Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1026)

Unified Diff: third_party/WebKit/Source/wtf/allocator/PartitionAlloc.cpp

Issue 2518253002: Move Partition Allocator into Chromium base. (Closed)
Patch Set: Move OOM_CRASH into its own, more specific header. Fixes Windows build. Created 4 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/WebKit/Source/wtf/allocator/PartitionAlloc.cpp
diff --git a/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.cpp b/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.cpp
deleted file mode 100644
index 03978e8dbf71cb00773a73344bef6142a302f255..0000000000000000000000000000000000000000
--- a/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.cpp
+++ /dev/null
@@ -1,1492 +0,0 @@
-/*
- * Copyright (C) 2013 Google Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following disclaimer
- * in the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Google Inc. nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include "wtf/allocator/PartitionAlloc.h"
-
-#include <string.h>
-
-#ifndef NDEBUG
-#include <stdio.h>
-#endif
-
-// Two partition pages are used as guard / metadata page so make sure the super
-// page size is bigger.
-static_assert(WTF::kPartitionPageSize * 4 <= WTF::kSuperPageSize,
- "ok super page size");
-static_assert(!(WTF::kSuperPageSize % WTF::kPartitionPageSize),
- "ok super page multiple");
-// Four system pages gives us room to hack out a still-guard-paged piece
-// of metadata in the middle of a guard partition page.
-static_assert(WTF::kSystemPageSize * 4 <= WTF::kPartitionPageSize,
- "ok partition page size");
-static_assert(!(WTF::kPartitionPageSize % WTF::kSystemPageSize),
- "ok partition page multiple");
-static_assert(sizeof(WTF::PartitionPage) <= WTF::kPageMetadataSize,
- "PartitionPage should not be too big");
-static_assert(sizeof(WTF::PartitionBucket) <= WTF::kPageMetadataSize,
- "PartitionBucket should not be too big");
-static_assert(sizeof(WTF::PartitionSuperPageExtentEntry) <=
- WTF::kPageMetadataSize,
- "PartitionSuperPageExtentEntry should not be too big");
-static_assert(WTF::kPageMetadataSize * WTF::kNumPartitionPagesPerSuperPage <=
- WTF::kSystemPageSize,
- "page metadata fits in hole");
-// Check that some of our zanier calculations worked out as expected.
-static_assert(WTF::kGenericSmallestBucket == 8, "generic smallest bucket");
-static_assert(WTF::kGenericMaxBucketed == 983040, "generic max bucketed");
-static_assert(WTF::kMaxSystemPagesPerSlotSpan < (1 << 8),
- "System pages per slot span must be less than 128.");
-
-namespace WTF {
-
-SpinLock PartitionRootBase::gInitializedLock;
-bool PartitionRootBase::gInitialized = false;
-PartitionPage PartitionRootBase::gSeedPage;
-PartitionBucket PartitionRootBase::gPagedBucket;
-void (*PartitionRootBase::gOomHandlingFunction)() = nullptr;
-PartitionAllocHooks::AllocationHook* PartitionAllocHooks::m_allocationHook =
- nullptr;
-PartitionAllocHooks::FreeHook* PartitionAllocHooks::m_freeHook = nullptr;
-
-static uint8_t partitionBucketNumSystemPages(size_t size) {
- // This works out reasonably for the current bucket sizes of the generic
- // allocator, and the current values of partition page size and constants.
- // Specifically, we have enough room to always pack the slots perfectly into
- // some number of system pages. The only waste is the waste associated with
- // unfaulted pages (i.e. wasted address space).
- // TODO: we end up using a lot of system pages for very small sizes. For
- // example, we'll use 12 system pages for slot size 24. The slot size is
- // so small that the waste would be tiny with just 4, or 1, system pages.
- // Later, we can investigate whether there are anti-fragmentation benefits
- // to using fewer system pages.
- double bestWasteRatio = 1.0f;
- uint16_t bestPages = 0;
- if (size > kMaxSystemPagesPerSlotSpan * kSystemPageSize) {
- ASSERT(!(size % kSystemPageSize));
- bestPages = static_cast<uint16_t>(size / kSystemPageSize);
- RELEASE_ASSERT(bestPages < (1 << 8));
- return static_cast<uint8_t>(bestPages);
- }
- ASSERT(size <= kMaxSystemPagesPerSlotSpan * kSystemPageSize);
- for (uint16_t i = kNumSystemPagesPerPartitionPage - 1;
- i <= kMaxSystemPagesPerSlotSpan; ++i) {
- size_t pageSize = kSystemPageSize * i;
- size_t numSlots = pageSize / size;
- size_t waste = pageSize - (numSlots * size);
- // Leaving a page unfaulted is not free; the page will occupy an empty page
- // table entry. Make a simple attempt to account for that.
- size_t numRemainderPages = i & (kNumSystemPagesPerPartitionPage - 1);
- size_t numUnfaultedPages =
- numRemainderPages
- ? (kNumSystemPagesPerPartitionPage - numRemainderPages)
- : 0;
- waste += sizeof(void*) * numUnfaultedPages;
- double wasteRatio = (double)waste / (double)pageSize;
- if (wasteRatio < bestWasteRatio) {
- bestWasteRatio = wasteRatio;
- bestPages = i;
- }
- }
- ASSERT(bestPages > 0);
- RELEASE_ASSERT(bestPages <= kMaxSystemPagesPerSlotSpan);
- return static_cast<uint8_t>(bestPages);
-}
-
-static void partitionAllocBaseInit(PartitionRootBase* root) {
- ASSERT(!root->initialized);
- {
- SpinLock::Guard guard(PartitionRootBase::gInitializedLock);
- if (!PartitionRootBase::gInitialized) {
- PartitionRootBase::gInitialized = true;
- // We mark the seed page as free to make sure it is skipped by our
- // logic to find a new active page.
- PartitionRootBase::gPagedBucket.activePagesHead =
- &PartitionRootGeneric::gSeedPage;
- }
- }
-
- root->initialized = true;
- root->totalSizeOfCommittedPages = 0;
- root->totalSizeOfSuperPages = 0;
- root->totalSizeOfDirectMappedPages = 0;
- root->nextSuperPage = 0;
- root->nextPartitionPage = 0;
- root->nextPartitionPageEnd = 0;
- root->firstExtent = 0;
- root->currentExtent = 0;
- root->directMapList = 0;
-
- memset(&root->globalEmptyPageRing, '\0', sizeof(root->globalEmptyPageRing));
- root->globalEmptyPageRingIndex = 0;
-
- // This is a "magic" value so we can test if a root pointer is valid.
- root->invertedSelf = ~reinterpret_cast<uintptr_t>(root);
-}
-
-static void partitionBucketInitBase(PartitionBucket* bucket,
- PartitionRootBase* root) {
- bucket->activePagesHead = &PartitionRootGeneric::gSeedPage;
- bucket->emptyPagesHead = 0;
- bucket->decommittedPagesHead = 0;
- bucket->numFullPages = 0;
- bucket->numSystemPagesPerSlotSpan =
- partitionBucketNumSystemPages(bucket->slotSize);
-}
-
-void partitionAllocGlobalInit(void (*oomHandlingFunction)()) {
- ASSERT(oomHandlingFunction);
- PartitionRootBase::gOomHandlingFunction = oomHandlingFunction;
-}
-
-void partitionAllocInit(PartitionRoot* root,
- size_t numBuckets,
- size_t maxAllocation) {
- partitionAllocBaseInit(root);
-
- root->numBuckets = numBuckets;
- root->maxAllocation = maxAllocation;
- size_t i;
- for (i = 0; i < root->numBuckets; ++i) {
- PartitionBucket* bucket = &root->buckets()[i];
- if (!i)
- bucket->slotSize = kAllocationGranularity;
- else
- bucket->slotSize = i << kBucketShift;
- partitionBucketInitBase(bucket, root);
- }
-}
-
-void partitionAllocGenericInit(PartitionRootGeneric* root) {
- SpinLock::Guard guard(root->lock);
-
- partitionAllocBaseInit(root);
-
- // Precalculate some shift and mask constants used in the hot path.
