Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(639)

Unified Diff: src/ic/accessor-assembler.cc

Issue 2507733002: [refactoring] Pull AccessorAssembler out of CodeStubAssembler (Closed)
Patch Set: Created 4 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/ic/accessor-assembler.cc
diff --git a/src/ic/accessor-assembler.cc b/src/ic/accessor-assembler.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e2e34e9ee3147c6f21d91e433ff7b655162d3929
--- /dev/null
+++ b/src/ic/accessor-assembler.cc
@@ -0,0 +1,1713 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/ic/accessor-assembler.h"
+#include "src/ic/accessor-assembler-impl.h"
+
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/ic/handler-configuration.h"
+#include "src/ic/stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+using compiler::CodeAssemblerState;
+
+//////////////////// Private helpers.
+
+Node* AccessorAssemblerImpl::TryMonomorphicCase(Node* slot, Node* vector,
+ Node* receiver_map,
+ Label* if_handler,
+ Variable* var_handler,
+ Label* if_miss) {
+ Comment("TryMonomorphicCase");
+ DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
+
+ // TODO(ishell): add helper class that hides offset computations for a series
+ // of loads.
+ int32_t header_size = FixedArray::kHeaderSize - kHeapObjectTag;
+ // Adding |header_size| with a separate IntPtrAdd rather than passing it
+ // into ElementOffsetFromIndex() allows it to be folded into a single
+ // [base, index, offset] indirect memory access on x64.
+ Node* offset =
+ ElementOffsetFromIndex(slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS);
+ Node* feedback = Load(MachineType::AnyTagged(), vector,
+ IntPtrAdd(offset, IntPtrConstant(header_size)));
+
+ // Try to quickly handle the monomorphic case without knowing for sure
+ // if we have a weak cell in feedback. We do know it's safe to look
+ // at WeakCell::kValueOffset.
+ GotoIf(WordNotEqual(receiver_map, LoadWeakCellValueUnchecked(feedback)),
+ if_miss);
+
+ Node* handler =
+ Load(MachineType::AnyTagged(), vector,
+ IntPtrAdd(offset, IntPtrConstant(header_size + kPointerSize)));
+
+ var_handler->Bind(handler);
+ Goto(if_handler);
+ return feedback;
+}
+
+void AccessorAssemblerImpl::HandlePolymorphicCase(
+ Node* receiver_map, Node* feedback, Label* if_handler,
+ Variable* var_handler, Label* if_miss, int unroll_count) {
+ Comment("HandlePolymorphicCase");
+ DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
+
+ // Iterate {feedback} array.
+ const int kEntrySize = 2;
+
+ for (int i = 0; i < unroll_count; i++) {
+ Label next_entry(this);
+ Node* cached_map = LoadWeakCellValue(LoadFixedArrayElement(
+ feedback, IntPtrConstant(i * kEntrySize), 0, INTPTR_PARAMETERS));
+ GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry);
+
+ // Found, now call handler.
+ Node* handler = LoadFixedArrayElement(
+ feedback, IntPtrConstant(i * kEntrySize + 1), 0, INTPTR_PARAMETERS);
+ var_handler->Bind(handler);
+ Goto(if_handler);
+
+ Bind(&next_entry);
+ }
+
+ // Loop from {unroll_count}*kEntrySize to {length}.
+ Node* init = IntPtrConstant(unroll_count * kEntrySize);
+ Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
+ BuildFastLoop(
+ MachineType::PointerRepresentation(), init, length,
+ [receiver_map, feedback, if_handler, var_handler](CodeStubAssembler* csa,
+ Node* index) {
+ Node* cached_map = csa->LoadWeakCellValue(
+ csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
+
+ Label next_entry(csa);
+ csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
+
+ // Found, now call handler.
+ Node* handler = csa->LoadFixedArrayElement(
+ feedback, index, kPointerSize, INTPTR_PARAMETERS);
+ var_handler->Bind(handler);
+ csa->Goto(if_handler);
+
+ csa->Bind(&next_entry);
+ },
+ kEntrySize, IndexAdvanceMode::kPost);
+ // The loop falls through if no handler was found.
+ Goto(if_miss);
+}
+
+void AccessorAssemblerImpl::HandleKeyedStorePolymorphicCase(
+ Node* receiver_map, Node* feedback, Label* if_handler,
+ Variable* var_handler, Label* if_transition_handler,
+ Variable* var_transition_map_cell, Label* if_miss) {
+ DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
+ DCHECK_EQ(MachineRepresentation::kTagged, var_transition_map_cell->rep());
+
+ const int kEntrySize = 3;
+
+ Node* init = IntPtrConstant(0);
+ Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
+ BuildFastLoop(
+ MachineType::PointerRepresentation(), init, length,
+ [receiver_map, feedback, if_handler, var_handler, if_transition_handler,
+ var_transition_map_cell](CodeStubAssembler* csa, Node* index) {
+ Node* cached_map = csa->LoadWeakCellValue(
+ csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
+ Label next_entry(csa);
+ csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
+
+ Node* maybe_transition_map_cell = csa->LoadFixedArrayElement(
+ feedback, index, kPointerSize, INTPTR_PARAMETERS);
+
+ var_handler->Bind(csa->LoadFixedArrayElement(
+ feedback, index, 2 * kPointerSize, INTPTR_PARAMETERS));
+ csa->GotoIf(
+ csa->WordEqual(maybe_transition_map_cell,
+ csa->LoadRoot(Heap::kUndefinedValueRootIndex)),
+ if_handler);
+ var_transition_map_cell->Bind(maybe_transition_map_cell);
+ csa->Goto(if_transition_handler);
+
+ csa->Bind(&next_entry);
+ },
+ kEntrySize, IndexAdvanceMode::kPost);
+ // The loop falls through if no handler was found.
+ Goto(if_miss);
+}
+
+void AccessorAssemblerImpl::HandleLoadICHandlerCase(
+ const LoadICParameters* p, Node* handler, Label* miss,
+ ElementSupport support_elements) {
+ Comment("have_handler");
+ Variable var_holder(this, MachineRepresentation::kTagged);
+ var_holder.Bind(p->receiver);
+ Variable var_smi_handler(this, MachineRepresentation::kTagged);
+ var_smi_handler.Bind(handler);
+
+ Variable* vars[] = {&var_holder, &var_smi_handler};
+ Label if_smi_handler(this, 2, vars);
+ Label try_proto_handler(this), call_handler(this);
+
+ Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
+
+ // |handler| is a Smi, encoding what to do. See SmiHandler methods
+ // for the encoding format.
