| Index: third_party/WebKit/Source/wtf/allocator/PartitionAlloc.h
|
| diff --git a/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.h b/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.h
|
| deleted file mode 100644
|
| index aa3c0bbc527ebd92a65eecf29dd0b9a32db54f69..0000000000000000000000000000000000000000
|
| --- a/third_party/WebKit/Source/wtf/allocator/PartitionAlloc.h
|
| +++ /dev/null
|
| @@ -1,957 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2013 Google Inc. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions are
|
| - * met:
|
| - *
|
| - * * Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * * Redistributions in binary form must reproduce the above
|
| - * copyright notice, this list of conditions and the following disclaimer
|
| - * in the documentation and/or other materials provided with the
|
| - * distribution.
|
| - * * Neither the name of Google Inc. nor the names of its
|
| - * contributors may be used to endorse or promote products derived from
|
| - * this software without specific prior written permission.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#ifndef WTF_PartitionAlloc_h
|
| -#define WTF_PartitionAlloc_h
|
| -
|
| -// DESCRIPTION
|
| -// partitionAlloc() / partitionAllocGeneric() and partitionFree() /
|
| -// partitionFreeGeneric() are approximately analagous to malloc() and free().
|
| -//
|
| -// The main difference is that a PartitionRoot / PartitionRootGeneric object
|
| -// must be supplied to these functions, representing a specific "heap partition"
|
| -// that will be used to satisfy the allocation. Different partitions are
|
| -// guaranteed to exist in separate address spaces, including being separate from
|
| -// the main system heap. If the contained objects are all freed, physical memory
|
| -// is returned to the system but the address space remains reserved.
|
| -// See PartitionAlloc.md for other security properties PartitionAlloc provides.
|
| -//
|
| -// THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE
|
| -// SizeSpecificPartitionAllocator / PartitionAllocatorGeneric classes. To
|
| -// minimize the instruction count to the fullest extent possible, the
|
| -// PartitionRoot is really just a header adjacent to other data areas provided
|
| -// by the allocator class.
|
| -//
|
| -// The partitionAlloc() variant of the API has the following caveats:
|
| -// - Allocations and frees against a single partition must be single threaded.
|
| -// - Allocations must not exceed a max size, chosen at compile-time via a
|
| -// templated parameter to PartitionAllocator.
|
| -// - Allocation sizes must be aligned to the system pointer size.
|
| -// - Allocations are bucketed exactly according to size.
|
| -//
|
| -// And for partitionAllocGeneric():
|
| -// - Multi-threaded use against a single partition is ok; locking is handled.
|
| -// - Allocations of any arbitrary size can be handled (subject to a limit of
|
| -// INT_MAX bytes for security reasons).
|
| -// - Bucketing is by approximate size, for example an allocation of 4000 bytes
|
| -// might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and
|
| -// keep worst-case waste to ~10%.
|
| -//
|
| -// The allocators are designed to be extremely fast, thanks to the following
|
| -// properties and design:
|
| -// - Just two single (reasonably predicatable) branches in the hot / fast path
|
| -// for both allocating and (significantly) freeing.
|
| -// - A minimal number of operations in the hot / fast path, with the slow paths
|
| -// in separate functions, leading to the possibility of inlining.
|
| -// - Each partition page (which is usually multiple physical pages) has a
|
| -// metadata structure which allows fast mapping of free() address to an
|
| -// underlying bucket.
|
| -// - Supports a lock-free API for fast performance in single-threaded cases.
|
| -// - The freelist for a given bucket is split across a number of partition
|
| -// pages, enabling various simple tricks to try and minimize fragmentation.
|
| -// - Fine-grained bucket sizes leading to less waste and better packing.
|
| -//
|
| -// The following security properties could be investigated in the future:
|
| -// - Per-object bucketing (instead of per-size) is mostly available at the API,
|
| -// but not used yet.
|
| -// - No randomness of freelist entries or bucket position.
|
| -// - Better checking for wild pointers in free().
|
| -// - Better freelist masking function to guarantee fault on 32-bit.
|
| -
|
| -#include "wtf/Assertions.h"
|
| -#include "wtf/BitwiseOperations.h"
|
| -#include "wtf/ByteSwap.h"
|
| -#include "wtf/CPU.h"
|
| -#include "wtf/SpinLock.h"
|
| -#include "wtf/TypeTraits.h"
|
| -#include "wtf/allocator/PageAllocator.h"
|
| -
|
| -#include <limits.h>
|
| -
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| -#include <stdlib.h>
|
| -#endif
|
| -
|
| -#if ENABLE(ASSERT)
|
| -#include <string.h>
|
| -#endif
|
| -
|
| -namespace WTF {
|
| -
|
| -// Allocation granularity of sizeof(void*) bytes.
|
| -static const size_t kAllocationGranularity = sizeof(void*);
|
| -static const size_t kAllocationGranularityMask = kAllocationGranularity - 1;
|
| -static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2;
|
| -
|
| -// Underlying partition storage pages are a power-of-two size. It is typical
|
| -// for a partition page to be based on multiple system pages. Most references to
|
| -// "page" refer to partition pages.
|
| -// We also have the concept of "super pages" -- these are the underlying system
|
| -// allocations we make. Super pages contain multiple partition pages inside them
|
| -// and include space for a small amount of metadata per partition page.
|
| -// Inside super pages, we store "slot spans". A slot span is a continguous range
|
| -// of one or more partition pages that stores allocations of the same size.
|
| -// Slot span sizes are adjusted depending on the allocation size, to make sure
|
| -// the packing does not lead to unused (wasted) space at the end of the last
|
| -// system page of the span. For our current max slot span size of 64k and other
|
| -// constant values, we pack _all_ partitionAllocGeneric() sizes perfectly up
|
| -// against the end of a system page.