- // Example: malloc(41) == 101001 binary.
- // Order is 6 (1 << 6-1)==32 is highest bit set.
- // orderIndex is the next three MSB == 010 == 2.
- // subOrderIndexMask is a mask for the remaining bits == 11 (masking to 01 for
- // the subOrderIndex).
- size_t order;
- for (order = 0; order <= kBitsPerSizet; ++order) {
- size_t orderIndexShift;
- if (order < kGenericNumBucketsPerOrderBits + 1)
- orderIndexShift = 0;
- else
- orderIndexShift = order - (kGenericNumBucketsPerOrderBits + 1);
- root->orderIndexShifts[order] = orderIndexShift;
- size_t subOrderIndexMask;
- if (order == kBitsPerSizet) {
- // This avoids invoking undefined behavior for an excessive shift.
- subOrderIndexMask =
- static_cast<size_t>(-1) >> (kGenericNumBucketsPerOrderBits + 1);
- } else {
- subOrderIndexMask = ((static_cast<size_t>(1) << order) - 1) >>
- (kGenericNumBucketsPerOrderBits + 1);
- }
- root->orderSubIndexMasks[order] = subOrderIndexMask;
- }
-
- // Set up the actual usable buckets first.
- // Note that typical values (i.e. min allocation size of 8) will result in
- // pseudo buckets (size==9 etc. or more generally, size is not a multiple
- // of the smallest allocation granularity).
- // We avoid them in the bucket lookup map, but we tolerate them to keep the
- // code simpler and the structures more generic.
- size_t i, j;
- size_t currentSize = kGenericSmallestBucket;
- size_t currentIncrement =
- kGenericSmallestBucket >> kGenericNumBucketsPerOrderBits;
- PartitionBucket* bucket = &root->buckets[0];
- for (i = 0; i < kGenericNumBucketedOrders; ++i) {
- for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
- bucket->slotSize = currentSize;
- partitionBucketInitBase(bucket, root);
- // Disable psuedo buckets so that touching them faults.
- if (currentSize % kGenericSmallestBucket)
- bucket->activePagesHead = 0;
- currentSize += currentIncrement;
- ++bucket;
- }
- currentIncrement <<= 1;
- }
- ASSERT(currentSize == 1 << kGenericMaxBucketedOrder);
- ASSERT(bucket == &root->buckets[0] + kGenericNumBuckets);
-
- // Then set up the fast size -> bucket lookup table.
- bucket = &root->buckets[0];
- PartitionBucket** bucketPtr = &root->bucketLookups[0];
- for (order = 0; order <= kBitsPerSizet; ++order) {
- for (j = 0; j < kGenericNumBucketsPerOrder; ++j) {
- if (order < kGenericMinBucketedOrder) {
- // Use the bucket of the finest granularity for malloc(0) etc.
- *bucketPtr++ = &root->buckets[0];
- } else if (order > kGenericMaxBucketedOrder) {
- *bucketPtr++ = &PartitionRootGeneric::gPagedBucket;
- } else {
- PartitionBucket* validBucket = bucket;
- // Skip over invalid buckets.
- while (validBucket->slotSize % kGenericSmallestBucket)
- validBucket++;
- *bucketPtr++ = validBucket;
- bucket++;
- }
- }
- }
- ASSERT(bucket == &root->buckets[0] + kGenericNumBuckets);
- ASSERT(bucketPtr ==
- &root->bucketLookups[0] +
- ((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder));
- // And there's one last bucket lookup that will be hit for e.g. malloc(-1),
- // which tries to overflow to a non-existant order.
- *bucketPtr = &PartitionRootGeneric::gPagedBucket;
-}
-
-static bool partitionAllocShutdownBucket(PartitionBucket* bucket) {
- // Failure here indicates a memory leak.
- bool foundLeak = bucket->numFullPages;
- for (PartitionPage* page = bucket->activePagesHead; page;
- page = page->nextPage)
- foundLeak |= (page->numAllocatedSlots > 0);
- return foundLeak;
-}
-
-static bool partitionAllocBaseShutdown(PartitionRootBase* root) {
- ASSERT(root->initialized);
- root->initialized = false;
-
- // Now that we've examined all partition pages in all buckets, it's safe
- // to free all our super pages. Since the super page extent entries are
- // stored in the super pages, we need to be careful not to access them
- // after we've released the corresponding super page.
- PartitionSuperPageExtentEntry* entry = root->firstExtent;
- while (entry) {
- PartitionSuperPageExtentEntry* nextEntry = entry->next;
- char* superPage = entry->superPageBase;
- char* superPagesEnd = entry->superPagesEnd;
- while (superPage < superPagesEnd) {
- freePages(superPage, kSuperPageSize);
- superPage += kSuperPageSize;
- }
- entry = nextEntry;
- }
- return root->directMapList;
-}
-
-bool partitionAllocShutdown(PartitionRoot* root) {
- bool foundLeak = false;
- size_t i;
- for (i = 0; i < root->numBuckets; ++i) {
- PartitionBucket* bucket = &root->buckets()[i];
- foundLeak |= partitionAllocShutdownBucket(bucket);
- }
- foundLeak |= partitionAllocBaseShutdown(root);
- return !foundLeak;
-}
-
-bool partitionAllocGenericShutdown(PartitionRootGeneric* root) {
- SpinLock::Guard guard(root->lock);
- bool foundLeak = false;
- size_t i;
- for (i = 0; i < kGenericNumBuckets; ++i) {
- PartitionBucket* bucket = &root->buckets[i];
- foundLeak |= partitionAllocShutdownBucket(bucket);
- }
- foundLeak |= partitionAllocBaseShutdown(root);
- return !foundLeak;
-}
-
-#if !CPU(64BIT)
-static NEVER_INLINE void partitionOutOfMemoryWithLotsOfUncommitedPages() {
- OOM_CRASH();
-}
-#endif
-
-static NEVER_INLINE void partitionOutOfMemory(const PartitionRootBase* root) {
-#if !CPU(64BIT)
- // Check whether this OOM is due to a lot of super pages that are allocated
- // but not committed, probably due to http://crbug.com/421387.
- if (root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages -
- root->totalSizeOfCommittedPages >
- kReasonableSizeOfUnusedPages) {
- partitionOutOfMemoryWithLotsOfUncommitedPages();
- }
-#endif
- if (PartitionRootBase::gOomHandlingFunction)
- (*PartitionRootBase::gOomHandlingFunction)();
- OOM_CRASH();
-}
-
-static NEVER_INLINE void partitionExcessiveAllocationSize() {
- OOM_CRASH();
-}
-
-static NEVER_INLINE void partitionBucketFull() {
- OOM_CRASH();
-}
-
-// partitionPageStateIs*
-// Note that it's only valid to call these functions on pages found on one of
-// the page lists. Specifically, you can't call these functions on full pages
-// that were detached from the active list.