+ Bind(&if_smi_handler);
+ {
+ HandleLoadICSmiHandlerCase(p, var_holder.value(), var_smi_handler.value(),
+ miss, support_elements);
+ }
+
+ Bind(&try_proto_handler);
+ {
+ GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
+ HandleLoadICProtoHandler(p, handler, &var_holder, &var_smi_handler,
+ &if_smi_handler, miss);
+ }
+
+ Bind(&call_handler);
+ {
+ typedef LoadWithVectorDescriptor Descriptor;
+ TailCallStub(Descriptor(isolate()), handler, p->context,
+ Arg(Descriptor::kReceiver, p->receiver),
+ Arg(Descriptor::kName, p->name),
+ Arg(Descriptor::kSlot, p->slot),
+ Arg(Descriptor::kVector, p->vector));
+ }
+}
+
+void AccessorAssemblerImpl::HandleLoadICSmiHandlerCase(
+ const LoadICParameters* p, Node* holder, Node* smi_handler, Label* miss,
+ ElementSupport support_elements) {
+ Variable var_double_value(this, MachineRepresentation::kFloat64);
+ Label rebox_double(this, &var_double_value);
+
+ Node* handler_word = SmiUntag(smi_handler);
+ Node* handler_kind = DecodeWord<LoadHandler::KindBits>(handler_word);
+ if (support_elements == kSupportElements) {
+ Label property(this);
+ GotoUnless(
+ WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForElements)),
+ &property);
+
+ Comment("element_load");
+ Node* intptr_index = TryToIntptr(p->name, miss);
+ Node* elements = LoadElements(holder);
+ Node* is_jsarray_condition =
+ IsSetWord<LoadHandler::IsJsArrayBits>(handler_word);
+ Node* elements_kind =
+ DecodeWord<LoadHandler::ElementsKindBits>(handler_word);
+ Label if_hole(this), unimplemented_elements_kind(this);
+ Label* out_of_bounds = miss;
+ EmitElementLoad(holder, elements, elements_kind, intptr_index,
+ is_jsarray_condition, &if_hole, &rebox_double,
+ &var_double_value, &unimplemented_elements_kind,
+ out_of_bounds, miss);
+
+ Bind(&unimplemented_elements_kind);
+ {
+ // Smi handlers should only be installed for supported elements kinds.
+ // Crash if we get here.
+ DebugBreak();
+ Goto(miss);
+ }
+
+ Bind(&if_hole);
+ {
+ Comment("convert hole");
+ GotoUnless(IsSetWord<LoadHandler::ConvertHoleBits>(handler_word), miss);
+ Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex);
+ DCHECK(isolate()->heap()->array_protector()->IsPropertyCell());
+ GotoUnless(
+ WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
+ SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
+ miss);
+ Return(UndefinedConstant());
+ }
+
+ Bind(&property);
+ Comment("property_load");
+ }
+
+ Label constant(this), field(this);
+ Branch(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForFields)),
+ &field, &constant);
+
+ Bind(&field);
+ {
+ Comment("field_load");
+ Node* offset = DecodeWord<LoadHandler::FieldOffsetBits>(handler_word);
+
+ Label inobject(this), out_of_object(this);
+ Branch(IsSetWord<LoadHandler::IsInobjectBits>(handler_word), &inobject,
+ &out_of_object);
+
+ Bind(&inobject);
+ {
+ Label is_double(this);
+ GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
+ Return(LoadObjectField(holder, offset));
+
+ Bind(&is_double);
+ if (FLAG_unbox_double_fields) {
+ var_double_value.Bind(
+ LoadObjectField(holder, offset, MachineType::Float64()));
+ } else {
+ Node* mutable_heap_number = LoadObjectField(holder, offset);
+ var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
+ }
+ Goto(&rebox_double);
+ }
+
+ Bind(&out_of_object);
+ {
+ Label is_double(this);
+ Node* properties = LoadProperties(holder);
+ Node* value = LoadObjectField(properties, offset);
+ GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
+ Return(value);
+
+ Bind(&is_double);
+ var_double_value.Bind(LoadHeapNumberValue(value));
+ Goto(&rebox_double);
+ }
+
+ Bind(&rebox_double);
+ Return(AllocateHeapNumberWithValue(var_double_value.value()));
+ }
+
+ Bind(&constant);
+ {
+ Comment("constant_load");
+ Node* descriptors = LoadMapDescriptors(LoadMap(holder));
+ Node* descriptor =
+ DecodeWord<LoadHandler::DescriptorValueIndexBits>(handler_word);
+ CSA_ASSERT(this,
+ UintPtrLessThan(descriptor,
+ LoadAndUntagFixedArrayBaseLength(descriptors)));
+ Node* value =
+ LoadFixedArrayElement(descriptors, descriptor, 0, INTPTR_PARAMETERS);
+
+ Label if_accessor_info(this);
+ GotoIf(IsSetWord<LoadHandler::IsAccessorInfoBits>(handler_word),
+ &if_accessor_info);
+ Return(value);
+
+ Bind(&if_accessor_info);
+ Callable callable = CodeFactory::ApiGetter(isolate());
+ TailCallStub(callable, p->context, p->receiver, holder, value);
+ }
+}
+
+void AccessorAssemblerImpl::HandleLoadICProtoHandler(
+ const LoadICParameters* p, Node* handler, Variable* var_holder,
+ Variable* var_smi_handler, Label* if_smi_handler, Label* miss) {
+ DCHECK_EQ(MachineRepresentation::kTagged, var_holder->rep());
+ DCHECK_EQ(MachineRepresentation::kTagged, var_smi_handler->rep());
+
+ // IC dispatchers rely on these assumptions to be held.
+ STATIC_ASSERT(FixedArray::kLengthOffset == LoadHandler::kHolderCellOffset);
+ DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kSmiHandlerIndex),
+ LoadHandler::kSmiHandlerOffset);
+ DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kValidityCellIndex),
+ LoadHandler::kValidityCellOffset);
+
+ // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
+ Label validity_cell_check_done(this);
+ Node* validity_cell =
+ LoadObjectField(handler, LoadHandler::kValidityCellOffset);
+ GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
+ &validity_cell_check_done);
+ Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
+ GotoIf(WordNotEqual(cell_value,
+ SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
+ miss);
+ Goto(&validity_cell_check_done);
+
+ Bind(&validity_cell_check_done);
+ Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
+ CSA_ASSERT(this, TaggedIsSmi(smi_handler));
+ Node* handler_flags = SmiUntag(smi_handler);
+
+ Label check_prototypes(this);
+ GotoUnless(
+ IsSetWord<LoadHandler::DoNegativeLookupOnReceiverBits>(handler_flags),
+ &check_prototypes);
+ {
+ // We have a dictionary receiver, do a negative lookup check.
+ NameDictionaryNegativeLookup(p->receiver, p->name, miss);
+ Goto(&check_prototypes);
+ }
+
+ Bind(&check_prototypes);
+ Node* maybe_holder_cell =
+ LoadObjectField(handler, LoadHandler::kHolderCellOffset);
+ Label array_handler(this), tuple_handler(this);
+ Branch(TaggedIsSmi(maybe_holder_cell), &array_handler, &tuple_handler);
+
+ Bind(&tuple_handler);
+ {
+ Label load_existent(this);
+ GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
+ // This is a handler for a load of a non-existent value.
