + }
|
| +
|
| + void relocateInteriorFixups(Address from, Address to, size_t size) {
|
| + SparseHeapBitmap* range = m_interiors->hasRange(from, size);
|
| + if (LIKELY(!range))
|
| + return;
|
| +
|
| + // Scan through the payload, looking for interior pointer slots
|
| + // to adjust. If the backing store of such an interior slot hasn't
|
| + // been moved already, update the slot -> real location mapping.
|
| + // When the backing store is eventually moved, it'll use that location.
|
| + //
|
| + for (size_t offset = 0; offset < size; offset += sizeof(void*)) {
|
| + if (!range->isSet(from + offset))
|
| + continue;
|
| + MovableReference* slot =
|
| + reinterpret_cast<MovableReference*>(from + offset);
|
| + auto it = m_interiorFixups.find(slot);
|
| + if (it == m_interiorFixups.end())
|
| + continue;
|
| +
|
| + // TODO: with the right sparse bitmap representation, it could be possible
|
| + // to quickly determine if we've now stepped past the last address
|
| + // that needed fixup in [address, address + size). Breaking out of this
|
| + // loop might be worth doing for hash table backing stores with a very
|
| + // low load factor. But interior fixups are rare.
|
| +
|
| + // If |slot|'s mapping is set, then the slot has been adjusted already.
|
| + if (it->value)
|
| + continue;
|
| + Address fixup = to + offset;
|
| + LOG_HEAP_COMPACTION("Range interior fixup: %p %p %p\n", from + offset,
|
| + it->value, fixup);
|
| + // Fill in the relocated location of the original slot at |slot|.
|
| + // when the backing store corresponding to |slot| is eventually
|
| + // moved/compacted, it'll update |to + offset| with a pointer to the
|
| + // moved backing store.
|
| + m_interiorFixups.set(slot, fixup);
|
| + }
|
| + }
|
| +
|
| + void relocate(Address from, Address to) {
|
| + auto it = m_fixups.find(from);
|
| + DCHECK(it != m_fixups.end());
|
| +#if DCHECK_IS_ON()
|
| + BasePage* fromPage = pageFromObject(from);
|
| + DCHECK(m_relocatablePages.contains(fromPage));
|
| +#endif
|
| + MovableReference* slot = reinterpret_cast<MovableReference*>(it->value);
|
| + auto interior = m_interiorFixups.find(slot);
|
| + if (interior != m_interiorFixups.end()) {
|
| + MovableReference* slotLocation =
|
| + reinterpret_cast<MovableReference*>(interior->value);
|
| + if (!slotLocation) {
|
| + m_interiorFixups.set(slot, to);
|
| + } else {
|
| + LOG_HEAP_COMPACTION("Redirected slot: %p => %p\n", slot, slotLocation);
|
| + slot = slotLocation;
|
| + }
|
| + }
|
| + // If the slot has subsequently been updated, a prefinalizer or
|
| + // a destructor having mutated and expanded/shrunk the collection,
|
| + // do not update and relocate the slot -- |from| is no longer valid
|
| + // and referenced.
|
| + //
|
| + // The slot's contents may also have been cleared during weak processing;
|
| + // no work to be done in that case either.
|
| + if (UNLIKELY(*slot != from)) {
|
| + LOG_HEAP_COMPACTION(
|
| + "No relocation: slot = %p, *slot = %p, from = %p, to = %p\n", slot,
|
| + *slot, from, to);
|
| +#if DCHECK_IS_ON()
|
| + // Verify that the already updated slot is valid, meaning:
|
| + // - has been cleared.
|
| + // - has been updated & expanded with a large object backing store.
|
| + // - has been updated with a larger, freshly allocated backing store.
|
| + // (on a fresh page in a compactable arena that is not being
|
| + // compacted.)