|
| -static const size_t kPartitionPageShift = 14; // 16KB
|
| -static const size_t kPartitionPageSize = 1 << kPartitionPageShift;
|
| -static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1;
|
| -static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask;
|
| -static const size_t kMaxPartitionPagesPerSlotSpan = 4;
|
| -
|
| -// To avoid fragmentation via never-used freelist entries, we hand out partition
|
| -// freelist sections gradually, in units of the dominant system page size.
|
| -// What we're actually doing is avoiding filling the full partition page (16 KB)
|
| -// with freelist pointers right away. Writing freelist pointers will fault and
|
| -// dirty a private page, which is very wasteful if we never actually store
|
| -// objects there.
|
| -static const size_t kNumSystemPagesPerPartitionPage =
|
| - kPartitionPageSize / kSystemPageSize;
|
| -static const size_t kMaxSystemPagesPerSlotSpan =
|
| - kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan;
|
| -
|
| -// We reserve virtual address space in 2MB chunks (aligned to 2MB as well).
|
| -// These chunks are called "super pages". We do this so that we can store
|
| -// metadata in the first few pages of each 2MB aligned section. This leads to
|
| -// a very fast free(). We specifically choose 2MB because this virtual address
|
| -// block represents a full but single PTE allocation on ARM, ia32 and x64.
|
| -//
|
| -// The layout of the super page is as follows. The sizes below are the same
|
| -// for 32 bit and 64 bit.
|
| -//
|
| -// | Guard page (4KB) |
|
| -// | Metadata page (4KB) |
|
| -// | Guard pages (8KB) |
|
| -// | Slot span |
|
| -// | Slot span |
|
| -// | ... |
|
| -// | Slot span |
|
| -// | Guard page (4KB) |
|
| -//
|
| -// - Each slot span is a contiguous range of one or more PartitionPages.
|
| -// - The metadata page has the following format. Note that the PartitionPage
|
| -// that is not at the head of a slot span is "unused". In other words,
|
| -// the metadata for the slot span is stored only in the first PartitionPage
|
| -// of the slot span. Metadata accesses to other PartitionPages are
|
| -// redirected to the first PartitionPage.
|
| -//
|
| -// | SuperPageExtentEntry (32B) |
|
| -// | PartitionPage of slot span 1 (32B, used) |
|
| -// | PartitionPage of slot span 1 (32B, unused) |
|
| -// | PartitionPage of slot span 1 (32B, unused) |
|
| -// | PartitionPage of slot span 2 (32B, used) |
|
| -// | PartitionPage of slot span 3 (32B, used) |
|
| -// | ... |
|
| -// | PartitionPage of slot span N (32B, unused) |
|
| -//
|
| -// A direct mapped page has a similar layout to fake it looking like a super
|
| -// page:
|
| -//
|
| -// | Guard page (4KB) |
|
| -// | Metadata page (4KB) |
|
| -// | Guard pages (8KB) |
|
| -// | Direct mapped object |
|
| -// | Guard page (4KB) |
|
| -//
|
| -// - The metadata page has the following layout:
|
| -//
|
| -// | SuperPageExtentEntry (32B) |
|
| -// | PartitionPage (32B) |
|
| -// | PartitionBucket (32B) |
|
| -// | PartitionDirectMapExtent (8B) |
|
| -static const size_t kSuperPageShift = 21; // 2MB
|
| -static const size_t kSuperPageSize = 1 << kSuperPageShift;
|
| -static const size_t kSuperPageOffsetMask = kSuperPageSize - 1;
|
| -static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask;
|
| -static const size_t kNumPartitionPagesPerSuperPage =
|
| - kSuperPageSize / kPartitionPageSize;
|
| -
|
| -static const size_t kPageMetadataShift = 5; // 32 bytes per partition page.
|
| -static const size_t kPageMetadataSize = 1 << kPageMetadataShift;
|
| -
|
| -// The following kGeneric* constants apply to the generic variants of the API.
|
| -// The "order" of an allocation is closely related to the power-of-two size of
|
| -// the allocation. More precisely, the order is the bit index of the
|
| -// most-significant-bit in the allocation size, where the bit numbers starts
|
| -// at index 1 for the least-significant-bit.
|
| -// In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
|
| -// covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
|
| -static const size_t kGenericMinBucketedOrder = 4; // 8 bytes.
|
| -static const size_t kGenericMaxBucketedOrder =
|
| - 20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB)
|
| -static const size_t kGenericNumBucketedOrders =
|
| - (kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1;
|
| -// Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144,
|
| -// 160, ..., 240:
|
| -static const size_t kGenericNumBucketsPerOrderBits = 3;
|
| -static const size_t kGenericNumBucketsPerOrder =
|
| - 1 << kGenericNumBucketsPerOrderBits;
|
| -static const size_t kGenericNumBuckets =
|
| - kGenericNumBucketedOrders * kGenericNumBucketsPerOrder;
|
| -static const size_t kGenericSmallestBucket = 1
|
| - << (kGenericMinBucketedOrder - 1);
|
| -static const size_t kGenericMaxBucketSpacing =
|
| - 1 << ((kGenericMaxBucketedOrder - 1) - kGenericNumBucketsPerOrderBits);
|
| -static const size_t kGenericMaxBucketed =
|
| - (1 << (kGenericMaxBucketedOrder - 1)) +
|
| - ((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing);
|
| -static const size_t kGenericMinDirectMappedDownsize =
|
| - kGenericMaxBucketed +
|
| - 1; // Limit when downsizing a direct mapping using realloc().
|
| -static const size_t kGenericMaxDirectMapped = INT_MAX - kSystemPageSize;
|
| -static const size_t kBitsPerSizet = sizeof(void*) * CHAR_BIT;
|
| -
|
| -// Constants for the memory reclaim logic.