+ Return(UndefinedConstant());
+
+ Bind(&load_existent);
+ Node* holder = LoadWeakCellValue(maybe_holder_cell);
+ // The |holder| is guaranteed to be alive at this point since we passed
+ // both the receiver map check and the validity cell check.
+ CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
+
+ var_holder->Bind(holder);
+ var_smi_handler->Bind(smi_handler);
+ Goto(if_smi_handler);
+ }
+
+ Bind(&array_handler);
+ {
+ typedef LoadICProtoArrayDescriptor Descriptor;
+ LoadICProtoArrayStub stub(isolate());
+ Node* target = HeapConstant(stub.GetCode());
+ TailCallStub(Descriptor(isolate()), target, p->context,
+ Arg(Descriptor::kReceiver, p->receiver),
+ Arg(Descriptor::kName, p->name),
+ Arg(Descriptor::kSlot, p->slot),
+ Arg(Descriptor::kVector, p->vector),
+ Arg(Descriptor::kHandler, handler));
+ }
+}
+
+Node* AccessorAssemblerImpl::EmitLoadICProtoArrayCheck(
+ const LoadICParameters* p, Node* handler, Node* handler_length,
+ Node* handler_flags, Label* miss) {
+ Variable start_index(this, MachineType::PointerRepresentation());
+ start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex));
+
+ Label can_access(this);
+ GotoUnless(IsSetWord<LoadHandler::DoAccessCheckOnReceiverBits>(handler_flags),
+ &can_access);
+ {
+ // Skip this entry of a handler.
+ start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex + 1));
+
+ int offset =
+ FixedArray::OffsetOfElementAt(LoadHandler::kFirstPrototypeIndex);
+ Node* expected_native_context =
+ LoadWeakCellValue(LoadObjectField(handler, offset), miss);
+ CSA_ASSERT(this, IsNativeContext(expected_native_context));
+
+ Node* native_context = LoadNativeContext(p->context);
+ GotoIf(WordEqual(expected_native_context, native_context), &can_access);
+ // If the receiver is not a JSGlobalProxy then we miss.
+ GotoUnless(IsJSGlobalProxy(p->receiver), miss);
+ // For JSGlobalProxy receiver try to compare security tokens of current
+ // and expected native contexts.
+ Node* expected_token = LoadContextElement(expected_native_context,
+ Context::SECURITY_TOKEN_INDEX);
+ Node* current_token =
+ LoadContextElement(native_context, Context::SECURITY_TOKEN_INDEX);
+ Branch(WordEqual(expected_token, current_token), &can_access, miss);
+ }
+ Bind(&can_access);
+
+ BuildFastLoop(
+ MachineType::PointerRepresentation(), start_index.value(), handler_length,
+ [this, p, handler, miss](CodeStubAssembler*, Node* current) {
+ Node* prototype_cell =
+ LoadFixedArrayElement(handler, current, 0, INTPTR_PARAMETERS);
+ CheckPrototype(prototype_cell, p->name, miss);
+ },
+ 1, IndexAdvanceMode::kPost);
+
+ Node* maybe_holder_cell = LoadFixedArrayElement(
+ handler, IntPtrConstant(LoadHandler::kHolderCellIndex), 0,
+ INTPTR_PARAMETERS);
+ Label load_existent(this);
+ GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
+ // This is a handler for a load of a non-existent value.
+ Return(UndefinedConstant());
+
+ Bind(&load_existent);
+ Node* holder = LoadWeakCellValue(maybe_holder_cell);
+ // The |holder| is guaranteed to be alive at this point since we passed
+ // the receiver map check, the validity cell check and the prototype chain
+ // check.
+ CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
+ return holder;
+}
+
+void AccessorAssemblerImpl::HandleStoreICHandlerCase(const StoreICParameters* p,
+ Node* handler,
+ Label* miss) {
+ Label if_smi_handler(this);
+ Label try_proto_handler(this), call_handler(this);
+
+ Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
+
+ // |handler| is a Smi, encoding what to do. See SmiHandler methods
+ // for the encoding format.
+ Bind(&if_smi_handler);
+ {
+ Node* holder = p->receiver;
+ Node* handler_word = SmiUntag(handler);
+
+ // Handle non-transitioning field stores.
+ HandleStoreICSmiHandlerCase(handler_word, holder, p->value, nullptr, miss);
+ }
+
+ Bind(&try_proto_handler);
+ {
+ GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
+ HandleStoreICProtoHandler(p, handler, miss);
+ }
+
+ // |handler| is a heap object. Must be code, call it.
+ Bind(&call_handler);
+ {
+ StoreWithVectorDescriptor descriptor(isolate());
+ TailCallStub(descriptor, handler, p->context, p->receiver, p->name,
+ p->value, p->slot, p->vector);
+ }
+}
+
+void AccessorAssemblerImpl::HandleStoreICProtoHandler(
+ const StoreICParameters* p, Node* handler, Label* miss) {
+ // IC dispatchers rely on these assumptions to be held.
+ STATIC_ASSERT(FixedArray::kLengthOffset ==
+ StoreHandler::kTransitionCellOffset);
+ DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kSmiHandlerIndex),
+ StoreHandler::kSmiHandlerOffset);
+ DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kValidityCellIndex),
+ StoreHandler::kValidityCellOffset);
+
+ // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
+ Label validity_cell_check_done(this);
+ Node* validity_cell =
+ LoadObjectField(handler, StoreHandler::kValidityCellOffset);
+ GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
+ &validity_cell_check_done);
+ Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
+ GotoIf(WordNotEqual(cell_value,
+ SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
+ miss);
+ Goto(&validity_cell_check_done);
+
+ Bind(&validity_cell_check_done);
+ Node* smi_handler = LoadObjectField(handler, StoreHandler::kSmiHandlerOffset);
+ CSA_ASSERT(this, TaggedIsSmi(smi_handler));
+
+ Node* maybe_transition_cell =
+ LoadObjectField(handler, StoreHandler::kTransitionCellOffset);
+ Label array_handler(this), tuple_handler(this);
+ Branch(TaggedIsSmi(maybe_transition_cell), &array_handler, &tuple_handler);
+
+ Variable var_transition(this, MachineRepresentation::kTagged);
+ Label if_transition(this), if_transition_to_constant(this);
+ Bind(&tuple_handler);
+ {
+ Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
+ var_transition.Bind(transition);
+ Goto(&if_transition);
+ }
+
+ Bind(&array_handler);
+ {
+ Node* length = SmiUntag(maybe_transition_cell);
+ BuildFastLoop(MachineType::PointerRepresentation(),
+ IntPtrConstant(StoreHandler::kFirstPrototypeIndex), length,
+ [this, p, handler, miss](CodeStubAssembler*, Node* current) {
+ Node* prototype_cell = LoadFixedArrayElement(
+ handler, current, 0, INTPTR_PARAMETERS);
+ CheckPrototype(prototype_cell, p->name, miss);
+ },
+ 1, IndexAdvanceMode::kPost);
+
+ Node* maybe_transition_cell = LoadFixedArrayElement(
+ handler, IntPtrConstant(StoreHandler::kTransitionCellIndex), 0,
+ INTPTR_PARAMETERS);
+ Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
+ var_transition.Bind(transition);
+ Goto(&if_transition);
+ }
+
+ Bind(&if_transition);
+ {
+ Node* holder = p->receiver;
+ Node* transition = var_transition.value();
+ Node* handler_word = SmiUntag(smi_handler);
+
+ GotoIf(IsSetWord32<Map::Deprecated>(LoadMapBitField3(transition)), miss);
+
+ Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
+ GotoIf(WordEqual(handler_kind,
+ IntPtrConstant(StoreHandler::kTransitionToConstant)),
+ &if_transition_to_constant);
+
+ // Handle transitioning field stores.