|
| + if (!*slot)
|
| + return;
|
| + BasePage* slotPage = pageFromObject(*slot);
|
| + DCHECK(
|
| + slotPage->isLargeObjectPage() ||
|
| + (HeapCompact::isCompactableArena(slotPage->arena()->arenaIndex()) &&
|
| + !m_relocatablePages.contains(slotPage)));
|
| +#endif
|
| + return;
|
| + }
|
| + *slot = to;
|
| +
|
| + size_t size = 0;
|
| + auto callback = m_fixupCallbacks.find(from);
|
| + if (UNLIKELY(callback != m_fixupCallbacks.end())) {
|
| + size = HeapObjectHeader::fromPayload(to)->payloadSize();
|
| + callback->value.second(callback->value.first, from, to, size);
|
| + }
|
| +
|
| + if (!m_interiors)
|
| + return;
|
| +
|
| + if (!size)
|
| + size = HeapObjectHeader::fromPayload(to)->payloadSize();
|
| + relocateInteriorFixups(from, to, size);
|
| + }
|
| +
|
| +#if DEBUG_HEAP_COMPACTION
|
| + void dumpDebugStats() {
|
| + LOG_HEAP_COMPACTION(
|
| + "Fixups: pages=%u objects=%u callbacks=%u interior-size=%zu"
|
| + " interiors-f=%u\n",
|
| + m_relocatablePages.size(), m_fixups.size(), m_fixupCallbacks.size(),
|
| + m_interiors ? m_interiors->intervalCount() : 0,
|
| + m_interiorFixups.size());
|
| + }
|
| +#endif
|
| +
|
| + private:
|
| + MovableObjectFixups() {}
|
| +
|
| + // Tracking movable and updatable references. For now, we keep a
|
| + // map which for each movable object, recording the slot that
|
| + // points to it. Upon moving the object, that slot needs to be
|
| + // updated.
|
| + //
|
| + // (TODO: consider in-place updating schemes.)
|
| + HashMap<MovableReference, MovableReference*> m_fixups;
|
| +
|
| + // Map from movable reference to callbacks that need to be invoked
|
| + // when the object moves.
|
| + HashMap<MovableReference, std::pair<void*, MovingObjectCallback>>
|
| + m_fixupCallbacks;
|
| +
|
| + // Slot => relocated slot/final location.
|
| + HashMap<MovableReference*, Address> m_interiorFixups;
|
| +
|
| + // All pages that are being compacted.
|
| + HashSet<BasePage*> m_relocatablePages;
|
| +
|
| + std::unique_ptr<SparseHeapBitmap> m_interiors;
|
| +};
|
| +
|
| +HeapCompact::HeapCompact()
|
| + : m_doCompact(false),
|
| + m_gcCountSinceLastCompaction(0),
|
| + m_threadCount(0),
|
| + m_freeListSize(0),
|
| + m_compactableArenas(0u),
|
| + m_freedPages(0),
|
| + m_freedSize(0)
|
| +#if DEBUG_LOG_HEAP_COMPACTION_RUNNING_TIME
|
| + ,
|
| + m_startCompactionTimeMS(0)
|
| +#endif
|
| +{
|
| +}
|
| +
|
| +HeapCompact::~HeapCompact() {}
|
| +
|
| +HeapCompact::MovableObjectFixups& HeapCompact::fixups() {
|
| + if (!m_fixups)
|
| + m_fixups = MovableObjectFixups::create();
|
| + return *m_fixups;
|
| +}
|
| +
|
| +bool HeapCompact::shouldCompact(ThreadState* state,
|
| + BlinkGC::GCType gcType,
|
| + BlinkGC::GCReason reason) {
|
| +#if !ENABLE_HEAP_COMPACTION
|
| + return false;
|
| +#else
|
| + if (!RuntimeEnabledFeatures::heapCompactionEnabled())
|
| + return false;
|
| +
|
| + LOG_HEAP_COMPACTION("shouldCompact(): gc=%s count=%zu free=%zu\n",
|
| + ThreadState::gcReasonString(reason),
|
| + m_gcCountSinceLastCompaction, m_freeListSize);
|
| + m_gcCountSinceLastCompaction++;
|
| + // It is only safe to compact during non-conservative GCs.
|
| + // TODO: for the main thread, limit this further to only idle GCs.
|
| + if (reason != BlinkGC::IdleGC && reason != BlinkGC::PreciseGC &&
|
| + reason != BlinkGC::ForcedGC)
|
| + return false;
|
| +
|
| + const ThreadHeap& heap = state->heap();
|
| + // If any of the participating threads require a stack scan,
|
| + // do not compact.
