Index: base/memory/discardable_memory_allocator_android.cc |
diff --git a/base/memory/discardable_memory_allocator_android.cc b/base/memory/discardable_memory_allocator_android.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5e108176fe00311ca8c103fa6a52531fa95f554b |
--- /dev/null |
+++ b/base/memory/discardable_memory_allocator_android.cc |
@@ -0,0 +1,418 @@ |
+// Copyright 2013 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "base/memory/discardable_memory_allocator_android.h" |
+ |
+#include <algorithm> |
+#include <cmath> |
+#include <set> |
+#include <utility> |
+ |
+#include "base/basictypes.h" |
+#include "base/containers/hash_tables.h" |
+#include "base/logging.h" |
+#include "base/memory/discardable_memory.h" |
+#include "base/memory/discardable_memory_android.h" |
+#include "base/memory/scoped_vector.h" |
+#include "base/synchronization/lock.h" |
+#include "base/threading/thread_checker.h" |
+ |
+// The allocator consists of three parts (classes): |
+// - DiscardableMemoryAllocator: entry point of all allocations (through its |
+// Allocate() method) that are dispatched to the AshmemRegion instances (which |
+// it owns). |
+// - AshmemRegion: manages allocations and destructions inside a single large |
+// (e.g. 32 MBytes) ashmem region. |
+// - DiscardableAshmemChunk: class implementing the DiscardableMemory interface |
+// whose instances are returned to the client. DiscardableAshmemChunk lets the |
+// client seamlessly operate on a subrange of the ashmem region managed by |
+// AshmemRegion. |
+ |
+namespace base { |
+namespace { |
+ |
+// Only tolerate fragmentation in used chunks *caused by the client* (as opposed |
+// to the allocator when a free chunk is reused). The client can cause such |
+// fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to |
+// 8192 by the allocator which would cause 4095 bytes of fragmentation (which is |
+// currently the maximum allowed). If the client requests 4096 bytes and a free |
+// chunk of 8192 bytes is available then the free chunk gets splitted into two |
+// pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater |
+// than 4095). |
+// TODO(pliard): tune this if splitting chunks too often leads to performance |
+// issues. |
+const size_t kMaxChunkFragmentationBytes = 4096 - 1; |
+ |
+} // namespace |
+ |
+namespace internal { |
+ |
+class DiscardableMemoryAllocator::DiscardableAshmemChunk |
+ : public DiscardableMemory { |
+ public: |
+ // Note that |ashmem_region| must outlive |this|. |
+ DiscardableAshmemChunk(AshmemRegion* ashmem_region, |
+ int fd, |
+ void* address, |
+ size_t offset, |
+ size_t size) |
+ : ashmem_region_(ashmem_region), |
+ fd_(fd), |
+ address_(address), |
+ offset_(offset), |
+ size_(size), |
+ locked_(true) { |
+ } |
+ |
+ // Implemented below AshmemRegion since this requires the full definition of |
+ // AshmemRegion. |
+ virtual ~DiscardableAshmemChunk(); |
+ |
+ // DiscardableMemory: |
+ virtual LockDiscardableMemoryStatus Lock() OVERRIDE { |
+ DCHECK(!locked_); |
+ locked_ = true; |
+ return internal::LockAshmemRegion(fd_, offset_, size_, address_); |
+ } |
+ |
+ virtual void Unlock() OVERRIDE { |
+ DCHECK(locked_); |
+ locked_ = false; |
+ internal::UnlockAshmemRegion(fd_, offset_, size_, address_); |
+ } |
+ |
+ virtual void* Memory() const OVERRIDE { |
+ return address_; |
+ } |
+ |
+ private: |
+ AshmemRegion* const ashmem_region_; |
+ const int fd_; |
+ void* const address_; |
+ const size_t offset_; |
+ const size_t size_; |
+ bool locked_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(DiscardableAshmemChunk); |
+}; |
+ |
+class DiscardableMemoryAllocator::AshmemRegion { |
+ public: |
+ // Note that |allocator| must outlive |this|. |
+ static scoped_ptr<AshmemRegion> Create( |
+ size_t size, |
+ const std::string& name, |
+ DiscardableMemoryAllocator* allocator) { |
+ int fd; |
+ void* base; |
+ if (!internal::CreateAshmemRegion(name.c_str(), size, &fd, &base)) |
+ return scoped_ptr<AshmemRegion>(); |
+ return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator)); |
+ } |
+ |
+ virtual ~AshmemRegion() { |
+ const bool result = internal::CloseAshmemRegion(fd_, size_, base_); |
+ DCHECK(result); |
+ } |
+ |