|
| -static const size_t kMaxFreeableSpans = 16;
|
| -
|
| -// If the total size in bytes of allocated but not committed pages exceeds this
|
| -// value (probably it is a "out of virtual address space" crash),
|
| -// a special crash stack trace is generated at |partitionOutOfMemory|.
|
| -// This is to distinguish "out of virtual address space" from
|
| -// "out of physical memory" in crash reports.
|
| -static const size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1GiB
|
| -
|
| -#if ENABLE(ASSERT)
|
| -// These two byte values match tcmalloc.
|
| -static const unsigned char kUninitializedByte = 0xAB;
|
| -static const unsigned char kFreedByte = 0xCD;
|
| -static const size_t kCookieSize =
|
| - 16; // Handles alignment up to XMM instructions on Intel.
|
| -static const unsigned char kCookieValue[kCookieSize] = {
|
| - 0xDE, 0xAD, 0xBE, 0xEF, 0xCA, 0xFE, 0xD0, 0x0D,
|
| - 0x13, 0x37, 0xF0, 0x05, 0xBA, 0x11, 0xAB, 0x1E};
|
| -#endif
|
| -
|
| -struct PartitionBucket;
|
| -struct PartitionRootBase;
|
| -
|
| -struct PartitionFreelistEntry {
|
| - PartitionFreelistEntry* next;
|
| -};
|
| -
|
| -// Some notes on page states. A page can be in one of four major states:
|
| -// 1) Active.
|
| -// 2) Full.
|
| -// 3) Empty.
|
| -// 4) Decommitted.
|
| -// An active page has available free slots. A full page has no free slots. An
|
| -// empty page has no free slots, and a decommitted page is an empty page that
|
| -// had its backing memory released back to the system.
|
| -// There are two linked lists tracking the pages. The "active page" list is an
|
| -// approximation of a list of active pages. It is an approximation because
|
| -// full, empty and decommitted pages may briefly be present in the list until
|
| -// we next do a scan over it.
|
| -// The "empty page" list is an accurate list of pages which are either empty
|
| -// or decommitted.
|
| -//
|
| -// The significant page transitions are:
|
| -// - free() will detect when a full page has a slot free()'d and immediately
|
| -// return the page to the head of the active list.
|
| -// - free() will detect when a page is fully emptied. It _may_ add it to the
|
| -// empty list or it _may_ leave it on the active list until a future list scan.
|
| -// - malloc() _may_ scan the active page list in order to fulfil the request.
|
| -// If it does this, full, empty and decommitted pages encountered will be
|
| -// booted out of the active list. If there are no suitable active pages found,
|
| -// an empty or decommitted page (if one exists) will be pulled from the empty
|
| -// list on to the active list.
|
| -struct PartitionPage {
|
| - PartitionFreelistEntry* freelistHead;
|
| - PartitionPage* nextPage;
|
| - PartitionBucket* bucket;
|
| - // Deliberately signed, 0 for empty or decommitted page, -n for full pages:
|
| - int16_t numAllocatedSlots;
|
| - uint16_t numUnprovisionedSlots;
|
| - uint16_t pageOffset;
|
| - int16_t emptyCacheIndex; // -1 if not in the empty cache.
|
| -};
|
| -
|
| -struct PartitionBucket {
|
| - PartitionPage* activePagesHead; // Accessed most in hot path => goes first.
|
| - PartitionPage* emptyPagesHead;
|
| - PartitionPage* decommittedPagesHead;
|
| - uint32_t slotSize;
|
| - unsigned numSystemPagesPerSlotSpan : 8;
|
| - unsigned numFullPages : 24;
|
| -};
|
| -
|
| -// An "extent" is a span of consecutive superpages. We link to the partition's
|
| -// next extent (if there is one) at the very start of a superpage's metadata
|
| -// area.
|
| -struct PartitionSuperPageExtentEntry {
|
| - PartitionRootBase* root;
|
| - char* superPageBase;
|
| - char* superPagesEnd;
|
| - PartitionSuperPageExtentEntry* next;
|
| -};
|
| -
|
| -struct PartitionDirectMapExtent {
|
| - PartitionDirectMapExtent* nextExtent;
|
| - PartitionDirectMapExtent* prevExtent;
|
| - PartitionBucket* bucket;
|
| - size_t mapSize; // Mapped size, not including guard pages and meta-data.
|
| -};
|
| -
|
| -struct WTF_EXPORT PartitionRootBase {
|
| - size_t totalSizeOfCommittedPages;
|
| - size_t totalSizeOfSuperPages;
|
| - size_t totalSizeOfDirectMappedPages;
|
| - // Invariant: totalSizeOfCommittedPages <=
|
| - // totalSizeOfSuperPages + totalSizeOfDirectMappedPages.
|
| - unsigned numBuckets;
|
| - unsigned maxAllocation;
|
| - bool initialized;
|
| - char* nextSuperPage;
|
| - char* nextPartitionPage;
|
| - char* nextPartitionPageEnd;
|
| - PartitionSuperPageExtentEntry* currentExtent;
|
| - PartitionSuperPageExtentEntry* firstExtent;
|
| - PartitionDirectMapExtent* directMapList;
|
| - PartitionPage* globalEmptyPageRing[kMaxFreeableSpans];
|
| - int16_t globalEmptyPageRingIndex;
|
| - uintptr_t invertedSelf;
|
| -
|
| - static SpinLock gInitializedLock;
|
| - static bool gInitialized;
|
| - // gSeedPage is used as a sentinel to indicate that there is no page
|
| - // in the active page list. We can use nullptr, but in that case we need
|
| - // to add a null-check branch to the hot allocation path. We want to avoid
|
| - // that.
|
| - static PartitionPage gSeedPage;
|
| - static PartitionBucket gPagedBucket;
|
| - // gOomHandlingFunction is invoked when ParitionAlloc hits OutOfMemory.