-static bool ALWAYS_INLINE
-partitionPageStateIsActive(const PartitionPage* page) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- ASSERT(!page->pageOffset);
- return (page->numAllocatedSlots > 0 &&
- (page->freelistHead || page->numUnprovisionedSlots));
-}
-
-static bool ALWAYS_INLINE partitionPageStateIsFull(const PartitionPage* page) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- ASSERT(!page->pageOffset);
- bool ret = (page->numAllocatedSlots == partitionBucketSlots(page->bucket));
- if (ret) {
- ASSERT(!page->freelistHead);
- ASSERT(!page->numUnprovisionedSlots);
- }
- return ret;
-}
-
-static bool ALWAYS_INLINE partitionPageStateIsEmpty(const PartitionPage* page) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- ASSERT(!page->pageOffset);
- return (!page->numAllocatedSlots && page->freelistHead);
-}
-
-static bool ALWAYS_INLINE
-partitionPageStateIsDecommitted(const PartitionPage* page) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- ASSERT(!page->pageOffset);
- bool ret = (!page->numAllocatedSlots && !page->freelistHead);
- if (ret) {
- ASSERT(!page->numUnprovisionedSlots);
- ASSERT(page->emptyCacheIndex == -1);
- }
- return ret;
-}
-
-static void partitionIncreaseCommittedPages(PartitionRootBase* root,
- size_t len) {
- root->totalSizeOfCommittedPages += len;
- ASSERT(root->totalSizeOfCommittedPages <=
- root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
-}
-
-static void partitionDecreaseCommittedPages(PartitionRootBase* root,
- size_t len) {
- root->totalSizeOfCommittedPages -= len;
- ASSERT(root->totalSizeOfCommittedPages <=
- root->totalSizeOfSuperPages + root->totalSizeOfDirectMappedPages);
-}
-
-static ALWAYS_INLINE void partitionDecommitSystemPages(PartitionRootBase* root,
- void* addr,
- size_t len) {
- decommitSystemPages(addr, len);
- partitionDecreaseCommittedPages(root, len);
-}
-
-static ALWAYS_INLINE void partitionRecommitSystemPages(PartitionRootBase* root,
- void* addr,
- size_t len) {
- recommitSystemPages(addr, len);
- partitionIncreaseCommittedPages(root, len);
-}
-
-static ALWAYS_INLINE void* partitionAllocPartitionPages(
- PartitionRootBase* root,
- int flags,
- uint16_t numPartitionPages) {
- ASSERT(!(reinterpret_cast<uintptr_t>(root->nextPartitionPage) %
- kPartitionPageSize));
- ASSERT(!(reinterpret_cast<uintptr_t>(root->nextPartitionPageEnd) %
- kPartitionPageSize));
- ASSERT(numPartitionPages <= kNumPartitionPagesPerSuperPage);
- size_t totalSize = kPartitionPageSize * numPartitionPages;
- size_t numPartitionPagesLeft =
- (root->nextPartitionPageEnd - root->nextPartitionPage) >>
- kPartitionPageShift;
- if (LIKELY(numPartitionPagesLeft >= numPartitionPages)) {
- // In this case, we can still hand out pages from the current super page
- // allocation.
- char* ret = root->nextPartitionPage;
- root->nextPartitionPage += totalSize;
- partitionIncreaseCommittedPages(root, totalSize);
- return ret;
- }
-
- // Need a new super page. We want to allocate super pages in a continguous
- // address region as much as possible. This is important for not causing
- // page table bloat and not fragmenting address spaces in 32 bit
- // architectures.
- char* requestedAddress = root->nextSuperPage;
- char* superPage = reinterpret_cast<char*>(allocPages(
- requestedAddress, kSuperPageSize, kSuperPageSize, PageAccessible));
- if (UNLIKELY(!superPage))
- return 0;
-
- root->totalSizeOfSuperPages += kSuperPageSize;
- partitionIncreaseCommittedPages(root, totalSize);
-
- root->nextSuperPage = superPage + kSuperPageSize;
- char* ret = superPage + kPartitionPageSize;
- root->nextPartitionPage = ret + totalSize;
- root->nextPartitionPageEnd = root->nextSuperPage - kPartitionPageSize;
- // Make the first partition page in the super page a guard page, but leave a
- // hole in the middle.
- // This is where we put page metadata and also a tiny amount of extent
- // metadata.
- setSystemPagesInaccessible(superPage, kSystemPageSize);
- setSystemPagesInaccessible(superPage + (kSystemPageSize * 2),
- kPartitionPageSize - (kSystemPageSize * 2));
- // Also make the last partition page a guard page.
- setSystemPagesInaccessible(superPage + (kSuperPageSize - kPartitionPageSize),
- kPartitionPageSize);
-
- // If we were after a specific address, but didn't get it, assume that
- // the system chose a lousy address. Here most OS'es have a default
- // algorithm that isn't randomized. For example, most Linux
- // distributions will allocate the mapping directly before the last
- // successful mapping, which is far from random. So we just get fresh
- // randomness for the next mapping attempt.
- if (requestedAddress && requestedAddress != superPage)
- root->nextSuperPage = 0;
-
- // We allocated a new super page so update super page metadata.
- // First check if this is a new extent or not.
- PartitionSuperPageExtentEntry* latestExtent =
- reinterpret_cast<PartitionSuperPageExtentEntry*>(
- partitionSuperPageToMetadataArea(superPage));
- // By storing the root in every extent metadata object, we have a fast way
- // to go from a pointer within the partition to the root object.
- latestExtent->root = root;
- // Most new extents will be part of a larger extent, and these three fields
- // are unused, but we initialize them to 0 so that we get a clear signal
- // in case they are accidentally used.
- latestExtent->superPageBase = 0;
- latestExtent->superPagesEnd = 0;
- latestExtent->next = 0;
-
- PartitionSuperPageExtentEntry* currentExtent = root->currentExtent;
- bool isNewExtent = (superPage != requestedAddress);
- if (UNLIKELY(isNewExtent)) {
- if (UNLIKELY(!currentExtent)) {
- ASSERT(!root->firstExtent);
- root->firstExtent = latestExtent;
- } else {
- ASSERT(currentExtent->superPageBase);
- currentExtent->next = latestExtent;
- }
- root->currentExtent = latestExtent;
- latestExtent->superPageBase = superPage;
- latestExtent->superPagesEnd = superPage + kSuperPageSize;
- } else {
- // We allocated next to an existing extent so just nudge the size up a
- // little.
- ASSERT(currentExtent->superPagesEnd);
- currentExtent->superPagesEnd += kSuperPageSize;
- ASSERT(ret >= currentExtent->superPageBase &&
- ret < currentExtent->superPagesEnd);
- }
- return ret;
-}
-
-static ALWAYS_INLINE uint16_t
-partitionBucketPartitionPages(const PartitionBucket* bucket) {
- return (bucket->numSystemPagesPerSlotSpan +
- (kNumSystemPagesPerPartitionPage - 1)) /
- kNumSystemPagesPerPartitionPage;
-}
-
-static ALWAYS_INLINE void partitionPageReset(PartitionPage* page) {
- ASSERT(partitionPageStateIsDecommitted(page));
-
- page->numUnprovisionedSlots = partitionBucketSlots(page->bucket);
- ASSERT(page->numUnprovisionedSlots);
-
- page->nextPage = nullptr;
-}
-
-static ALWAYS_INLINE void partitionPageSetup(PartitionPage* page,
- PartitionBucket* bucket) {
- // The bucket never changes. We set it up once.
- page->bucket = bucket;
- page->emptyCacheIndex = -1;
-
- partitionPageReset(page);
-
- // If this page has just a single slot, do not set up page offsets for any
- // page metadata other than the first one. This ensures that attempts to
- // touch invalid page metadata fail.
- if (page->numUnprovisionedSlots == 1)
- return;
-
- uint16_t numPartitionPages = partitionBucketPartitionPages(bucket);
- char* pageCharPtr = reinterpret_cast<char*>(page);
- for (uint16_t i = 1; i < numPartitionPages; ++i) {
- pageCharPtr += kPageMetadataSize;
- PartitionPage* secondaryPage =
- reinterpret_cast<PartitionPage*>(pageCharPtr);
- secondaryPage->pageOffset = i;
- }
-}
-
-static ALWAYS_INLINE char* partitionPageAllocAndFillFreelist(
- PartitionPage* page) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- uint16_t numSlots = page->numUnprovisionedSlots;
- ASSERT(numSlots);
- PartitionBucket* bucket = page->bucket;
- // We should only get here when _every_ slot is either used or unprovisioned.
- // (The third state is "on the freelist". If we have a non-empty freelist, we
- // should not get here.)
- ASSERT(numSlots + page->numAllocatedSlots == partitionBucketSlots(bucket));
- // Similarly, make explicitly sure that the freelist is empty.
- ASSERT(!page->freelistHead);
- ASSERT(page->numAllocatedSlots >= 0);
-
- size_t size = bucket->slotSize;
- char* base = reinterpret_cast<char*>(partitionPageToPointer(page));
- char* returnObject = base + (size * page->numAllocatedSlots);
- char* firstFreelistPointer = returnObject + size;
- char* firstFreelistPointerExtent =
- firstFreelistPointer + sizeof(PartitionFreelistEntry*);
- // Our goal is to fault as few system pages as possible. We calculate the
- // page containing the "end" of the returned slot, and then allow freelist
- // pointers to be written up to the end of that page.