+ // Returns a new instance of DiscardableMemory whose size is greater or equal |
+ // than |actual_size| (which is expected to be greater or equal than |
+ // |client_requested_size|). |
+ // Allocation works as follows: |
+ // 1) Reuse a previously freed chunk and return it if it succeeded. See |
+ // ReuseFreeChunk_Locked() below for more information. |
+ // 2) If no free chunk could be reused and the region is not big enough for |
+ // the requested size then NULL is returned. |
+ // 3) If there is enough room in the ashmem region then a new chunk is |
+ // returned. This new chunk starts at |offset_| which is the end of the |
+ // previously highest chunk in the region. |
+ scoped_ptr<DiscardableMemory> Allocate_Locked(size_t client_requested_size, |
+ size_t actual_size) { |
+ DCHECK_LE(client_requested_size, actual_size); |
+ allocator_->lock_.AssertAcquired(); |
+ scoped_ptr<DiscardableMemory> memory = ReuseFreeChunk_Locked( |
+ client_requested_size, actual_size); |
+ if (memory) |
+ return memory.Pass(); |
+ if (size_ - offset_ < actual_size) { |
+ // This region does not have enough space left to hold the requested size. |
+ return scoped_ptr<DiscardableMemory>(); |
+ } |
+ void* const address = static_cast<char*>(base_) + offset_; |
+ memory.reset( |
+ new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size)); |
+ used_to_previous_chunk_map_.insert( |
+ std::make_pair(address, highest_allocated_chunk_)); |
+ highest_allocated_chunk_ = address; |
+ offset_ += actual_size; |
+ DCHECK_LE(offset_, size_); |
+ return memory.Pass(); |
+ } |
+ |
+ void OnChunkDeletion(void* chunk, size_t size) { |
+ AutoLock auto_lock(allocator_->lock_); |
+ MergeAndAddFreeChunk_Locked(chunk, size); |
+ // Note that |this| might be deleted beyond this point. |
+ } |
+ |
+ private: |
+ struct FreeChunk { |
+ FreeChunk(void* previous_chunk, void* start, size_t size) |
+ : previous_chunk(previous_chunk), |
+ start(start), |
+ size(size) { |
+ } |
+ |
+ void* const previous_chunk; |
+ void* const start; |
+ const size_t size; |
+ |
+ bool is_null() const { return !start; } |
+ |
+ bool operator<(const FreeChunk& other) const { |
+ return size < other.size; |
+ } |
+ }; |
+ |
+ // Note that |allocator| must outlive |this|. |
+ AshmemRegion(int fd, |
+ size_t size, |
+ void* base, |
+ DiscardableMemoryAllocator* allocator) |
+ : fd_(fd), |
+ size_(size), |
+ base_(base), |
+ allocator_(allocator), |
+ highest_allocated_chunk_(NULL), |
+ offset_(0) { |
+ DCHECK_GE(fd_, 0); |
+ DCHECK_GE(size, kMinAshmemRegionSize); |
+ DCHECK(base); |
+ DCHECK(allocator); |
+ } |
+ |
+ // Tries to reuse a previously freed chunk by doing a closest size match. |
+ scoped_ptr<DiscardableMemory> ReuseFreeChunk_Locked( |
+ size_t client_requested_size, |
+ size_t actual_size) { |
+ allocator_->lock_.AssertAcquired(); |
+ const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked( |
+ free_chunks_.lower_bound(FreeChunk(NULL, NULL, actual_size))); |
+ if (reused_chunk.is_null()) |
+ return scoped_ptr<DiscardableMemory>(); |
+ |
+ used_to_previous_chunk_map_.insert( |
+ std::make_pair(reused_chunk.start, reused_chunk.previous_chunk)); |
+ size_t reused_chunk_size = reused_chunk.size; |
+ // |client_requested_size| is used below rather than |actual_size| to |
+ // reflect the amount of bytes that would not be usable by the client (i.e. |
+ // wasted). Using |actual_size| instead would not allow us to detect |
+ // fragmentation caused by the client if he did misaligned allocations. |
+ DCHECK_GE(reused_chunk.size, client_requested_size); |
+ const size_t fragmentation_bytes = |
+ reused_chunk.size - client_requested_size; |
+ if (fragmentation_bytes > kMaxChunkFragmentationBytes) { |
+ // Split the free chunk being recycled so that its unused tail doesn't get |
+ // reused (i.e. locked) which would prevent it from being evicted under |
+ // memory pressure. |
+ reused_chunk_size = actual_size; |
+ void* const new_chunk_start = |
+ static_cast<char*>(reused_chunk.start) + actual_size; |
+ DCHECK_GT(reused_chunk.size, actual_size); |
+ const size_t new_chunk_size = reused_chunk.size - actual_size; |
+ // Note that merging is not needed here since there can't be contiguous |