|
| - static void (*gOomHandlingFunction)();
|
| -};
|
| -
|
| -// Never instantiate a PartitionRoot directly, instead use PartitionAlloc.
|
| -struct PartitionRoot : public PartitionRootBase {
|
| - // The PartitionAlloc templated class ensures the following is correct.
|
| - ALWAYS_INLINE PartitionBucket* buckets() {
|
| - return reinterpret_cast<PartitionBucket*>(this + 1);
|
| - }
|
| - ALWAYS_INLINE const PartitionBucket* buckets() const {
|
| - return reinterpret_cast<const PartitionBucket*>(this + 1);
|
| - }
|
| -};
|
| -
|
| -// Never instantiate a PartitionRootGeneric directly, instead use
|
| -// PartitionAllocatorGeneric.
|
| -struct PartitionRootGeneric : public PartitionRootBase {
|
| - SpinLock lock;
|
| - // Some pre-computed constants.
|
| - size_t orderIndexShifts[kBitsPerSizet + 1];
|
| - size_t orderSubIndexMasks[kBitsPerSizet + 1];
|
| - // The bucket lookup table lets us map a size_t to a bucket quickly.
|
| - // The trailing +1 caters for the overflow case for very large allocation
|
| - // sizes. It is one flat array instead of a 2D array because in the 2D
|
| - // world, we'd need to index array[blah][max+1] which risks undefined
|
| - // behavior.
|
| - PartitionBucket*
|
| - bucketLookups[((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder) + 1];
|
| - PartitionBucket buckets[kGenericNumBuckets];
|
| -};
|
| -
|
| -// Flags for partitionAllocGenericFlags.
|
| -enum PartitionAllocFlags {
|
| - PartitionAllocReturnNull = 1 << 0,
|
| -};
|
| -
|
| -// Struct used to retrieve total memory usage of a partition. Used by
|
| -// PartitionStatsDumper implementation.
|
| -struct PartitionMemoryStats {
|
| - size_t totalMmappedBytes; // Total bytes mmaped from the system.
|
| - size_t totalCommittedBytes; // Total size of commmitted pages.
|
| - size_t totalResidentBytes; // Total bytes provisioned by the partition.
|
| - size_t totalActiveBytes; // Total active bytes in the partition.
|
| - size_t totalDecommittableBytes; // Total bytes that could be decommitted.
|
| - size_t totalDiscardableBytes; // Total bytes that could be discarded.
|
| -};
|
| -
|
| -// Struct used to retrieve memory statistics about a partition bucket. Used by
|
| -// PartitionStatsDumper implementation.
|
| -struct PartitionBucketMemoryStats {
|
| - bool isValid; // Used to check if the stats is valid.
|
| - bool isDirectMap; // True if this is a direct mapping; size will not be
|
| - // unique.
|
| - uint32_t bucketSlotSize; // The size of the slot in bytes.
|
| - uint32_t allocatedPageSize; // Total size the partition page allocated from
|
| - // the system.
|
| - uint32_t activeBytes; // Total active bytes used in the bucket.
|
| - uint32_t residentBytes; // Total bytes provisioned in the bucket.
|
| - uint32_t decommittableBytes; // Total bytes that could be decommitted.
|
| - uint32_t discardableBytes; // Total bytes that could be discarded.
|
| - uint32_t numFullPages; // Number of pages with all slots allocated.
|
| - uint32_t numActivePages; // Number of pages that have at least one
|
| - // provisioned slot.
|
| - uint32_t numEmptyPages; // Number of pages that are empty
|
| - // but not decommitted.
|
| - uint32_t numDecommittedPages; // Number of pages that are empty
|
| - // and decommitted.
|
| -};
|
| -
|
| -// Interface that is passed to partitionDumpStats and
|
| -// partitionDumpStatsGeneric for using the memory statistics.
|
| -class WTF_EXPORT PartitionStatsDumper {
|
| - public:
|
| - // Called to dump total memory used by partition, once per partition.
|
| - virtual void partitionDumpTotals(const char* partitionName,
|
| - const PartitionMemoryStats*) = 0;
|
| -
|
| - // Called to dump stats about buckets, for each bucket.
|
| - virtual void partitionsDumpBucketStats(const char* partitionName,
|
| - const PartitionBucketMemoryStats*) = 0;
|
| -};
|
| -
|
| -WTF_EXPORT void partitionAllocGlobalInit(void (*oomHandlingFunction)());
|
| -WTF_EXPORT void partitionAllocInit(PartitionRoot*,
|
| - size_t numBuckets,
|
| - size_t maxAllocation);
|
| -WTF_EXPORT bool partitionAllocShutdown(PartitionRoot*);
|
| -WTF_EXPORT void partitionAllocGenericInit(PartitionRootGeneric*);
|
| -WTF_EXPORT bool partitionAllocGenericShutdown(PartitionRootGeneric*);
|
| -
|
| -enum PartitionPurgeFlags {
|
| - // Decommitting the ring list of empty pages is reasonably fast.
|
| - PartitionPurgeDecommitEmptyPages = 1 << 0,
|
| - // Discarding unused system pages is slower, because it involves walking all
|
| - // freelists in all active partition pages of all buckets >= system page
|
| - // size. It often frees a similar amount of memory to decommitting the empty
|
| - // pages, though.