+ HandleStoreICSmiHandlerCase(handler_word, holder, p->value, transition,
+ miss);
+
+ Bind(&if_transition_to_constant);
+ {
+ // Check that constant matches value.
+ Node* value_index_in_descriptor =
+ DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
+ Node* descriptors = LoadMapDescriptors(transition);
+ Node* constant = LoadFixedArrayElement(
+ descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
+ GotoIf(WordNotEqual(p->value, constant), miss);
+
+ StoreObjectField(p->receiver, JSObject::kMapOffset, transition);
+ Return(p->value);
+ }
+ }
+}
+
+void AccessorAssemblerImpl::HandleStoreICSmiHandlerCase(Node* handler_word,
+ Node* holder,
+ Node* value,
+ Node* transition,
+ Label* miss) {
+ Comment(transition ? "transitioning field store" : "field store");
+
+#ifdef DEBUG
+ Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
+ if (transition) {
+ CSA_ASSERT(
+ this,
+ WordOr(WordEqual(handler_kind,
+ IntPtrConstant(StoreHandler::kTransitionToField)),
+ WordEqual(handler_kind,
+ IntPtrConstant(StoreHandler::kTransitionToConstant))));
+ } else {
+ CSA_ASSERT(this, WordEqual(handler_kind,
+ IntPtrConstant(StoreHandler::kStoreField)));
+ }
+#endif
+
+ Node* field_representation =
+ DecodeWord<StoreHandler::FieldRepresentationBits>(handler_word);
+
+ Label if_smi_field(this), if_double_field(this), if_heap_object_field(this),
+ if_tagged_field(this);
+
+ GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kTagged)),
+ &if_tagged_field);
+ GotoIf(WordEqual(field_representation,
+ IntPtrConstant(StoreHandler::kHeapObject)),
+ &if_heap_object_field);
+ GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kDouble)),
+ &if_double_field);
+ CSA_ASSERT(this, WordEqual(field_representation,
+ IntPtrConstant(StoreHandler::kSmi)));
+ Goto(&if_smi_field);
+
+ Bind(&if_tagged_field);
+ {
+ Comment("store tagged field");
+ HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
+ value, transition, miss);
+ }
+
+ Bind(&if_double_field);
+ {
+ Comment("store double field");
+ HandleStoreFieldAndReturn(handler_word, holder, Representation::Double(),
+ value, transition, miss);
+ }
+
+ Bind(&if_heap_object_field);
+ {
+ Comment("store heap object field");
+ // Generate full field type check here and then store value as Tagged.
+ Node* prepared_value =
+ PrepareValueForWrite(value, Representation::HeapObject(), miss);
+ Node* value_index_in_descriptor =
+ DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
+ Node* descriptors =
+ LoadMapDescriptors(transition ? transition : LoadMap(holder));
+ Node* maybe_field_type = LoadFixedArrayElement(
+ descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
+ Label do_store(this);
+ GotoIf(TaggedIsSmi(maybe_field_type), &do_store);
+ // Check that value type matches the field type.
+ {
+ Node* field_type = LoadWeakCellValue(maybe_field_type, miss);
+ Branch(WordEqual(LoadMap(prepared_value), field_type), &do_store, miss);
+ }
+ Bind(&do_store);
+ HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
+ prepared_value, transition, miss);
+ }
+
+ Bind(&if_smi_field);
+ {
+ Comment("store smi field");
+ HandleStoreFieldAndReturn(handler_word, holder, Representation::Smi(),
+ value, transition, miss);
+ }
+}
+
+void AccessorAssemblerImpl::HandleStoreFieldAndReturn(
+ Node* handler_word, Node* holder, Representation representation,
+ Node* value, Node* transition, Label* miss) {
+ bool transition_to_field = transition != nullptr;
+ Node* prepared_value = PrepareValueForWrite(value, representation, miss);
+
+ if (transition_to_field) {
+ Label storage_extended(this);
+ GotoUnless(IsSetWord<StoreHandler::ExtendStorageBits>(handler_word),
+ &storage_extended);
+ Comment("[ Extend storage");
+ ExtendPropertiesBackingStore(holder);
+ Comment("] Extend storage");
+ Goto(&storage_extended);
+
+ Bind(&storage_extended);
+ }
+
+ Node* offset = DecodeWord<StoreHandler::FieldOffsetBits>(handler_word);
+ Label if_inobject(this), if_out_of_object(this);
+ Branch(IsSetWord<StoreHandler::IsInobjectBits>(handler_word), &if_inobject,
+ &if_out_of_object);
+
+ Bind(&if_inobject);
+ {
+ StoreNamedField(holder, offset, true, representation, prepared_value,
+ transition_to_field);
+ if (transition_to_field) {
+ StoreObjectField(holder, JSObject::kMapOffset, transition);
+ }
+ Return(value);
+ }
+
+ Bind(&if_out_of_object);
+ {
+ StoreNamedField(holder, offset, false, representation, prepared_value,
+ transition_to_field);
+ if (transition_to_field) {
+ StoreObjectField(holder, JSObject::kMapOffset, transition);
+ }
+ Return(value);
+ }
+}
+
+void AccessorAssemblerImpl::EmitFastElementsBoundsCheck(
+ Node* object, Node* elements, Node* intptr_index,
+ Node* is_jsarray_condition, Label* miss) {
+ Variable var_length(this, MachineType::PointerRepresentation());
+ Comment("Fast elements bounds check");
+ Label if_array(this), length_loaded(this, &var_length);
+ GotoIf(is_jsarray_condition, &if_array);
+ {
+ var_length.Bind(SmiUntag(LoadFixedArrayBaseLength(elements)));
+ Goto(&length_loaded);
+ }
+ Bind(&if_array);
+ {
+ var_length.Bind(SmiUntag(LoadJSArrayLength(object)));
+ Goto(&length_loaded);
+ }
+ Bind(&length_loaded);
+ GotoUnless(UintPtrLessThan(intptr_index, var_length.value()), miss);
+}
+
+void AccessorAssemblerImpl::EmitElementLoad(
+ Node* object, Node* elements, Node* elements_kind, Node* intptr_index,
+ Node* is_jsarray_condition, Label* if_hole, Label* rebox_double,
+ Variable* var_double_value, Label* unimplemented_elements_kind,
+ Label* out_of_bounds, Label* miss) {
+ Label if_typed_array(this), if_fast_packed(this), if_fast_holey(this),
+ if_fast_double(this), if_fast_holey_double(this), if_nonfast(this),
+ if_dictionary(this);
+ GotoIf(
+ IntPtrGreaterThan(elements_kind, IntPtrConstant(LAST_FAST_ELEMENTS_KIND)),
+ &if_nonfast);
+
+ EmitFastElementsBoundsCheck(object, elements, intptr_index,
+ is_jsarray_condition, out_of_bounds);
+ int32_t kinds[] = {// Handled by if_fast_packed.