+ // free chunks at this point. |
+ AddFreeChunk_Locked( |
+ FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size)); |
+ } |
+ const size_t offset = |
+ static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_); |
+ internal::LockAshmemRegion( |
+ fd_, offset, reused_chunk_size, reused_chunk.start); |
+ scoped_ptr<DiscardableMemory> memory( |
+ new DiscardableAshmemChunk(this, fd_, reused_chunk.start, offset, |
+ reused_chunk_size)); |
+ return memory.Pass(); |
+ } |
+ |
+ // Makes the chunk identified with the provided arguments free and possibly |
+ // merges this chunk with the previous and next contiguous ones. |
+ // If the provided chunk is the only one used (and going to be freed) in the |
+ // region then the internal ashmem region is closed so that the underlying |
+ // physical pages are immediately released. |
+ // Note that free chunks are unlocked therefore they can be reclaimed by the |
+ // kernel if needed (under memory pressure) but they are not immediately |
+ // released unfortunately since madvise(MADV_REMOVE) and |
+ // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might |
+ // change in versions of kernel >=3.5 though. The fact that free chunks are |
+ // not immediately released is the reason why we are trying to minimize |
+ // fragmentation in order not to cause "artificial" memory pressure. |
+ void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) { |
+ allocator_->lock_.AssertAcquired(); |
+ size_t new_free_chunk_size = size; |
+ // Merge with the previous chunk. |
+ void* first_free_chunk = chunk; |
+ DCHECK(!used_to_previous_chunk_map_.empty()); |
+ const hash_map<void*, void*>::iterator previous_chunk_it = |
+ used_to_previous_chunk_map_.find(chunk); |
+ DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end()); |
+ void* previous_chunk = previous_chunk_it->second; |
+ used_to_previous_chunk_map_.erase(previous_chunk_it); |
+ if (previous_chunk) { |
+ const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk); |
+ if (!free_chunk.is_null()) { |
+ new_free_chunk_size += free_chunk.size; |
+ first_free_chunk = previous_chunk; |
+ // There should not be more contiguous previous free chunks. |
+ DCHECK(!address_to_free_chunk_map_.count(free_chunk.previous_chunk)); |
+ } |
+ } |
+ // Merge with the next chunk if free and present. |
+ void* next_chunk = static_cast<char*>(chunk) + size; |
+ const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk); |
+ if (!next_free_chunk.is_null()) { |
+ new_free_chunk_size += next_free_chunk.size; |
+ // Same as above. |
+ DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) + |
+ next_free_chunk.size)); |
+ } |
+ const bool whole_ashmem_region_is_free = |
+ used_to_previous_chunk_map_.empty(); |
+ if (!whole_ashmem_region_is_free) { |
+ AddFreeChunk_Locked( |
+ FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size)); |
+ return; |
+ } |
+ // The whole ashmem region is free thus it can be deleted. |
+ DCHECK_EQ(base_, first_free_chunk); |
+ DCHECK(free_chunks_.empty()); |
+ DCHECK(address_to_free_chunk_map_.empty()); |
+ DCHECK(used_to_previous_chunk_map_.empty()); |
+ allocator_->DeleteAshmemRegion_Locked(this); // Deletes |this|. |
+ } |
+ |
+ void AddFreeChunk_Locked(const FreeChunk& free_chunk) { |
+ allocator_->lock_.AssertAcquired(); |
+ const std::multiset<FreeChunk>::iterator it = free_chunks_.insert( |
+ free_chunk); |
+ address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it)); |
+ // Update the next used contiguous chunk, if any, since its previous chunk |
+ // may have changed due to free chunks merging/splitting. |
+ void* const next_used_contiguous_chunk = |
+ static_cast<char*>(free_chunk.start) + free_chunk.size; |
+ hash_map<void*, void*>::iterator previous_it = |
+ used_to_previous_chunk_map_.find(next_used_contiguous_chunk); |
+ if (previous_it != used_to_previous_chunk_map_.end()) |
+ previous_it->second = free_chunk.start; |
+ } |
+ |
+ // Finds and removes the free chunk, if any, whose start address is |
+ // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk |
+ // whose content is null if it was not found. |
+ FreeChunk RemoveFreeChunk_Locked(void* chunk_start) { |
+ allocator_->lock_.AssertAcquired(); |