|
| - PartitionPurgeDiscardUnusedSystemPages = 1 << 1,
|
| -};
|
| -
|
| -WTF_EXPORT void partitionPurgeMemory(PartitionRoot*, int);
|
| -WTF_EXPORT void partitionPurgeMemoryGeneric(PartitionRootGeneric*, int);
|
| -
|
| -WTF_EXPORT NEVER_INLINE void* partitionAllocSlowPath(PartitionRootBase*,
|
| - int,
|
| - size_t,
|
| - PartitionBucket*);
|
| -WTF_EXPORT NEVER_INLINE void partitionFreeSlowPath(PartitionPage*);
|
| -WTF_EXPORT NEVER_INLINE void* partitionReallocGeneric(PartitionRootGeneric*,
|
| - void*,
|
| - size_t,
|
| - const char* typeName);
|
| -
|
| -WTF_EXPORT void partitionDumpStats(PartitionRoot*,
|
| - const char* partitionName,
|
| - bool isLightDump,
|
| - PartitionStatsDumper*);
|
| -WTF_EXPORT void partitionDumpStatsGeneric(PartitionRootGeneric*,
|
| - const char* partitionName,
|
| - bool isLightDump,
|
| - PartitionStatsDumper*);
|
| -
|
| -class WTF_EXPORT PartitionAllocHooks {
|
| - public:
|
| - typedef void AllocationHook(void* address, size_t, const char* typeName);
|
| - typedef void FreeHook(void* address);
|
| -
|
| - static void setAllocationHook(AllocationHook* hook) {
|
| - m_allocationHook = hook;
|
| - }
|
| - static void setFreeHook(FreeHook* hook) { m_freeHook = hook; }
|
| -
|
| - static void allocationHookIfEnabled(void* address,
|
| - size_t size,
|
| - const char* typeName) {
|
| - AllocationHook* allocationHook = m_allocationHook;
|
| - if (UNLIKELY(allocationHook != nullptr))
|
| - allocationHook(address, size, typeName);
|
| - }
|
| -
|
| - static void freeHookIfEnabled(void* address) {
|
| - FreeHook* freeHook = m_freeHook;
|
| - if (UNLIKELY(freeHook != nullptr))
|
| - freeHook(address);
|
| - }
|
| -
|
| - static void reallocHookIfEnabled(void* oldAddress,
|
| - void* newAddress,
|
| - size_t size,
|
| - const char* typeName) {
|
| - // Report a reallocation as a free followed by an allocation.
|
| - AllocationHook* allocationHook = m_allocationHook;
|
| - FreeHook* freeHook = m_freeHook;
|
| - if (UNLIKELY(allocationHook && freeHook)) {
|
| - freeHook(oldAddress);
|
| - allocationHook(newAddress, size, typeName);
|
| - }
|
| - }
|
| -
|
| - private:
|
| - // Pointers to hook functions that PartitionAlloc will call on allocation and
|
| - // free if the pointers are non-null.
|
| - static AllocationHook* m_allocationHook;
|
| - static FreeHook* m_freeHook;
|
| -};
|
| -
|
| -// In official builds, do not include type info string literals to avoid
|
| -// bloating the binary.
|
| -#if defined(OFFICIAL_BUILD)
|
| -#define WTF_HEAP_PROFILER_TYPE_NAME(T) nullptr
|
| -#else
|
| -#define WTF_HEAP_PROFILER_TYPE_NAME(T) ::WTF::getStringWithTypeName<T>()
|
| -#endif
|
| -
|
| -ALWAYS_INLINE PartitionFreelistEntry* partitionFreelistMask(
|
| - PartitionFreelistEntry* ptr) {
|
| -// We use bswap on little endian as a fast mask for two reasons:
|
| -// 1) If an object is freed and its vtable used where the attacker doesn't
|
| -// get the chance to run allocations between the free and use, the vtable
|
| -// dereference is likely to fault.
|
| -// 2) If the attacker has a linear buffer overflow and elects to try and
|
| -// corrupt a freelist pointer, partial pointer overwrite attacks are
|
| -// thwarted.
|
| -// For big endian, similar guarantees are arrived at with a negation.
|
| -#if CPU(BIG_ENDIAN)
|
| - uintptr_t masked = ~reinterpret_cast<uintptr_t>(ptr);
|
| -#else
|
| - uintptr_t masked = bswapuintptrt(reinterpret_cast<uintptr_t>(ptr));
|
| -#endif
|
| - return reinterpret_cast<PartitionFreelistEntry*>(masked);
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionCookieSizeAdjustAdd(size_t size) {
|
| -#if ENABLE(ASSERT)
|
| - // Add space for cookies, checking for integer overflow.
|
| - ASSERT(size + (2 * kCookieSize) > size);
|
| - size += 2 * kCookieSize;
|
| -#endif
|
| - return size;
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionCookieSizeAdjustSubtract(size_t size) {
|
| -#if ENABLE(ASSERT)
|
| - // Remove space for cookies.
|
| - ASSERT(size >= 2 * kCookieSize);
|
| - size -= 2 * kCookieSize;
|
| -#endif
|
| - return size;
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionCookieFreePointerAdjust(void* ptr) {
|
| -#if ENABLE(ASSERT)
|
| - // The value given to the application is actually just after the cookie.
|
| - ptr = static_cast<char*>(ptr) - kCookieSize;
|
| -#endif
|
| - return ptr;
|
| -}
|
| -
|
| -ALWAYS_INLINE void partitionCookieWriteValue(void* ptr) {
|
| -#if ENABLE(ASSERT)
|
| - unsigned char* cookiePtr = reinterpret_cast<unsigned char*>(ptr);
|
| - for (size_t i = 0; i < kCookieSize; ++i, ++cookiePtr)
|
| - *cookiePtr = kCookieValue[i];
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE void partitionCookieCheckValue(void* ptr) {
|
| -#if ENABLE(ASSERT)
|
| - unsigned char* cookiePtr = reinterpret_cast<unsigned char*>(ptr);
|
| - for (size_t i = 0; i < kCookieSize; ++i, ++cookiePtr)
|
| - ASSERT(*cookiePtr == kCookieValue[i]);
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE char* partitionSuperPageToMetadataArea(char* ptr) {
|
| - uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
|
| - ASSERT(!(pointerAsUint & kSuperPageOffsetMask));
|
| - // The metadata area is exactly one system page (the guard page) into the
|
| - // super page.