- char* subPageLimit = reinterpret_cast<char*>(
- WTF::roundUpToSystemPage(reinterpret_cast<size_t>(firstFreelistPointer)));
- char* slotsLimit = returnObject + (size * numSlots);
- char* freelistLimit = subPageLimit;
- if (UNLIKELY(slotsLimit < freelistLimit))
- freelistLimit = slotsLimit;
-
- uint16_t numNewFreelistEntries = 0;
- if (LIKELY(firstFreelistPointerExtent <= freelistLimit)) {
- // Only consider used space in the slot span. If we consider wasted
- // space, we may get an off-by-one when a freelist pointer fits in the
- // wasted space, but a slot does not.
- // We know we can fit at least one freelist pointer.
- numNewFreelistEntries = 1;
- // Any further entries require space for the whole slot span.
- numNewFreelistEntries += static_cast<uint16_t>(
- (freelistLimit - firstFreelistPointerExtent) / size);
- }
-
- // We always return an object slot -- that's the +1 below.
- // We do not neccessarily create any new freelist entries, because we cross
- // sub page boundaries frequently for large bucket sizes.
- ASSERT(numNewFreelistEntries + 1 <= numSlots);
- numSlots -= (numNewFreelistEntries + 1);
- page->numUnprovisionedSlots = numSlots;
- page->numAllocatedSlots++;
-
- if (LIKELY(numNewFreelistEntries)) {
- char* freelistPointer = firstFreelistPointer;
- PartitionFreelistEntry* entry =
- reinterpret_cast<PartitionFreelistEntry*>(freelistPointer);
- page->freelistHead = entry;
- while (--numNewFreelistEntries) {
- freelistPointer += size;
- PartitionFreelistEntry* nextEntry =
- reinterpret_cast<PartitionFreelistEntry*>(freelistPointer);
- entry->next = partitionFreelistMask(nextEntry);
- entry = nextEntry;
- }
- entry->next = partitionFreelistMask(0);
- } else {
- page->freelistHead = 0;
- }
- return returnObject;
-}
-
-// This helper function scans a bucket's active page list for a suitable new
-// active page.
-// When it finds a suitable new active page (one that has free slots and is not
-// empty), it is set as the new active page. If there is no suitable new
-// active page, the current active page is set to the seed page.
-// As potential pages are scanned, they are tidied up according to their state.
-// Empty pages are swept on to the empty page list, decommitted pages on to the
-// decommitted page list and full pages are unlinked from any list.
-static bool partitionSetNewActivePage(PartitionBucket* bucket) {
- PartitionPage* page = bucket->activePagesHead;
- if (page == &PartitionRootBase::gSeedPage)
- return false;
-
- PartitionPage* nextPage;
-
- for (; page; page = nextPage) {
- nextPage = page->nextPage;
- ASSERT(page->bucket == bucket);
- ASSERT(page != bucket->emptyPagesHead);
- ASSERT(page != bucket->decommittedPagesHead);
-
- // Deal with empty and decommitted pages.
- if (LIKELY(partitionPageStateIsActive(page))) {
- // This page is usable because it has freelist entries, or has
- // unprovisioned slots we can create freelist entries from.
- bucket->activePagesHead = page;
- return true;
- }
- if (LIKELY(partitionPageStateIsEmpty(page))) {
- page->nextPage = bucket->emptyPagesHead;
- bucket->emptyPagesHead = page;
- } else if (LIKELY(partitionPageStateIsDecommitted(page))) {
- page->nextPage = bucket->decommittedPagesHead;
- bucket->decommittedPagesHead = page;
- } else {
- ASSERT(partitionPageStateIsFull(page));
- // If we get here, we found a full page. Skip over it too, and also
- // tag it as full (via a negative value). We need it tagged so that
- // free'ing can tell, and move it back into the active page list.
- page->numAllocatedSlots = -page->numAllocatedSlots;
- ++bucket->numFullPages;
- // numFullPages is a uint16_t for efficient packing so guard against
- // overflow to be safe.
- if (UNLIKELY(!bucket->numFullPages))
- partitionBucketFull();
- // Not necessary but might help stop accidents.
- page->nextPage = 0;
- }
- }
-
- bucket->activePagesHead = &PartitionRootGeneric::gSeedPage;
- return false;
-}
-
-static ALWAYS_INLINE PartitionDirectMapExtent* partitionPageToDirectMapExtent(
- PartitionPage* page) {
- ASSERT(partitionBucketIsDirectMapped(page->bucket));
- return reinterpret_cast<PartitionDirectMapExtent*>(
- reinterpret_cast<char*>(page) + 3 * kPageMetadataSize);
-}
-
-static ALWAYS_INLINE void partitionPageSetRawSize(PartitionPage* page,
- size_t size) {
- size_t* rawSizePtr = partitionPageGetRawSizePtr(page);
- if (UNLIKELY(rawSizePtr != nullptr))
- *rawSizePtr = size;
-}
-
-static ALWAYS_INLINE PartitionPage* partitionDirectMap(PartitionRootBase* root,
- int flags,
- size_t rawSize) {
- size_t size = partitionDirectMapSize(rawSize);
-
- // Because we need to fake looking like a super page, we need to allocate
- // a bunch of system pages more than "size":
- // - The first few system pages are the partition page in which the super
- // page metadata is stored. We fault just one system page out of a partition
- // page sized clump.
- // - We add a trailing guard page on 32-bit (on 64-bit we rely on the
- // massive address space plus randomization instead).
- size_t mapSize = size + kPartitionPageSize;
-#if !CPU(64BIT)
- mapSize += kSystemPageSize;
-#endif
- // Round up to the allocation granularity.
- mapSize += kPageAllocationGranularityOffsetMask;
- mapSize &= kPageAllocationGranularityBaseMask;
-
- // TODO: these pages will be zero-filled. Consider internalizing an
- // allocZeroed() API so we can avoid a memset() entirely in this case.
- char* ptr = reinterpret_cast<char*>(
- allocPages(0, mapSize, kSuperPageSize, PageAccessible));
- if (UNLIKELY(!ptr))
- return nullptr;
-
- size_t committedPageSize = size + kSystemPageSize;
- root->totalSizeOfDirectMappedPages += committedPageSize;
- partitionIncreaseCommittedPages(root, committedPageSize);
-
- char* slot = ptr + kPartitionPageSize;
- setSystemPagesInaccessible(ptr + (kSystemPageSize * 2),
- kPartitionPageSize - (kSystemPageSize * 2));
-#if !CPU(64BIT)
- setSystemPagesInaccessible(ptr, kSystemPageSize);
- setSystemPagesInaccessible(slot + size, kSystemPageSize);
-#endif
-
- PartitionSuperPageExtentEntry* extent =
- reinterpret_cast<PartitionSuperPageExtentEntry*>(
- partitionSuperPageToMetadataArea(ptr));
- extent->root = root;
- // The new structures are all located inside a fresh system page so they
- // will all be zeroed out. These ASSERTs are for documentation.
- ASSERT(!extent->superPageBase);
- ASSERT(!extent->superPagesEnd);
- ASSERT(!extent->next);
- PartitionPage* page = partitionPointerToPageNoAlignmentCheck(slot);
- PartitionBucket* bucket = reinterpret_cast<PartitionBucket*>(
- reinterpret_cast<char*>(page) + (kPageMetadataSize * 2));
- ASSERT(!page->nextPage);
- ASSERT(!page->numAllocatedSlots);
- ASSERT(!page->numUnprovisionedSlots);
- ASSERT(!page->pageOffset);
- ASSERT(!page->emptyCacheIndex);
- page->bucket = bucket;
- page->freelistHead = reinterpret_cast<PartitionFreelistEntry*>(slot);
- PartitionFreelistEntry* nextEntry =
- reinterpret_cast<PartitionFreelistEntry*>(slot);
- nextEntry->next = partitionFreelistMask(0);
-
- ASSERT(!bucket->activePagesHead);
- ASSERT(!bucket->emptyPagesHead);
- ASSERT(!bucket->decommittedPagesHead);
- ASSERT(!bucket->numSystemPagesPerSlotSpan);
- ASSERT(!bucket->numFullPages);
- bucket->slotSize = size;
-
- PartitionDirectMapExtent* mapExtent = partitionPageToDirectMapExtent(page);
- mapExtent->mapSize = mapSize - kPartitionPageSize - kSystemPageSize;
- mapExtent->bucket = bucket;
-
- // Maintain the doubly-linked list of all direct mappings.