|
| + //
|
| + // Why? Should the stack contain an iterator pointing into its
|
| + // associated backing store, its references wouldn't be
|
| + // correctly relocated.
|
| + for (ThreadState* state : heap.threads()) {
|
| + if (state->stackState() == BlinkGC::HeapPointersOnStack) {
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + // Compaction enable rules:
|
| + // - It's been a while since the last time.
|
| + // - "Considerable" amount of heap memory is bound up in freelist
|
| + // allocations. For now, use a fixed limit irrespective of heap
|
| + // size.
|
| + //
|
| + // As this isn't compacting all arenas, the cost of doing compaction
|
| + // isn't a worry as it will additionally only be done by idle GCs.
|
| + // TODO: add some form of compaction overhead estimate to the marking
|
| + // time estimate.
|
| +
|
| + updateHeapResidency(state);
|
| +
|
| +#if STRESS_TEST_HEAP_COMPACTION
|
| + // Exercise the handling of object movement by compacting as
|
| + // often as possible.
|
| + return true;
|
| +#else
|
| + return s_forceCompactionGC ||
|
| + (m_gcCountSinceLastCompaction > kGCCountSinceLastCompactionThreshold &&
|
| + m_freeListSize > kFreeListSizeThreshold);
|
| +#endif
|
| +#endif
|
| +}
|
| +
|
| +BlinkGC::GCType HeapCompact::initialize(ThreadState* state) {
|
| + DCHECK(RuntimeEnabledFeatures::heapCompactionEnabled());
|
| + LOG_HEAP_COMPACTION("Compacting: free=%zu\n", m_freeListSize);
|
| + m_doCompact = true;
|
| + m_freedPages = 0;
|
| + m_freedSize = 0;
|
| + m_threadCount = state->heap().threads().size();
|
| + m_fixups.reset();
|
| + m_gcCountSinceLastCompaction = 0;
|
| + s_forceCompactionGC = false;
|
| + return BlinkGC::GCWithSweepCompaction;
|
| +}
|
| +
|
| +void HeapCompact::registerMovingObjectReference(MovableReference* slot) {
|
| + if (!m_doCompact)
|
| + return;
|
| +
|
| + fixups().add(slot);
|
| +}
|
| +
|
| +void HeapCompact::registerMovingObjectCallback(MovableReference reference,
|
| + MovingObjectCallback callback,
|
| + void* callbackData) {
|
| + if (!m_doCompact)
|
| + return;
|
| +
|
| + fixups().addFixupCallback(reference, callback, callbackData);
|
| +}
|
| +
|
| +void HeapCompact::updateHeapResidency(ThreadState* threadState) {
|
| + // The heap compaction implementation assumes the contiguous range,
|
| + //
|
| + // [Vector1ArenaIndex, HashTableArenaIndex]
|
| + //
|
| + // in a few spots. Use static asserts here to not have that assumption
|
| + // be silently invalidated by ArenaIndices changes.
|
| + static_assert(BlinkGC::Vector1ArenaIndex + 3 == BlinkGC::Vector4ArenaIndex,
|
| + "unexpected ArenaIndices ordering");
|
| + static_assert(
|
| + BlinkGC::Vector4ArenaIndex + 1 == BlinkGC::InlineVectorArenaIndex,
|
| + "unexpected ArenaIndices ordering");
|
| + static_assert(
|
| + BlinkGC::InlineVectorArenaIndex + 1 == BlinkGC::HashTableArenaIndex,
|
| + "unexpected ArenaIndices ordering");
|
| +
|
| + size_t totalArenaSize = 0;
|
| + size_t totalFreeListSize = 0;
|
| +
|
| + m_compactableArenas = 0;
|
| +#if DEBUG_HEAP_FREELIST
|
| + LOG_HEAP_FREELIST("Arena residencies: {");
|
| +#endif
|
| + for (int i = BlinkGC::Vector1ArenaIndex; i <= BlinkGC::HashTableArenaIndex;
|
| + ++i) {
|
| + NormalPageArena* arena =
|
| + static_cast<NormalPageArena*>(threadState->arena(i));
|
| + size_t arenaSize = arena->arenaSize();
|
| + size_t freeListSize = arena->freeListSize();
|
| + totalArenaSize += arenaSize;
|
| + totalFreeListSize += freeListSize;
|
| + LOG_HEAP_FREELIST("%d: [%zu, %zu], ", i, arenaSize, freeListSize);
|
| + // TODO: be more discriminating and consider arena
|
| + // load factor, effectiveness of past compactions etc.