|
| - return reinterpret_cast<char*>(pointerAsUint + kSystemPageSize);
|
| -}
|
| -
|
| -ALWAYS_INLINE PartitionPage* partitionPointerToPageNoAlignmentCheck(void* ptr) {
|
| - uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
|
| - char* superPagePtr =
|
| - reinterpret_cast<char*>(pointerAsUint & kSuperPageBaseMask);
|
| - uintptr_t partitionPageIndex =
|
| - (pointerAsUint & kSuperPageOffsetMask) >> kPartitionPageShift;
|
| - // Index 0 is invalid because it is the metadata and guard area and
|
| - // the last index is invalid because it is a guard page.
|
| - ASSERT(partitionPageIndex);
|
| - ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
|
| - PartitionPage* page = reinterpret_cast<PartitionPage*>(
|
| - partitionSuperPageToMetadataArea(superPagePtr) +
|
| - (partitionPageIndex << kPageMetadataShift));
|
| - // Partition pages in the same slot span can share the same page object.
|
| - // Adjust for that.
|
| - size_t delta = page->pageOffset << kPageMetadataShift;
|
| - page =
|
| - reinterpret_cast<PartitionPage*>(reinterpret_cast<char*>(page) - delta);
|
| - return page;
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionPageToPointer(const PartitionPage* page) {
|
| - uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(page);
|
| - uintptr_t superPageOffset = (pointerAsUint & kSuperPageOffsetMask);
|
| - ASSERT(superPageOffset > kSystemPageSize);
|
| - ASSERT(superPageOffset < kSystemPageSize + (kNumPartitionPagesPerSuperPage *
|
| - kPageMetadataSize));
|
| - uintptr_t partitionPageIndex =
|
| - (superPageOffset - kSystemPageSize) >> kPageMetadataShift;
|
| - // Index 0 is invalid because it is the metadata area and the last index is
|
| - // invalid because it is a guard page.
|
| - ASSERT(partitionPageIndex);
|
| - ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
|
| - uintptr_t superPageBase = (pointerAsUint & kSuperPageBaseMask);
|
| - void* ret = reinterpret_cast<void*>(
|
| - superPageBase + (partitionPageIndex << kPartitionPageShift));
|
| - return ret;
|
| -}
|
| -
|
| -ALWAYS_INLINE PartitionPage* partitionPointerToPage(void* ptr) {
|
| - PartitionPage* page = partitionPointerToPageNoAlignmentCheck(ptr);
|
| - // Checks that the pointer is a multiple of bucket size.
|
| - ASSERT(!((reinterpret_cast<uintptr_t>(ptr) -
|
| - reinterpret_cast<uintptr_t>(partitionPageToPointer(page))) %
|
| - page->bucket->slotSize));
|
| - return page;
|
| -}
|
| -
|
| -ALWAYS_INLINE bool partitionBucketIsDirectMapped(
|
| - const PartitionBucket* bucket) {
|
| - return !bucket->numSystemPagesPerSlotSpan;
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionBucketBytes(const PartitionBucket* bucket) {
|
| - return bucket->numSystemPagesPerSlotSpan * kSystemPageSize;
|
| -}
|
| -
|
| -ALWAYS_INLINE uint16_t partitionBucketSlots(const PartitionBucket* bucket) {
|
| - return static_cast<uint16_t>(partitionBucketBytes(bucket) / bucket->slotSize);
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t* partitionPageGetRawSizePtr(PartitionPage* page) {
|
| - // For single-slot buckets which span more than one partition page, we
|
| - // have some spare metadata space to store the raw allocation size. We
|
| - // can use this to report better statistics.
|
| - PartitionBucket* bucket = page->bucket;
|
| - if (bucket->slotSize <= kMaxSystemPagesPerSlotSpan * kSystemPageSize)
|
| - return nullptr;
|
| -
|
| - ASSERT((bucket->slotSize % kSystemPageSize) == 0);
|
| - ASSERT(partitionBucketIsDirectMapped(bucket) ||
|
| - partitionBucketSlots(bucket) == 1);
|
| - page++;
|
| - return reinterpret_cast<size_t*>(&page->freelistHead);
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionPageGetRawSize(PartitionPage* page) {
|
| - size_t* rawSizePtr = partitionPageGetRawSizePtr(page);
|
| - if (UNLIKELY(rawSizePtr != nullptr))
|
| - return *rawSizePtr;
|
| - return 0;
|
| -}
|
| -
|
| -ALWAYS_INLINE PartitionRootBase* partitionPageToRoot(PartitionPage* page) {
|
| - PartitionSuperPageExtentEntry* extentEntry =
|
| - reinterpret_cast<PartitionSuperPageExtentEntry*>(
|
| - reinterpret_cast<uintptr_t>(page) & kSystemPageBaseMask);
|
| - return extentEntry->root;
|
| -}
|
| -
|
| -ALWAYS_INLINE bool partitionPointerIsValid(void* ptr) {
|
| - PartitionPage* page = partitionPointerToPage(ptr);
|
| - PartitionRootBase* root = partitionPageToRoot(page);
|
| - return root->invertedSelf == ~reinterpret_cast<uintptr_t>(root);
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionBucketAlloc(PartitionRootBase* root,
|
| - int flags,
|
| - size_t size,
|
| - PartitionBucket* bucket) {
|
| - PartitionPage* page = bucket->activePagesHead;
|
| - // Check that this page is neither full nor freed.
|
| - ASSERT(page->numAllocatedSlots >= 0);
|
| - void* ret = page->freelistHead;
|
| - if (LIKELY(ret != 0)) {
|
| - // If these asserts fire, you probably corrupted memory.