+ FAST_SMI_ELEMENTS, FAST_ELEMENTS,
+ // Handled by if_fast_holey.
+ FAST_HOLEY_SMI_ELEMENTS, FAST_HOLEY_ELEMENTS,
+ // Handled by if_fast_double.
+ FAST_DOUBLE_ELEMENTS,
+ // Handled by if_fast_holey_double.
+ FAST_HOLEY_DOUBLE_ELEMENTS};
+ Label* labels[] = {// FAST_{SMI,}_ELEMENTS
+ &if_fast_packed, &if_fast_packed,
+ // FAST_HOLEY_{SMI,}_ELEMENTS
+ &if_fast_holey, &if_fast_holey,
+ // FAST_DOUBLE_ELEMENTS
+ &if_fast_double,
+ // FAST_HOLEY_DOUBLE_ELEMENTS
+ &if_fast_holey_double};
+ Switch(elements_kind, unimplemented_elements_kind, kinds, labels,
+ arraysize(kinds));
+
+ Bind(&if_fast_packed);
+ {
+ Comment("fast packed elements");
+ Return(LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS));
+ }
+
+ Bind(&if_fast_holey);
+ {
+ Comment("fast holey elements");
+ Node* element =
+ LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS);
+ GotoIf(WordEqual(element, TheHoleConstant()), if_hole);
+ Return(element);
+ }
+
+ Bind(&if_fast_double);
+ {
+ Comment("packed double elements");
+ var_double_value->Bind(LoadFixedDoubleArrayElement(
+ elements, intptr_index, MachineType::Float64(), 0, INTPTR_PARAMETERS));
+ Goto(rebox_double);
+ }
+
+ Bind(&if_fast_holey_double);
+ {
+ Comment("holey double elements");
+ Node* value = LoadFixedDoubleArrayElement(elements, intptr_index,
+ MachineType::Float64(), 0,
+ INTPTR_PARAMETERS, if_hole);
+ var_double_value->Bind(value);
+ Goto(rebox_double);
+ }
+
+ Bind(&if_nonfast);
+ {
+ STATIC_ASSERT(LAST_ELEMENTS_KIND == LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
+ GotoIf(IntPtrGreaterThanOrEqual(
+ elements_kind,
+ IntPtrConstant(FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND)),
+ &if_typed_array);
+ GotoIf(IntPtrEqual(elements_kind, IntPtrConstant(DICTIONARY_ELEMENTS)),
+ &if_dictionary);
+ Goto(unimplemented_elements_kind);
+ }
+
+ Bind(&if_dictionary);
+ {
+ Comment("dictionary elements");
+ GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), out_of_bounds);
+ Variable var_entry(this, MachineType::PointerRepresentation());
+ Label if_found(this);
+ NumberDictionaryLookup<SeededNumberDictionary>(
+ elements, intptr_index, &if_found, &var_entry, if_hole);
+ Bind(&if_found);
+ // Check that the value is a data property.
+ Node* details_index = EntryToIndex<SeededNumberDictionary>(
+ var_entry.value(), SeededNumberDictionary::kEntryDetailsIndex);
+ Node* details = SmiToWord32(
+ LoadFixedArrayElement(elements, details_index, 0, INTPTR_PARAMETERS));
+ Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
+ // TODO(jkummerow): Support accessors without missing?
+ GotoUnless(Word32Equal(kind, Int32Constant(kData)), miss);
+ // Finally, load the value.
+ Node* value_index = EntryToIndex<SeededNumberDictionary>(
+ var_entry.value(), SeededNumberDictionary::kEntryValueIndex);
+ Return(LoadFixedArrayElement(elements, value_index, 0, INTPTR_PARAMETERS));
+ }
+
+ Bind(&if_typed_array);
+ {
+ Comment("typed elements");
+ // Check if buffer has been neutered.
+ Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
+ Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset,
+ MachineType::Uint32());
+ Node* neutered_bit =
+ Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask));
+ GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), miss);
+
+ // Bounds check.
+ Node* length =
+ SmiUntag(LoadObjectField(object, JSTypedArray::kLengthOffset));
+ GotoUnless(UintPtrLessThan(intptr_index, length), out_of_bounds);
+
+ // Backing store = external_pointer + base_pointer.
+ Node* external_pointer =
+ LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
+ MachineType::Pointer());
+ Node* base_pointer =
+ LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
+ Node* backing_store = IntPtrAdd(external_pointer, base_pointer);
+
+ Label uint8_elements(this), int8_elements(this), uint16_elements(this),
+ int16_elements(this), uint32_elements(this), int32_elements(this),
+ float32_elements(this), float64_elements(this);
+ Label* elements_kind_labels[] = {
+ &uint8_elements, &uint8_elements, &int8_elements,
+ &uint16_elements, &int16_elements, &uint32_elements,
+ &int32_elements, &float32_elements, &float64_elements};
+ int32_t elements_kinds[] = {
+ UINT8_ELEMENTS, UINT8_CLAMPED_ELEMENTS, INT8_ELEMENTS,
+ UINT16_ELEMENTS, INT16_ELEMENTS, UINT32_ELEMENTS,
+ INT32_ELEMENTS, FLOAT32_ELEMENTS, FLOAT64_ELEMENTS};
+ const size_t kTypedElementsKindCount =
+ LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND -
+ FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND + 1;
+ DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kinds));
+ DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kind_labels));
+ Switch(elements_kind, miss, elements_kinds, elements_kind_labels,
+ kTypedElementsKindCount);
+ Bind(&uint8_elements);
+ {
+ Comment("UINT8_ELEMENTS"); // Handles UINT8_CLAMPED_ELEMENTS too.