- mapExtent->nextExtent = root->directMapList;
- if (mapExtent->nextExtent)
- mapExtent->nextExtent->prevExtent = mapExtent;
- mapExtent->prevExtent = nullptr;
- root->directMapList = mapExtent;
-
- return page;
-}
-
-static ALWAYS_INLINE void partitionDirectUnmap(PartitionPage* page) {
- PartitionRootBase* root = partitionPageToRoot(page);
- const PartitionDirectMapExtent* extent = partitionPageToDirectMapExtent(page);
- size_t unmapSize = extent->mapSize;
-
- // Maintain the doubly-linked list of all direct mappings.
- if (extent->prevExtent) {
- ASSERT(extent->prevExtent->nextExtent == extent);
- extent->prevExtent->nextExtent = extent->nextExtent;
- } else {
- root->directMapList = extent->nextExtent;
- }
- if (extent->nextExtent) {
- ASSERT(extent->nextExtent->prevExtent == extent);
- extent->nextExtent->prevExtent = extent->prevExtent;
- }
-
- // Add on the size of the trailing guard page and preceeding partition
- // page.
- unmapSize += kPartitionPageSize + kSystemPageSize;
-
- size_t uncommittedPageSize = page->bucket->slotSize + kSystemPageSize;
- partitionDecreaseCommittedPages(root, uncommittedPageSize);
- ASSERT(root->totalSizeOfDirectMappedPages >= uncommittedPageSize);
- root->totalSizeOfDirectMappedPages -= uncommittedPageSize;
-
- ASSERT(!(unmapSize & kPageAllocationGranularityOffsetMask));
-
- char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page));
- // Account for the mapping starting a partition page before the actual
- // allocation address.
- ptr -= kPartitionPageSize;
-
- freePages(ptr, unmapSize);
-}
-
-void* partitionAllocSlowPath(PartitionRootBase* root,
- int flags,
- size_t size,
- PartitionBucket* bucket) {
- // The slow path is called when the freelist is empty.
- ASSERT(!bucket->activePagesHead->freelistHead);
-
- PartitionPage* newPage = nullptr;
-
- // For the partitionAllocGeneric API, we have a bunch of buckets marked
- // as special cases. We bounce them through to the slow path so that we
- // can still have a blazing fast hot path due to lack of corner-case
- // branches.
- bool returnNull = flags & PartitionAllocReturnNull;
- if (UNLIKELY(partitionBucketIsDirectMapped(bucket))) {
- ASSERT(size > kGenericMaxBucketed);
- ASSERT(bucket == &PartitionRootBase::gPagedBucket);
- ASSERT(bucket->activePagesHead == &PartitionRootGeneric::gSeedPage);
- if (size > kGenericMaxDirectMapped) {
- if (returnNull)
- return nullptr;
- partitionExcessiveAllocationSize();
- }
- newPage = partitionDirectMap(root, flags, size);
- } else if (LIKELY(partitionSetNewActivePage(bucket))) {
- // First, did we find an active page in the active pages list?
- newPage = bucket->activePagesHead;
- ASSERT(partitionPageStateIsActive(newPage));
- } else if (LIKELY(bucket->emptyPagesHead != nullptr) ||
- LIKELY(bucket->decommittedPagesHead != nullptr)) {
- // Second, look in our lists of empty and decommitted pages.
- // Check empty pages first, which are preferred, but beware that an
- // empty page might have been decommitted.
- while (LIKELY((newPage = bucket->emptyPagesHead) != nullptr)) {
- ASSERT(newPage->bucket == bucket);
- ASSERT(partitionPageStateIsEmpty(newPage) ||
- partitionPageStateIsDecommitted(newPage));
- bucket->emptyPagesHead = newPage->nextPage;
- // Accept the empty page unless it got decommitted.
- if (newPage->freelistHead) {
- newPage->nextPage = nullptr;
- break;
- }
- ASSERT(partitionPageStateIsDecommitted(newPage));
- newPage->nextPage = bucket->decommittedPagesHead;
- bucket->decommittedPagesHead = newPage;
- }
- if (UNLIKELY(!newPage) && LIKELY(bucket->decommittedPagesHead != nullptr)) {
- newPage = bucket->decommittedPagesHead;
- ASSERT(newPage->bucket == bucket);
- ASSERT(partitionPageStateIsDecommitted(newPage));
- bucket->decommittedPagesHead = newPage->nextPage;
- void* addr = partitionPageToPointer(newPage);
- partitionRecommitSystemPages(root, addr,
- partitionBucketBytes(newPage->bucket));
- partitionPageReset(newPage);
- }
- ASSERT(newPage);
- } else {
- // Third. If we get here, we need a brand new page.
- uint16_t numPartitionPages = partitionBucketPartitionPages(bucket);
- void* rawPages =
- partitionAllocPartitionPages(root, flags, numPartitionPages);
- if (LIKELY(rawPages != nullptr)) {
- newPage = partitionPointerToPageNoAlignmentCheck(rawPages);
- partitionPageSetup(newPage, bucket);
- }
- }
-
- // Bail if we had a memory allocation failure.
- if (UNLIKELY(!newPage)) {
- ASSERT(bucket->activePagesHead == &PartitionRootGeneric::gSeedPage);
- if (returnNull)
- return nullptr;
- partitionOutOfMemory(root);
- }
-
- bucket = newPage->bucket;
- ASSERT(bucket != &PartitionRootBase::gPagedBucket);
- bucket->activePagesHead = newPage;
- partitionPageSetRawSize(newPage, size);
-
- // If we found an active page with free slots, or an empty page, we have a
- // usable freelist head.
- if (LIKELY(newPage->freelistHead != nullptr)) {
- PartitionFreelistEntry* entry = newPage->freelistHead;
- PartitionFreelistEntry* newHead = partitionFreelistMask(entry->next);
- newPage->freelistHead = newHead;
- newPage->numAllocatedSlots++;
- return entry;
- }
- // Otherwise, we need to build the freelist.
- ASSERT(newPage->numUnprovisionedSlots);
- return partitionPageAllocAndFillFreelist(newPage);
-}
-
-static ALWAYS_INLINE void partitionDecommitPage(PartitionRootBase* root,
- PartitionPage* page) {
- ASSERT(partitionPageStateIsEmpty(page));
- ASSERT(!partitionBucketIsDirectMapped(page->bucket));
- void* addr = partitionPageToPointer(page);
- partitionDecommitSystemPages(root, addr, partitionBucketBytes(page->bucket));
-
- // We actually leave the decommitted page in the active list. We'll sweep
- // it on to the decommitted page list when we next walk the active page
- // list.
- // Pulling this trick enables us to use a singly-linked page list for all
- // cases, which is critical in keeping the page metadata structure down to
- // 32 bytes in size.
- page->freelistHead = 0;
- page->numUnprovisionedSlots = 0;
- ASSERT(partitionPageStateIsDecommitted(page));
-}
-
-static void partitionDecommitPageIfPossible(PartitionRootBase* root,
- PartitionPage* page) {
- ASSERT(page->emptyCacheIndex >= 0);
- ASSERT(static_cast<unsigned>(page->emptyCacheIndex) < kMaxFreeableSpans);
- ASSERT(page == root->globalEmptyPageRing[page->emptyCacheIndex]);
- page->emptyCacheIndex = -1;
- if (partitionPageStateIsEmpty(page))
- partitionDecommitPage(root, page);
-}
-
-static ALWAYS_INLINE void partitionRegisterEmptyPage(PartitionPage* page) {
- ASSERT(partitionPageStateIsEmpty(page));
- PartitionRootBase* root = partitionPageToRoot(page);
-
- // If the page is already registered as empty, give it another life.