|
| - ASSERT(partitionPointerIsValid(ret));
|
| - // All large allocations must go through the slow path to correctly
|
| - // update the size metadata.
|
| - ASSERT(partitionPageGetRawSize(page) == 0);
|
| - PartitionFreelistEntry* newHead =
|
| - partitionFreelistMask(static_cast<PartitionFreelistEntry*>(ret)->next);
|
| - page->freelistHead = newHead;
|
| - page->numAllocatedSlots++;
|
| - } else {
|
| - ret = partitionAllocSlowPath(root, flags, size, bucket);
|
| - ASSERT(!ret || partitionPointerIsValid(ret));
|
| - }
|
| -#if ENABLE(ASSERT)
|
| - if (!ret)
|
| - return 0;
|
| - // Fill the uninitialized pattern, and write the cookies.
|
| - page = partitionPointerToPage(ret);
|
| - size_t slotSize = page->bucket->slotSize;
|
| - size_t rawSize = partitionPageGetRawSize(page);
|
| - if (rawSize) {
|
| - ASSERT(rawSize == size);
|
| - slotSize = rawSize;
|
| - }
|
| - size_t noCookieSize = partitionCookieSizeAdjustSubtract(slotSize);
|
| - char* charRet = static_cast<char*>(ret);
|
| - // The value given to the application is actually just after the cookie.
|
| - ret = charRet + kCookieSize;
|
| - memset(ret, kUninitializedByte, noCookieSize);
|
| - partitionCookieWriteValue(charRet);
|
| - partitionCookieWriteValue(charRet + kCookieSize + noCookieSize);
|
| -#endif
|
| - return ret;
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionAlloc(PartitionRoot* root,
|
| - size_t size,
|
| - const char* typeName) {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - void* result = malloc(size);
|
| - RELEASE_ASSERT(result);
|
| - return result;
|
| -#else
|
| - size_t requestedSize = size;
|
| - size = partitionCookieSizeAdjustAdd(size);
|
| - ASSERT(root->initialized);
|
| - size_t index = size >> kBucketShift;
|
| - ASSERT(index < root->numBuckets);
|
| - ASSERT(size == index << kBucketShift);
|
| - PartitionBucket* bucket = &root->buckets()[index];
|
| - void* result = partitionBucketAlloc(root, 0, size, bucket);
|
| - PartitionAllocHooks::allocationHookIfEnabled(result, requestedSize, typeName);
|
| - return result;
|
| -#endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| -}
|
| -
|
| -ALWAYS_INLINE void partitionFreeWithPage(void* ptr, PartitionPage* page) {
|
| -// If these asserts fire, you probably corrupted memory.
|
| -#if ENABLE(ASSERT)
|
| - size_t slotSize = page->bucket->slotSize;
|
| - size_t rawSize = partitionPageGetRawSize(page);
|
| - if (rawSize)
|
| - slotSize = rawSize;
|
| - partitionCookieCheckValue(ptr);
|
| - partitionCookieCheckValue(reinterpret_cast<char*>(ptr) + slotSize -
|
| - kCookieSize);
|
| - memset(ptr, kFreedByte, slotSize);
|
| -#endif
|
| - ASSERT(page->numAllocatedSlots);
|
| - PartitionFreelistEntry* freelistHead = page->freelistHead;
|
| - ASSERT(!freelistHead || partitionPointerIsValid(freelistHead));
|
| - SECURITY_CHECK(ptr != freelistHead); // Catches an immediate double free.
|
| - // Look for double free one level deeper in debug.
|
| - SECURITY_DCHECK(!freelistHead ||
|
| - ptr != partitionFreelistMask(freelistHead->next));
|
| - PartitionFreelistEntry* entry = static_cast<PartitionFreelistEntry*>(ptr);
|
| - entry->next = partitionFreelistMask(freelistHead);
|
| - page->freelistHead = entry;
|
| - --page->numAllocatedSlots;
|
| - if (UNLIKELY(page->numAllocatedSlots <= 0)) {
|
| - partitionFreeSlowPath(page);
|
| - } else {
|
| - // All single-slot allocations must go through the slow path to
|
| - // correctly update the size metadata.
|
| - ASSERT(partitionPageGetRawSize(page) == 0);
|
| - }
|
| -}
|
| -
|
| -ALWAYS_INLINE void partitionFree(void* ptr) {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - free(ptr);
|
| -#else
|
| - PartitionAllocHooks::freeHookIfEnabled(ptr);
|
| - ptr = partitionCookieFreePointerAdjust(ptr);
|
| - ASSERT(partitionPointerIsValid(ptr));
|
| - PartitionPage* page = partitionPointerToPage(ptr);
|
| - partitionFreeWithPage(ptr, page);
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE PartitionBucket* partitionGenericSizeToBucket(
|
| - PartitionRootGeneric* root,
|
| - size_t size) {
|
| - size_t order = kBitsPerSizet - CountLeadingZeroBitsSizeT(size);
|
| - // The order index is simply the next few bits after the most significant bit.
|
| - size_t orderIndex = (size >> root->orderIndexShifts[order]) &
|
| - (kGenericNumBucketsPerOrder - 1);
|
| - // And if the remaining bits are non-zero we must bump the bucket up.