|
| + if (!arenaSize)
|
| + continue;
|
| + // Mark the arena as compactable.
|
| + m_compactableArenas |= (0x1u << (BlinkGC::Vector1ArenaIndex + i));
|
| + }
|
| + LOG_HEAP_FREELIST("}\nTotal = %zu, Free = %zu\n", totalArenaSize,
|
| + totalFreeListSize);
|
| +
|
| + // TODO(sof): consider smoothing the reported sizes.
|
| + m_freeListSize = totalFreeListSize;
|
| +}
|
| +
|
| +void HeapCompact::finishedArenaCompaction(NormalPageArena* arena,
|
| + size_t freedPages,
|
| + size_t freedSize) {
|
| + if (!m_doCompact)
|
| + return;
|
| +
|
| + m_freedPages += freedPages;
|
| + m_freedSize += freedSize;
|
| +}
|
| +
|
| +void HeapCompact::relocate(Address from, Address to) {
|
| + DCHECK(m_fixups);
|
| + m_fixups->relocate(from, to);
|
| +}
|
| +
|
| +void HeapCompact::startThreadCompaction() {
|
| + if (!m_doCompact)
|
| + return;
|
| +#if DEBUG_LOG_HEAP_COMPACTION_RUNNING_TIME
|
| + MutexLocker locker(m_mutex);
|
| + if (!m_startCompactionTimeMS)
|
| + m_startCompactionTimeMS = WTF::currentTimeMS();
|
| +#endif
|
| +}
|
| +
|
| +void HeapCompact::finishThreadCompaction() {
|
| + if (!m_doCompact)
|
| + return;
|
| +
|
| + MutexLocker locker(m_mutex);
|
| + // Final one clears out.
|
| + if (!--m_threadCount) {
|
| +#if DEBUG_HEAP_COMPACTION
|
| + if (m_fixups)
|
| + m_fixups->dumpDebugStats();
|
| +#endif
|
| + m_fixups.reset();
|
| + m_doCompact = false;
|
| +#if DEBUG_LOG_HEAP_COMPACTION_RUNNING_TIME
|
| + double end = WTF::currentTimeMS();
|
| + LOG_HEAP_COMPACTION_INTERNAL(
|
| + "Compaction stats: time=%gms, pages freed=%zu, size=%zu\n",
|
| + end - m_startCompactionTimeMS, m_freedPages, m_freedSize);
|
| + m_startCompactionTimeMS = 0;
|
| +#else
|
| + LOG_HEAP_COMPACTION("Compaction stats: freed pages=%zu size=%zu\n",
|
| + m_freedPages, m_freedSize);
|
| +#endif
|
| + // All compaction has completed, all participating threads may now
|
| + // proceed.
|
| + m_finished.broadcast();
|
| + } else {
|
| + // Letting a thread return to leave GC and become a "mutator" again
|
| + // runs the risk of it accessing heaps of other threads that are
|
| + // still being compacted. Consequently, all GC-participating threads
|
| + // must complete compaction together.
|
| + m_finished.wait(m_mutex);
|
| + }
|
| +}
|
| +
|
| +void HeapCompact::addCompactingPage(BasePage* page) {
|
| + DCHECK(m_doCompact);
|
| + DCHECK(isCompactingArena(page->arena()->arenaIndex()));
|
| + fixups().addCompactingPage(page);
|
| +}
|
| +
|
| +bool HeapCompact::scheduleCompactionGCForTesting(bool value) {
|
| + bool current = s_forceCompactionGC;
|
| + s_forceCompactionGC = value;
|
| + return current;
|
| +}
|
| +
|
| +} // namespace blink
|
|
|