- if (page->emptyCacheIndex != -1) {
- ASSERT(page->emptyCacheIndex >= 0);
- ASSERT(static_cast<unsigned>(page->emptyCacheIndex) < kMaxFreeableSpans);
- ASSERT(root->globalEmptyPageRing[page->emptyCacheIndex] == page);
- root->globalEmptyPageRing[page->emptyCacheIndex] = 0;
- }
-
- int16_t currentIndex = root->globalEmptyPageRingIndex;
- PartitionPage* pageToDecommit = root->globalEmptyPageRing[currentIndex];
- // The page might well have been re-activated, filled up, etc. before we get
- // around to looking at it here.
- if (pageToDecommit)
- partitionDecommitPageIfPossible(root, pageToDecommit);
-
- // We put the empty slot span on our global list of "pages that were once
- // empty". thus providing it a bit of breathing room to get re-used before
- // we really free it. This improves performance, particularly on Mac OS X
- // which has subpar memory management performance.
- root->globalEmptyPageRing[currentIndex] = page;
- page->emptyCacheIndex = currentIndex;
- ++currentIndex;
- if (currentIndex == kMaxFreeableSpans)
- currentIndex = 0;
- root->globalEmptyPageRingIndex = currentIndex;
-}
-
-static void partitionDecommitEmptyPages(PartitionRootBase* root) {
- for (size_t i = 0; i < kMaxFreeableSpans; ++i) {
- PartitionPage* page = root->globalEmptyPageRing[i];
- if (page)
- partitionDecommitPageIfPossible(root, page);
- root->globalEmptyPageRing[i] = nullptr;
- }
-}
-
-void partitionFreeSlowPath(PartitionPage* page) {
- PartitionBucket* bucket = page->bucket;
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- if (LIKELY(page->numAllocatedSlots == 0)) {
- // Page became fully unused.
- if (UNLIKELY(partitionBucketIsDirectMapped(bucket))) {
- partitionDirectUnmap(page);
- return;
- }
- // If it's the current active page, change it. We bounce the page to
- // the empty list as a force towards defragmentation.
- if (LIKELY(page == bucket->activePagesHead))
- (void)partitionSetNewActivePage(bucket);
- ASSERT(bucket->activePagesHead != page);
-
- partitionPageSetRawSize(page, 0);
- ASSERT(!partitionPageGetRawSize(page));
-
- partitionRegisterEmptyPage(page);
- } else {
- ASSERT(!partitionBucketIsDirectMapped(bucket));
- // Ensure that the page is full. That's the only valid case if we
- // arrive here.
- ASSERT(page->numAllocatedSlots < 0);
- // A transition of numAllocatedSlots from 0 to -1 is not legal, and
- // likely indicates a double-free.
- SECURITY_CHECK(page->numAllocatedSlots != -1);
- page->numAllocatedSlots = -page->numAllocatedSlots - 2;
- ASSERT(page->numAllocatedSlots == partitionBucketSlots(bucket) - 1);
- // Fully used page became partially used. It must be put back on the
- // non-full page list. Also make it the current page to increase the
- // chances of it being filled up again. The old current page will be
- // the next page.
- ASSERT(!page->nextPage);
- if (LIKELY(bucket->activePagesHead != &PartitionRootGeneric::gSeedPage))
- page->nextPage = bucket->activePagesHead;
- bucket->activePagesHead = page;
- --bucket->numFullPages;
- // Special case: for a partition page with just a single slot, it may
- // now be empty and we want to run it through the empty logic.
- if (UNLIKELY(page->numAllocatedSlots == 0))
- partitionFreeSlowPath(page);
- }
-}
-
-bool partitionReallocDirectMappedInPlace(PartitionRootGeneric* root,
- PartitionPage* page,
- size_t rawSize) {
- ASSERT(partitionBucketIsDirectMapped(page->bucket));
-
- rawSize = partitionCookieSizeAdjustAdd(rawSize);
-
- // Note that the new size might be a bucketed size; this function is called
- // whenever we're reallocating a direct mapped allocation.
- size_t newSize = partitionDirectMapSize(rawSize);
- if (newSize < kGenericMinDirectMappedDownsize)
- return false;
-
- // bucket->slotSize is the current size of the allocation.
- size_t currentSize = page->bucket->slotSize;
- if (newSize == currentSize)
- return true;
-
- char* charPtr = static_cast<char*>(partitionPageToPointer(page));
-
- if (newSize < currentSize) {
- size_t mapSize = partitionPageToDirectMapExtent(page)->mapSize;
-
- // Don't reallocate in-place if new size is less than 80 % of the full
- // map size, to avoid holding on to too much unused address space.
- if ((newSize / kSystemPageSize) * 5 < (mapSize / kSystemPageSize) * 4)
- return false;
-
- // Shrink by decommitting unneeded pages and making them inaccessible.
- size_t decommitSize = currentSize - newSize;
- partitionDecommitSystemPages(root, charPtr + newSize, decommitSize);
- setSystemPagesInaccessible(charPtr + newSize, decommitSize);
- } else if (newSize <= partitionPageToDirectMapExtent(page)->mapSize) {
- // Grow within the actually allocated memory. Just need to make the
- // pages accessible again.
- size_t recommitSize = newSize - currentSize;
- bool ret = setSystemPagesAccessible(charPtr + currentSize, recommitSize);
- RELEASE_ASSERT(ret);
- partitionRecommitSystemPages(root, charPtr + currentSize, recommitSize);
-
-#if ENABLE(ASSERT)
- memset(charPtr + currentSize, kUninitializedByte, recommitSize);
-#endif
- } else {
- // We can't perform the realloc in-place.
- // TODO: support this too when possible.
- return false;
- }
-
-#if ENABLE(ASSERT)
- // Write a new trailing cookie.
- partitionCookieWriteValue(charPtr + rawSize - kCookieSize);
-#endif
-
- partitionPageSetRawSize(page, rawSize);
- ASSERT(partitionPageGetRawSize(page) == rawSize);
-
- page->bucket->slotSize = newSize;
- return true;
-}
-
-void* partitionReallocGeneric(PartitionRootGeneric* root,
- void* ptr,
- size_t newSize,
- const char* typeName) {
-#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
- return realloc(ptr, newSize);
-#else
- if (UNLIKELY(!ptr))
- return partitionAllocGeneric(root, newSize, typeName);
- if (UNLIKELY(!newSize)) {
- partitionFreeGeneric(root, ptr);
- return 0;
- }
-
- if (newSize > kGenericMaxDirectMapped)
- partitionExcessiveAllocationSize();
-
- ASSERT(partitionPointerIsValid(partitionCookieFreePointerAdjust(ptr)));
-
- PartitionPage* page =
- partitionPointerToPage(partitionCookieFreePointerAdjust(ptr));
-
- if (UNLIKELY(partitionBucketIsDirectMapped(page->bucket))) {
- // We may be able to perform the realloc in place by changing the
- // accessibility of memory pages and, if reducing the size, decommitting
- // them.
- if (partitionReallocDirectMappedInPlace(root, page, newSize)) {
- PartitionAllocHooks::reallocHookIfEnabled(ptr, ptr, newSize, typeName);
- return ptr;
- }
- }
-
- size_t actualNewSize = partitionAllocActualSize(root, newSize);
- size_t actualOldSize = partitionAllocGetSize(ptr);
-
- // TODO: note that tcmalloc will "ignore" a downsizing realloc() unless the
- // new size is a significant percentage smaller. We could do the same if we
- // determine it is a win.
- if (actualNewSize == actualOldSize) {
- // Trying to allocate a block of size newSize would give us a block of
- // the same size as the one we've already got, so no point in doing
- // anything here.
- return ptr;
- }
-
- // This realloc cannot be resized in-place. Sadness.