|
| - size_t subOrderIndex = size & root->orderSubIndexMasks[order];
|
| - PartitionBucket* bucket =
|
| - root->bucketLookups[(order << kGenericNumBucketsPerOrderBits) +
|
| - orderIndex + !!subOrderIndex];
|
| - ASSERT(!bucket->slotSize || bucket->slotSize >= size);
|
| - ASSERT(!(bucket->slotSize % kGenericSmallestBucket));
|
| - return bucket;
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionAllocGenericFlags(PartitionRootGeneric* root,
|
| - int flags,
|
| - size_t size,
|
| - const char* typeName) {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - void* result = malloc(size);
|
| - RELEASE_ASSERT(result || flags & PartitionAllocReturnNull);
|
| - return result;
|
| -#else
|
| - ASSERT(root->initialized);
|
| - size_t requestedSize = size;
|
| - size = partitionCookieSizeAdjustAdd(size);
|
| - PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
|
| - void* ret = nullptr;
|
| - {
|
| - SpinLock::Guard guard(root->lock);
|
| - ret = partitionBucketAlloc(root, flags, size, bucket);
|
| - }
|
| - PartitionAllocHooks::allocationHookIfEnabled(ret, requestedSize, typeName);
|
| - return ret;
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE void* partitionAllocGeneric(PartitionRootGeneric* root,
|
| - size_t size,
|
| - const char* typeName) {
|
| - return partitionAllocGenericFlags(root, 0, size, typeName);
|
| -}
|
| -
|
| -ALWAYS_INLINE void partitionFreeGeneric(PartitionRootGeneric* root, void* ptr) {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - free(ptr);
|
| -#else
|
| - ASSERT(root->initialized);
|
| -
|
| - if (UNLIKELY(!ptr))
|
| - return;
|
| -
|
| - PartitionAllocHooks::freeHookIfEnabled(ptr);
|
| - ptr = partitionCookieFreePointerAdjust(ptr);
|
| - ASSERT(partitionPointerIsValid(ptr));
|
| - PartitionPage* page = partitionPointerToPage(ptr);
|
| - {
|
| - SpinLock::Guard guard(root->lock);
|
| - partitionFreeWithPage(ptr, page);
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionDirectMapSize(size_t size) {
|
| - // Caller must check that the size is not above the kGenericMaxDirectMapped
|
| - // limit before calling. This also guards against integer overflow in the
|
| - // calculation here.
|
| - ASSERT(size <= kGenericMaxDirectMapped);
|
| - return (size + kSystemPageOffsetMask) & kSystemPageBaseMask;
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionAllocActualSize(PartitionRootGeneric* root,
|
| - size_t size) {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - return size;
|
| -#else
|
| - ASSERT(root->initialized);
|
| - size = partitionCookieSizeAdjustAdd(size);
|
| - PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
|
| - if (LIKELY(!partitionBucketIsDirectMapped(bucket))) {
|
| - size = bucket->slotSize;
|
| - } else if (size > kGenericMaxDirectMapped) {
|
| - // Too large to allocate => return the size unchanged.
|
| - } else {
|
| - ASSERT(bucket == &PartitionRootBase::gPagedBucket);
|
| - size = partitionDirectMapSize(size);
|
| - }
|
| - return partitionCookieSizeAdjustSubtract(size);
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE bool partitionAllocSupportsGetSize() {
|
| -#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
| - return false;
|
| -#else
|
| - return true;
|
| -#endif
|
| -}
|
| -
|
| -ALWAYS_INLINE size_t partitionAllocGetSize(void* ptr) {
|
| - // No need to lock here. Only 'ptr' being freed by another thread could
|
| - // cause trouble, and the caller is responsible for that not happening.
|
| - ASSERT(partitionAllocSupportsGetSize());
|
| - ptr = partitionCookieFreePointerAdjust(ptr);
|
| - ASSERT(partitionPointerIsValid(ptr));
|
| - PartitionPage* page = partitionPointerToPage(ptr);
|
| - size_t size = page->bucket->slotSize;
|
| - return partitionCookieSizeAdjustSubtract(size);
|
| -}
|
| -
|
| -// N (or more accurately, N - sizeof(void*)) represents the largest size in
|
| -// bytes that will be handled by a SizeSpecificPartitionAllocator.
|
| -// Attempts to partitionAlloc() more than this amount will fail.
|
| -template <size_t N>
|
| -class SizeSpecificPartitionAllocator {
|
| - public:
|
| - static const size_t kMaxAllocation = N - kAllocationGranularity;
|
| - static const size_t kNumBuckets = N / kAllocationGranularity;
|
| - void init() {
|
| - partitionAllocInit(&m_partitionRoot, kNumBuckets, kMaxAllocation);
|
| - }
|
| - bool shutdown() { return partitionAllocShutdown(&m_partitionRoot); }
|
| - ALWAYS_INLINE PartitionRoot* root() { return &m_partitionRoot; }
|
| -
|
| - private:
|
| - PartitionRoot m_partitionRoot;
|
| - PartitionBucket m_actualBuckets[kNumBuckets];
|
| -};
|
| -
|
| -class PartitionAllocatorGeneric {
|
| - public:
|
| - void init() { partitionAllocGenericInit(&m_partitionRoot); }
|
| - bool shutdown() { return partitionAllocGenericShutdown(&m_partitionRoot); }
|
| - ALWAYS_INLINE PartitionRootGeneric* root() { return &m_partitionRoot; }
|
| -
|
| - private:
|
| - PartitionRootGeneric m_partitionRoot;
|
| -};
|
| -
|
| -} // namespace WTF
|
| -
|
| -using WTF::SizeSpecificPartitionAllocator;
|
| -using WTF::PartitionAllocatorGeneric;
|
| -using WTF::PartitionRoot;
|
| -using WTF::partitionAllocInit;
|
| -using WTF::partitionAllocShutdown;
|
| -using WTF::partitionAlloc;
|
| -using WTF::partitionFree;
|
| -using WTF::partitionAllocGeneric;
|
| -using WTF::partitionFreeGeneric;
|
| -using WTF::partitionReallocGeneric;
|
| -using WTF::partitionAllocActualSize;
|
| -using WTF::partitionAllocSupportsGetSize;
|
| -using WTF::partitionAllocGetSize;
|
| -
|
| -#endif // WTF_PartitionAlloc_h
|
|
|