+ const hash_map< |
+ void*, std::multiset<FreeChunk>::iterator>::iterator it = |
+ address_to_free_chunk_map_.find(chunk_start); |
+ if (it == address_to_free_chunk_map_.end()) |
+ return FreeChunk(NULL, NULL, 0U); |
+ return RemoveFreeChunkFromIterator_Locked(it->second); |
+ } |
+ |
+ // Same as above but takes an iterator in. |
+ FreeChunk RemoveFreeChunkFromIterator_Locked( |
+ std::multiset<FreeChunk>::iterator free_chunk_it) { |
+ allocator_->lock_.AssertAcquired(); |
+ if (free_chunk_it == free_chunks_.end()) |
+ return FreeChunk(NULL, NULL, 0U); |
+ DCHECK(free_chunk_it != free_chunks_.end()); |
+ const FreeChunk free_chunk(*free_chunk_it); |
+ address_to_free_chunk_map_.erase(free_chunk_it->start); |
+ free_chunks_.erase(free_chunk_it); |
+ return free_chunk; |
+ } |
+ |
+ const int fd_; |
+ const size_t size_; |
+ void* const base_; |
+ DiscardableMemoryAllocator* const allocator_; |
+ void* highest_allocated_chunk_; |
+ // Points to the end of |highest_allocated_chunk_|. |
+ size_t offset_; |
+ // Allows free chunks recycling (lookup, insertion and removal) in O(log N). |
+ // Note that FreeChunk values are indexed by their size and also note that |
+ // multiple free chunks can have the same size (which is why multiset<> is |
+ // used instead of e.g. set<>). |
+ std::multiset<FreeChunk> free_chunks_; |
+ // Used while merging free contiguous chunks to erase free chunks (from their |
+ // start address) in constant time. Note that multiset<>::{insert,erase}() |
+ // don't invalidate iterators (except the one for the element being removed |
+ // obviously). |
+ hash_map< |
+ void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_; |
+ // Maps the address of *used* chunks to the address of their previous |
+ // contiguous chunk. |
+ hash_map<void*, void*> used_to_previous_chunk_map_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(AshmemRegion); |
+}; |
+ |
+DiscardableMemoryAllocator::DiscardableAshmemChunk::~DiscardableAshmemChunk() { |
+ if (locked_) |
+ internal::UnlockAshmemRegion(fd_, offset_, size_, address_); |
+ ashmem_region_->OnChunkDeletion(address_, size_); |
+} |
+ |
+DiscardableMemoryAllocator::DiscardableMemoryAllocator(const std::string& name) |
+ : name_(name) { |
+} |
+ |
+DiscardableMemoryAllocator::~DiscardableMemoryAllocator() { |
+ DCHECK(thread_checker_.CalledOnValidThread()); |
+ DCHECK(ashmem_regions_.empty()); |
+} |
+ |
+scoped_ptr<DiscardableMemory> DiscardableMemoryAllocator::Allocate( |
+ size_t size) { |
+ const size_t aligned_size = internal::AlignToNextPage(size); |
+ // TODO(pliard): make this function less naive by e.g. moving the free chunks |
+ // multiset to the allocator itself in order to decrease even more |
+ // fragmentation/speedup allocation. Note that there should not be more than a |
+ // couple (=5) of AshmemRegion instances in practice though. |
+ AutoLock auto_lock(lock_); |
+ DCHECK_LE(ashmem_regions_.size(), 5U); |
+ for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin(); |
+ it != ashmem_regions_.end(); ++it) { |
+ scoped_ptr<DiscardableMemory> memory( |
+ (*it)->Allocate_Locked(size, aligned_size)); |
+ if (memory) |
+ return memory.Pass(); |
+ } |
+ scoped_ptr<AshmemRegion> new_region( |
+ AshmemRegion::Create( |
+ std::max(static_cast<size_t>(kMinAshmemRegionSize), aligned_size), |
+ name_.c_str(), this)); |
+ if (!new_region) { |
+ // TODO(pliard): consider adding an histogram to see how often this happens. |
+ return scoped_ptr<DiscardableMemory>(); |
+ } |
+ ashmem_regions_.push_back(new_region.release()); |
+ return ashmem_regions_.back()->Allocate_Locked(size, aligned_size); |
+} |
+ |
+void DiscardableMemoryAllocator::DeleteAshmemRegion_Locked( |
+ AshmemRegion* region) { |
+ lock_.AssertAcquired(); |
+ // Note that there should not be more than a couple of ashmem region instances |
+ // in |ashmem_regions_|. |
+ DCHECK_LE(ashmem_regions_.size(), 5U); |
+ const ScopedVector<AshmemRegion>::iterator it = std::find( |
+ ashmem_regions_.begin(), ashmem_regions_.end(), region); |
+ DCHECK_NE(ashmem_regions_.end(), it); |
+ std::swap(*it, ashmem_regions_.back()); |
+ ashmem_regions_.pop_back(); |
+} |
+ |
+} // namespace internal |
+} // namespace base |