- void* ret = partitionAllocGeneric(root, newSize, typeName);
- size_t copySize = actualOldSize;
- if (newSize < copySize)
- copySize = newSize;
-
- memcpy(ret, ptr, copySize);
- partitionFreeGeneric(root, ptr);
- return ret;
-#endif
-}
-
-static size_t partitionPurgePage(PartitionPage* page, bool discard) {
- const PartitionBucket* bucket = page->bucket;
- size_t slotSize = bucket->slotSize;
- if (slotSize < kSystemPageSize || !page->numAllocatedSlots)
- return 0;
-
- size_t bucketNumSlots = partitionBucketSlots(bucket);
- size_t discardableBytes = 0;
-
- size_t rawSize = partitionPageGetRawSize(const_cast<PartitionPage*>(page));
- if (rawSize) {
- uint32_t usedBytes =
- static_cast<uint32_t>(WTF::roundUpToSystemPage(rawSize));
- discardableBytes = bucket->slotSize - usedBytes;
- if (discardableBytes && discard) {
- char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page));
- ptr += usedBytes;
- discardSystemPages(ptr, discardableBytes);
- }
- return discardableBytes;
- }
-
- const size_t maxSlotCount =
- (kPartitionPageSize * kMaxPartitionPagesPerSlotSpan) / kSystemPageSize;
- ASSERT(bucketNumSlots <= maxSlotCount);
- ASSERT(page->numUnprovisionedSlots < bucketNumSlots);
- size_t numSlots = bucketNumSlots - page->numUnprovisionedSlots;
- char slotUsage[maxSlotCount];
- size_t lastSlot = static_cast<size_t>(-1);
- memset(slotUsage, 1, numSlots);
- char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page));
- PartitionFreelistEntry* entry = page->freelistHead;
- // First, walk the freelist for this page and make a bitmap of which slots
- // are not in use.
- while (entry) {
- size_t slotIndex = (reinterpret_cast<char*>(entry) - ptr) / slotSize;
- ASSERT(slotIndex < numSlots);
- slotUsage[slotIndex] = 0;
- entry = partitionFreelistMask(entry->next);
- // If we have a slot where the masked freelist entry is 0, we can
- // actually discard that freelist entry because touching a discarded
- // page is guaranteed to return original content or 0.
- // (Note that this optimization won't fire on big endian machines
- // because the masking function is negation.)
- if (!partitionFreelistMask(entry))
- lastSlot = slotIndex;
- }
-
- // If the slot(s) at the end of the slot span are not in used, we can
- // truncate them entirely and rewrite the freelist.
- size_t truncatedSlots = 0;
- while (!slotUsage[numSlots - 1]) {
- truncatedSlots++;
- numSlots--;
- ASSERT(numSlots);
- }
- // First, do the work of calculating the discardable bytes. Don't actually
- // discard anything unless the discard flag was passed in.
- char* beginPtr = nullptr;
- char* endPtr = nullptr;
- size_t unprovisionedBytes = 0;
- if (truncatedSlots) {
- beginPtr = ptr + (numSlots * slotSize);
- endPtr = beginPtr + (slotSize * truncatedSlots);
- beginPtr = reinterpret_cast<char*>(
- WTF::roundUpToSystemPage(reinterpret_cast<size_t>(beginPtr)));
- // We round the end pointer here up and not down because we're at the
- // end of a slot span, so we "own" all the way up the page boundary.
- endPtr = reinterpret_cast<char*>(
- WTF::roundUpToSystemPage(reinterpret_cast<size_t>(endPtr)));
- ASSERT(endPtr <= ptr + partitionBucketBytes(bucket));
- if (beginPtr < endPtr) {
- unprovisionedBytes = endPtr - beginPtr;
- discardableBytes += unprovisionedBytes;
- }
- }
- if (unprovisionedBytes && discard) {
- ASSERT(truncatedSlots > 0);
- size_t numNewEntries = 0;
- page->numUnprovisionedSlots += static_cast<uint16_t>(truncatedSlots);
- // Rewrite the freelist.
- PartitionFreelistEntry** entryPtr = &page->freelistHead;
- for (size_t slotIndex = 0; slotIndex < numSlots; ++slotIndex) {
- if (slotUsage[slotIndex])
- continue;
- PartitionFreelistEntry* entry = reinterpret_cast<PartitionFreelistEntry*>(
- ptr + (slotSize * slotIndex));
- *entryPtr = partitionFreelistMask(entry);
- entryPtr = reinterpret_cast<PartitionFreelistEntry**>(entry);
- numNewEntries++;
- }
- // Terminate the freelist chain.
- *entryPtr = nullptr;
- // The freelist head is stored unmasked.
- page->freelistHead = partitionFreelistMask(page->freelistHead);
- ASSERT(numNewEntries == numSlots - page->numAllocatedSlots);
- // Discard the memory.
- discardSystemPages(beginPtr, unprovisionedBytes);
- }
-
- // Next, walk the slots and for any not in use, consider where the system
- // page boundaries occur. We can release any system pages back to the
- // system as long as we don't interfere with a freelist pointer or an
- // adjacent slot.
- for (size_t i = 0; i < numSlots; ++i) {
- if (slotUsage[i])
- continue;
- // The first address we can safely discard is just after the freelist
- // pointer. There's one quirk: if the freelist pointer is actually a
- // null, we can discard that pointer value too.
- char* beginPtr = ptr + (i * slotSize);
- char* endPtr = beginPtr + slotSize;
- if (i != lastSlot)
- beginPtr += sizeof(PartitionFreelistEntry);
- beginPtr = reinterpret_cast<char*>(
- WTF::roundUpToSystemPage(reinterpret_cast<size_t>(beginPtr)));
- endPtr = reinterpret_cast<char*>(
- WTF::roundDownToSystemPage(reinterpret_cast<size_t>(endPtr)));
- if (beginPtr < endPtr) {
- size_t partialSlotBytes = endPtr - beginPtr;
- discardableBytes += partialSlotBytes;
- if (discard)
- discardSystemPages(beginPtr, partialSlotBytes);
- }
- }
- return discardableBytes;
-}
-
-static void partitionPurgeBucket(PartitionBucket* bucket) {
- if (bucket->activePagesHead != &PartitionRootGeneric::gSeedPage) {
- for (PartitionPage* page = bucket->activePagesHead; page;
- page = page->nextPage) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- (void)partitionPurgePage(page, true);
- }
- }
-}
-
-void partitionPurgeMemory(PartitionRoot* root, int flags) {
- if (flags & PartitionPurgeDecommitEmptyPages)
- partitionDecommitEmptyPages(root);
- // We don't currently do anything for PartitionPurgeDiscardUnusedSystemPages
- // here because that flag is only useful for allocations >= system page
- // size. We only have allocations that large inside generic partitions
- // at the moment.
-}
-
-void partitionPurgeMemoryGeneric(PartitionRootGeneric* root, int flags) {
- SpinLock::Guard guard(root->lock);
- if (flags & PartitionPurgeDecommitEmptyPages)
- partitionDecommitEmptyPages(root);
- if (flags & PartitionPurgeDiscardUnusedSystemPages) {
- for (size_t i = 0; i < kGenericNumBuckets; ++i) {
- PartitionBucket* bucket = &root->buckets[i];
- if (bucket->slotSize >= kSystemPageSize)
- partitionPurgeBucket(bucket);
- }
- }
-}
-
-static void partitionDumpPageStats(PartitionBucketMemoryStats* statsOut,
- const PartitionPage* page) {
- uint16_t bucketNumSlots = partitionBucketSlots(page->bucket);
-
- if (partitionPageStateIsDecommitted(page)) {
- ++statsOut->numDecommittedPages;
- return;
- }
-
- statsOut->discardableBytes +=
- partitionPurgePage(const_cast<PartitionPage*>(page), false);
-
- size_t rawSize = partitionPageGetRawSize(const_cast<PartitionPage*>(page));
- if (rawSize)
- statsOut->activeBytes += static_cast<uint32_t>(rawSize);
- else
- statsOut->activeBytes +=
- (page->numAllocatedSlots * statsOut->bucketSlotSize);
-
- size_t pageBytesResident =
- WTF::roundUpToSystemPage((bucketNumSlots - page->numUnprovisionedSlots) *
- statsOut->bucketSlotSize);
- statsOut->residentBytes += pageBytesResident;
- if (partitionPageStateIsEmpty(page)) {
- statsOut->decommittableBytes += pageBytesResident;
- ++statsOut->numEmptyPages;
- } else if (partitionPageStateIsFull(page)) {
- ++statsOut->numFullPages;
- } else {
- ASSERT(partitionPageStateIsActive(page));
- ++statsOut->numActivePages;
- }
-}
-
-static void partitionDumpBucketStats(PartitionBucketMemoryStats* statsOut,
- const PartitionBucket* bucket) {
- ASSERT(!partitionBucketIsDirectMapped(bucket));
- statsOut->isValid = false;
- // If the active page list is empty (== &PartitionRootGeneric::gSeedPage),
- // the bucket might still need to be reported if it has a list of empty,
- // decommitted or full pages.