+ Return(SmiTag(Load(MachineType::Uint8(), backing_store, intptr_index)));
+ }
+ Bind(&int8_elements);
+ {
+ Comment("INT8_ELEMENTS");
+ Return(SmiTag(Load(MachineType::Int8(), backing_store, intptr_index)));
+ }
+ Bind(&uint16_elements);
+ {
+ Comment("UINT16_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(1));
+ Return(SmiTag(Load(MachineType::Uint16(), backing_store, index)));
+ }
+ Bind(&int16_elements);
+ {
+ Comment("INT16_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(1));
+ Return(SmiTag(Load(MachineType::Int16(), backing_store, index)));
+ }
+ Bind(&uint32_elements);
+ {
+ Comment("UINT32_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(2));
+ Node* element = Load(MachineType::Uint32(), backing_store, index);
+ Return(ChangeUint32ToTagged(element));
+ }
+ Bind(&int32_elements);
+ {
+ Comment("INT32_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(2));
+ Node* element = Load(MachineType::Int32(), backing_store, index);
+ Return(ChangeInt32ToTagged(element));
+ }
+ Bind(&float32_elements);
+ {
+ Comment("FLOAT32_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(2));
+ Node* element = Load(MachineType::Float32(), backing_store, index);
+ var_double_value->Bind(ChangeFloat32ToFloat64(element));
+ Goto(rebox_double);
+ }
+ Bind(&float64_elements);
+ {
+ Comment("FLOAT64_ELEMENTS");
+ Node* index = WordShl(intptr_index, IntPtrConstant(3));
+ Node* element = Load(MachineType::Float64(), backing_store, index);
+ var_double_value->Bind(element);
+ Goto(rebox_double);
+ }
+ }
+}
+
+void AccessorAssemblerImpl::CheckPrototype(Node* prototype_cell, Node* name,
+ Label* miss) {
+ Node* maybe_prototype = LoadWeakCellValue(prototype_cell, miss);
+
+ Label done(this);
+ Label if_property_cell(this), if_dictionary_object(this);
+
+ // |maybe_prototype| is either a PropertyCell or a slow-mode prototype.
+ Branch(WordEqual(LoadMap(maybe_prototype),
+ LoadRoot(Heap::kGlobalPropertyCellMapRootIndex)),
+ &if_property_cell, &if_dictionary_object);
+
+ Bind(&if_dictionary_object);
+ {
+ CSA_ASSERT(this, IsDictionaryMap(LoadMap(maybe_prototype)));
+ NameDictionaryNegativeLookup(maybe_prototype, name, miss);
+ Goto(&done);
+ }
+
+ Bind(&if_property_cell);
+ {
+ // Ensure the property cell still contains the hole.
+ Node* value = LoadObjectField(maybe_prototype, PropertyCell::kValueOffset);
+ GotoIf(WordNotEqual(value, LoadRoot(Heap::kTheHoleValueRootIndex)), miss);
+ Goto(&done);
+ }
+
+ Bind(&done);
+}
+
+void AccessorAssemblerImpl::NameDictionaryNegativeLookup(Node* object,
+ Node* name,
+ Label* miss) {
+ CSA_ASSERT(this, IsDictionaryMap(LoadMap(object)));
+ Node* properties = LoadProperties(object);
+ // Ensure the property does not exist in a dictionary-mode object.
+ Variable var_name_index(this, MachineType::PointerRepresentation());
+ Label done(this);
+ NameDictionaryLookup<NameDictionary>(properties, name, miss, &var_name_index,
+ &done);
+ Bind(&done);
+}
+
+//////////////////// Stub cache access helpers.
+
+enum AccessorAssemblerImpl::StubCacheTable : int {
+ kPrimary = static_cast<int>(StubCache::kPrimary),
+ kSecondary = static_cast<int>(StubCache::kSecondary)
+};
+
+Node* AccessorAssemblerImpl::StubCachePrimaryOffset(Node* name, Node* map) {
+ // See v8::internal::StubCache::PrimaryOffset().
+ STATIC_ASSERT(StubCache::kCacheIndexShift == Name::kHashShift);
+ // Compute the hash of the name (use entire hash field).
+ Node* hash_field = LoadNameHashField(name);
+ CSA_ASSERT(this,
+ Word32Equal(Word32And(hash_field,
+ Int32Constant(Name::kHashNotComputedMask)),
+ Int32Constant(0)));
+
+ // Using only the low bits in 64-bit mode is unlikely to increase the
+ // risk of collision even if the heap is spread over an area larger than
+ // 4Gb (and not at all if it isn't).
+ Node* hash = Int32Add(hash_field, map);
+ // Base the offset on a simple combination of name and map.
+ hash = Word32Xor(hash, Int32Constant(StubCache::kPrimaryMagic));
+ uint32_t mask = (StubCache::kPrimaryTableSize - 1)
+ << StubCache::kCacheIndexShift;
+ return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
+}
+
+Node* AccessorAssemblerImpl::StubCacheSecondaryOffset(Node* name, Node* seed) {
+ // See v8::internal::StubCache::SecondaryOffset().
+
+ // Use the seed from the primary cache in the secondary cache.
+ Node* hash = Int32Sub(seed, name);
+ hash = Int32Add(hash, Int32Constant(StubCache::kSecondaryMagic));
+ int32_t mask = (StubCache::kSecondaryTableSize - 1)
+ << StubCache::kCacheIndexShift;
+ return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
+}
+
+void AccessorAssemblerImpl::TryProbeStubCacheTable(
+ StubCache* stub_cache, StubCacheTable table_id, Node* entry_offset,
+ Node* name, Node* map, Label* if_handler, Variable* var_handler,
+ Label* if_miss) {
+ StubCache::Table table = static_cast<StubCache::Table>(table_id);
+#ifdef DEBUG
+ if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
+ Goto(if_miss);
+ return;
+ } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
+ Goto(if_miss);
+ return;
+ }
+#endif
+ // The {table_offset} holds the entry offset times four (due to masking
+ // and shifting optimizations).
+ const int kMultiplier = sizeof(StubCache::Entry) >> Name::kHashShift;
+ entry_offset = IntPtrMul(entry_offset, IntPtrConstant(kMultiplier));
+
+ // Check that the key in the entry matches the name.
+ Node* key_base =
+ ExternalConstant(ExternalReference(stub_cache->key_reference(table)));
+ Node* entry_key = Load(MachineType::Pointer(), key_base, entry_offset);
+ GotoIf(WordNotEqual(name, entry_key), if_miss);
+
+ // Get the map entry from the cache.
+ DCHECK_EQ(kPointerSize * 2, stub_cache->map_reference(table).address() -
+ stub_cache->key_reference(table).address());
+ Node* entry_map =
+ Load(MachineType::Pointer(), key_base,
+ IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize * 2)));
+ GotoIf(WordNotEqual(map, entry_map), if_miss);
+
+ DCHECK_EQ(kPointerSize, stub_cache->value_reference(table).address() -
+ stub_cache->key_reference(table).address());
+ Node* handler = Load(MachineType::TaggedPointer(), key_base,
+ IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize)));
+
+ // We found the handler.