- if (bucket->activePagesHead == &PartitionRootGeneric::gSeedPage &&
- !bucket->emptyPagesHead && !bucket->decommittedPagesHead &&
- !bucket->numFullPages)
- return;
-
- memset(statsOut, '\0', sizeof(*statsOut));
- statsOut->isValid = true;
- statsOut->isDirectMap = false;
- statsOut->numFullPages = static_cast<size_t>(bucket->numFullPages);
- statsOut->bucketSlotSize = bucket->slotSize;
- uint16_t bucketNumSlots = partitionBucketSlots(bucket);
- size_t bucketUsefulStorage = statsOut->bucketSlotSize * bucketNumSlots;
- statsOut->allocatedPageSize = partitionBucketBytes(bucket);
- statsOut->activeBytes = bucket->numFullPages * bucketUsefulStorage;
- statsOut->residentBytes = bucket->numFullPages * statsOut->allocatedPageSize;
-
- for (const PartitionPage* page = bucket->emptyPagesHead; page;
- page = page->nextPage) {
- ASSERT(partitionPageStateIsEmpty(page) ||
- partitionPageStateIsDecommitted(page));
- partitionDumpPageStats(statsOut, page);
- }
- for (const PartitionPage* page = bucket->decommittedPagesHead; page;
- page = page->nextPage) {
- ASSERT(partitionPageStateIsDecommitted(page));
- partitionDumpPageStats(statsOut, page);
- }
-
- if (bucket->activePagesHead != &PartitionRootGeneric::gSeedPage) {
- for (const PartitionPage* page = bucket->activePagesHead; page;
- page = page->nextPage) {
- ASSERT(page != &PartitionRootGeneric::gSeedPage);
- partitionDumpPageStats(statsOut, page);
- }
- }
-}
-
-void partitionDumpStatsGeneric(PartitionRootGeneric* partition,
- const char* partitionName,
- bool isLightDump,
- PartitionStatsDumper* partitionStatsDumper) {
- PartitionBucketMemoryStats bucketStats[kGenericNumBuckets];
- static const size_t kMaxReportableDirectMaps = 4096;
- uint32_t directMapLengths[kMaxReportableDirectMaps];
- size_t numDirectMappedAllocations = 0;
-
- {
- SpinLock::Guard guard(partition->lock);
-
- for (size_t i = 0; i < kGenericNumBuckets; ++i) {
- const PartitionBucket* bucket = &partition->buckets[i];
- // Don't report the pseudo buckets that the generic allocator sets up in
- // order to preserve a fast size->bucket map (see
- // partitionAllocGenericInit for details).
- if (!bucket->activePagesHead)
- bucketStats[i].isValid = false;
- else
- partitionDumpBucketStats(&bucketStats[i], bucket);
- }
-
- for (PartitionDirectMapExtent* extent = partition->directMapList; extent;
- extent = extent->nextExtent) {
- ASSERT(!extent->nextExtent || extent->nextExtent->prevExtent == extent);
- directMapLengths[numDirectMappedAllocations] = extent->bucket->slotSize;
- ++numDirectMappedAllocations;
- if (numDirectMappedAllocations == kMaxReportableDirectMaps)
- break;
- }
- }
-
- // partitionsDumpBucketStats is called after collecting stats because it
- // can try to allocate using PartitionAllocGeneric and it can't obtain the
- // lock.
- PartitionMemoryStats partitionStats = {0};
- partitionStats.totalMmappedBytes = partition->totalSizeOfSuperPages +
- partition->totalSizeOfDirectMappedPages;
- partitionStats.totalCommittedBytes = partition->totalSizeOfCommittedPages;
- for (size_t i = 0; i < kGenericNumBuckets; ++i) {
- if (bucketStats[i].isValid) {
- partitionStats.totalResidentBytes += bucketStats[i].residentBytes;
- partitionStats.totalActiveBytes += bucketStats[i].activeBytes;
- partitionStats.totalDecommittableBytes +=
- bucketStats[i].decommittableBytes;
- partitionStats.totalDiscardableBytes += bucketStats[i].discardableBytes;
- if (!isLightDump)
- partitionStatsDumper->partitionsDumpBucketStats(partitionName,
- &bucketStats[i]);
- }
- }
-
- size_t directMappedAllocationsTotalSize = 0;
- for (size_t i = 0; i < numDirectMappedAllocations; ++i) {
- uint32_t size = directMapLengths[i];
- directMappedAllocationsTotalSize += size;
- if (isLightDump)
- continue;
-
- PartitionBucketMemoryStats stats;
- memset(&stats, '\0', sizeof(stats));
- stats.isValid = true;
- stats.isDirectMap = true;
- stats.numFullPages = 1;
- stats.allocatedPageSize = size;
- stats.bucketSlotSize = size;
- stats.activeBytes = size;
- stats.residentBytes = size;
- partitionStatsDumper->partitionsDumpBucketStats(partitionName, &stats);
- }
- partitionStats.totalResidentBytes += directMappedAllocationsTotalSize;
- partitionStats.totalActiveBytes += directMappedAllocationsTotalSize;
- partitionStatsDumper->partitionDumpTotals(partitionName, &partitionStats);
-}
-
-void partitionDumpStats(PartitionRoot* partition,
- const char* partitionName,
- bool isLightDump,
- PartitionStatsDumper* partitionStatsDumper) {
- static const size_t kMaxReportableBuckets = 4096 / sizeof(void*);
- PartitionBucketMemoryStats memoryStats[kMaxReportableBuckets];
- const size_t partitionNumBuckets = partition->numBuckets;
- ASSERT(partitionNumBuckets <= kMaxReportableBuckets);
-
- for (size_t i = 0; i < partitionNumBuckets; ++i)
- partitionDumpBucketStats(&memoryStats[i], &partition->buckets()[i]);
-
- // partitionsDumpBucketStats is called after collecting stats because it
- // can use PartitionAlloc to allocate and this can affect the statistics.
- PartitionMemoryStats partitionStats = {0};
- partitionStats.totalMmappedBytes = partition->totalSizeOfSuperPages;
- partitionStats.totalCommittedBytes = partition->totalSizeOfCommittedPages;
- ASSERT(!partition->totalSizeOfDirectMappedPages);
- for (size_t i = 0; i < partitionNumBuckets; ++i) {
- if (memoryStats[i].isValid) {
- partitionStats.totalResidentBytes += memoryStats[i].residentBytes;
- partitionStats.totalActiveBytes += memoryStats[i].activeBytes;
- partitionStats.totalDecommittableBytes +=
- memoryStats[i].decommittableBytes;
- partitionStats.totalDiscardableBytes += memoryStats[i].discardableBytes;
- if (!isLightDump)
- partitionStatsDumper->partitionsDumpBucketStats(partitionName,
- &memoryStats[i]);
- }
- }
- partitionStatsDumper->partitionDumpTotals(partitionName, &partitionStats);
-}
-
-} // namespace WTF

Powered by Google App Engine
This is Rietveld 408576698