+ var_handler->Bind(handler);
+ Goto(if_handler);
+}
+
+void AccessorAssemblerImpl::TryProbeStubCache(StubCache* stub_cache,
+ Node* receiver, Node* name,
+ Label* if_handler,
+ Variable* var_handler,
+ Label* if_miss) {
+ Label try_secondary(this), miss(this);
+
+ Counters* counters = isolate()->counters();
+ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
+
+ // Check that the {receiver} isn't a smi.
+ GotoIf(TaggedIsSmi(receiver), &miss);
+
+ Node* receiver_map = LoadMap(receiver);
+
+ // Probe the primary table.
+ Node* primary_offset = StubCachePrimaryOffset(name, receiver_map);
+ TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name,
+ receiver_map, if_handler, var_handler, &try_secondary);
+
+ Bind(&try_secondary);
+ {
+ // Probe the secondary table.
+ Node* secondary_offset = StubCacheSecondaryOffset(name, primary_offset);
+ TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name,
+ receiver_map, if_handler, var_handler, &miss);
+ }
+
+ Bind(&miss);
+ {
+ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
+ Goto(if_miss);
+ }
+}
+
+//////////////////// Entry points into private implementation (one per stub).
+
+void AccessorAssemblerImpl::LoadIC(const LoadICParameters* p) {
+ Variable var_handler(this, MachineRepresentation::kTagged);
+ // TODO(ishell): defer blocks when it works.
+ Label if_handler(this, &var_handler), try_polymorphic(this),
+ try_megamorphic(this /*, Label::kDeferred*/),
+ miss(this /*, Label::kDeferred*/);
+
+ Node* receiver_map = LoadReceiverMap(p->receiver);
+
+ // Check monomorphic case.
+ Node* feedback =
+ TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
+ &var_handler, &try_polymorphic);
+ Bind(&if_handler);
+ { HandleLoadICHandlerCase(p, var_handler.value(), &miss); }
+
+ Bind(&try_polymorphic);
+ {
+ // Check polymorphic case.
+ Comment("LoadIC_try_polymorphic");
+ GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
+ &try_megamorphic);
+ HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
+ &miss, 2);
+ }
+
+ Bind(&try_megamorphic);
+ {
+ // Check megamorphic case.
+ GotoUnless(
+ WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
+ &miss);
+
+ TryProbeStubCache(isolate()->load_stub_cache(), p->receiver, p->name,
+ &if_handler, &var_handler, &miss);
+ }
+ Bind(&miss);
+ {
+ TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
+ p->slot, p->vector);
+ }
+}
+
+void AccessorAssemblerImpl::LoadICProtoArray(const LoadICParameters* p,
+ Node* handler) {
+ Label miss(this);
+ CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(handler)));
+ CSA_ASSERT(this, IsFixedArrayMap(LoadMap(handler)));
+
+ Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
+ Node* handler_flags = SmiUntag(smi_handler);
+
+ Node* handler_length = LoadAndUntagFixedArrayBaseLength(handler);
+
+ Node* holder = EmitLoadICProtoArrayCheck(p, handler, handler_length,
+ handler_flags, &miss);
+
+ HandleLoadICSmiHandlerCase(p, holder, smi_handler, &miss, kOnlyProperties);
+
+ Bind(&miss);
+ {
+ TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
+ p->slot, p->vector);
+ }
+}
+
+void AccessorAssemblerImpl::LoadGlobalIC(const LoadICParameters* p) {
+ Label try_handler(this), miss(this);
+ Node* weak_cell =
+ LoadFixedArrayElement(p->vector, p->slot, 0, SMI_PARAMETERS);
+ CSA_ASSERT(this, HasInstanceType(weak_cell, WEAK_CELL_TYPE));
+
+ // Load value or try handler case if the {weak_cell} is cleared.
+ Node* property_cell = LoadWeakCellValue(weak_cell, &try_handler);
+ CSA_ASSERT(this, HasInstanceType(property_cell, PROPERTY_CELL_TYPE));
+
+ Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
+ GotoIf(WordEqual(value, TheHoleConstant()), &miss);
+ Return(value);
+
+ Bind(&try_handler);
+ {
+ Node* handler =
+ LoadFixedArrayElement(p->vector, p->slot, kPointerSize, SMI_PARAMETERS);
+ GotoIf(WordEqual(handler, LoadRoot(Heap::kuninitialized_symbolRootIndex)),
+ &miss);
+
+ // In this case {handler} must be a Code object.
+ CSA_ASSERT(this, HasInstanceType(handler, CODE_TYPE));
+ LoadWithVectorDescriptor descriptor(isolate());
+ Node* native_context = LoadNativeContext(p->context);
+ Node* receiver =
+ LoadContextElement(native_context, Context::EXTENSION_INDEX);
+ Node* fake_name = IntPtrConstant(0);
+ TailCallStub(descriptor, handler, p->context, receiver, fake_name, p->slot,
+ p->vector);
+ }
+ Bind(&miss);
+ {
+ TailCallRuntime(Runtime::kLoadGlobalIC_Miss, p->context, p->slot,
+ p->vector);
+ }
+}
+
+void AccessorAssemblerImpl::KeyedLoadIC(const LoadICParameters* p) {
+ Variable var_handler(this, MachineRepresentation::kTagged);
+ // TODO(ishell): defer blocks when it works.
+ Label if_handler(this, &var_handler), try_polymorphic(this),
+ try_megamorphic(this /*, Label::kDeferred*/),
+ try_polymorphic_name(this /*, Label::kDeferred*/),
+ miss(this /*, Label::kDeferred*/);
+
+ Node* receiver_map = LoadReceiverMap(p->receiver);
+
+ // Check monomorphic case.
+ Node* feedback =
+ TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
+ &var_handler, &try_polymorphic);
+ Bind(&if_handler);
+ { HandleLoadICHandlerCase(p, var_handler.value(), &miss, kSupportElements); }
+
+ Bind(&try_polymorphic);
+ {
+ // Check polymorphic case.
+ Comment("KeyedLoadIC_try_polymorphic");
+ GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
+ &try_megamorphic);
+ HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
+ &miss, 2);
+ }
+
+ Bind(&try_megamorphic);
+ {
+ // Check megamorphic case.
+ Comment("KeyedLoadIC_try_megamorphic");
+ GotoUnless(
+ WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
+ &try_polymorphic_name);
+ // TODO(jkummerow): Inline this? Or some of it?
+ TailCallStub(CodeFactory::KeyedLoadIC_Megamorphic(isolate()), p->context,
+ p->receiver, p->name, p->slot, p->vector);
+ }
+ Bind(&try_polymorphic_name);
+ {
+ // We might have a name in feedback, and a fixed array in the next slot.
+ Comment("KeyedLoadIC_try_polymorphic_name");
+ GotoUnless(WordEqual(feedback, p->name), &miss);
+ // If the name comparison succeeded, we know we have a fixed array with
+ // at least one map/handler pair.
+ Node* offset = ElementOffsetFromIndex(
+ p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
+ FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
+ Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
+ HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
+ 1);
+ }
+ Bind(&miss);
+ {
+ Comment("KeyedLoadIC_miss");
+ TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
+ p->name, p->slot, p->vector);
+ }
+}
+
+void AccessorAssemblerImpl::KeyedLoadICGeneric(const LoadICParameters* p) {
+ Variable var_index(this, MachineType::PointerRepresentation());
+ Variable var_details(this, MachineRepresentation::kWord32);
+ Variable var_value(this, MachineRepresentation::kTagged);
+ Label if_index(this), if_unique_name(this), if_element_hole(this),
+ if_oob(this), slow(this), stub_cache_miss(this),
+ if_property_dictionary(this), if_found_on_receiver(this);
+
+ Node* receiver = p->receiver;
+ GotoIf(TaggedIsSmi(receiver), &slow);
+ Node* receiver_map = LoadMap(receiver);
+ Node* instance_type = LoadMapInstanceType(receiver_map);
+ // Receivers requiring non-standard element accesses (interceptors, access
+ // checks, strings and string wrappers, proxies) are handled in the runtime.
+ GotoIf(Int32LessThanOrEqual(instance_type,
+ Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
+ &slow);
+
+ Node* key = p->name;
+ TryToName(key, &if_index, &var_index, &if_unique_name, &slow);
+
+ Bind(&if_index);
+ {
+ Comment("integer index");
+ Node* index = var_index.value();
+ Node* elements = LoadElements(receiver);
+ Node* elements_kind = LoadMapElementsKind(receiver_map);
+ Node* is_jsarray_condition =
+ Word32Equal(instance_type, Int32Constant(JS_ARRAY_TYPE));
+ Variable var_double_value(this, MachineRepresentation::kFloat64);
+ Label rebox_double(this, &var_double_value);
+
+ // Unimplemented elements kinds fall back to a runtime call.
+ Label* unimplemented_elements_kind = &slow;
+ IncrementCounter(isolate()->counters()->ic_keyed_load_generic_smi(), 1);
+ EmitElementLoad(receiver, elements, elements_kind, index,
+ is_jsarray_condition, &if_element_hole, &rebox_double,
+ &var_double_value, unimplemented_elements_kind, &if_oob,
+ &slow);
+
+ Bind(&rebox_double);
+ Return(AllocateHeapNumberWithValue(var_double_value.value()));
+ }
+
+ Bind(&if_oob);
+ {
+ Comment("out of bounds");
+ Node* index = var_index.value();
+ // Negative keys can't take the fast OOB path.
+ GotoIf(IntPtrLessThan(index, IntPtrConstant(0)), &slow);
+ // Positive OOB indices are effectively the same as hole loads.
+ Goto(&if_element_hole);
+ }
+
+ Bind(&if_element_hole);
+ {
+ Comment("found the hole");
+ Label return_undefined(this);
+ BranchIfPrototypesHaveNoElements(receiver_map, &return_undefined, &slow);
+
+ Bind(&return_undefined);
+ Return(UndefinedConstant());
+ }
+
+ Node* properties = nullptr;
+ Bind(&if_unique_name);
+ {
+ Comment("key is unique name");
+ // Check if the receiver has fast or slow properties.
+ properties = LoadProperties(receiver);
+ Node* properties_map = LoadMap(properties);
+ GotoIf(WordEqual(properties_map, LoadRoot(Heap::kHashTableMapRootIndex)),
+ &if_property_dictionary);
+
+ // Try looking up the property on the receiver; if unsuccessful, look
+ // for a handler in the stub cache.
+ Comment("DescriptorArray lookup");
+
+ // Skip linear search if there are too many descriptors.
+ // TODO(jkummerow): Consider implementing binary search.
+ // See also TryLookupProperty() which has the same limitation.
+ const int32_t kMaxLinear = 210;
+ Label stub_cache(this);
+ Node* bitfield3 = LoadMapBitField3(receiver_map);
+ Node* nof =
+ DecodeWordFromWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3);
+ GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), &stub_cache);
+ Node* descriptors = LoadMapDescriptors(receiver_map);
+ Variable var_name_index(this, MachineType::PointerRepresentation());
+ Label if_descriptor_found(this);
+ DescriptorLookupLinear(key, descriptors, nof, &if_descriptor_found,
+ &var_name_index, &stub_cache);
+
+ Bind(&if_descriptor_found);
+ {
+ LoadPropertyFromFastObject(receiver, receiver_map, descriptors,
+ var_name_index.value(), &var_details,
+ &var_value);
+ Goto(&if_found_on_receiver);
+ }
+
+ Bind(&stub_cache);
+ {
+ Comment("stub cache probe for fast property load");
+ Variable var_handler(this, MachineRepresentation::kTagged);
+ Label found_handler(this, &var_handler), stub_cache_miss(this);
+ TryProbeStubCache(isolate()->load_stub_cache(), receiver, key,
+ &found_handler, &var_handler, &stub_cache_miss);
+ Bind(&found_handler);
+ { HandleLoadICHandlerCase(p, var_handler.value(), &slow); }
+
+ Bind(&stub_cache_miss);
+ {
+ Comment("KeyedLoadGeneric_miss");
+ TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
+ p->name, p->slot, p->vector);
+ }
+ }
+ }
+
+ Bind(&if_property_dictionary);
+ {
+ Comment("dictionary property load");
+ // We checked for LAST_CUSTOM_ELEMENTS_RECEIVER before, which rules out
+ // seeing global objects here (which would need special handling).
+
+ Variable var_name_index(this, MachineType::PointerRepresentation());
+ Label dictionary_found(this, &var_name_index);
+ NameDictionaryLookup<NameDictionary>(properties, key, &dictionary_found,
+ &var_name_index, &slow);
+ Bind(&dictionary_found);
+ {
+ LoadPropertyFromNameDictionary(properties, var_name_index.value(),
+ &var_details, &var_value);
+ Goto(&if_found_on_receiver);
+ }
+ }
+
+ Bind(&if_found_on_receiver);
+ {
+ Node* value = CallGetterIfAccessor(var_value.value(), var_details.value(),
+ p->context, receiver, &slow);
+ IncrementCounter(isolate()->counters()->ic_keyed_load_generic_symbol(), 1);
+ Return(value);
+ }
+
+ Bind(&slow);
+ {
+ Comment("KeyedLoadGeneric_slow");
+ IncrementCounter(isolate()->counters()->ic_keyed_load_generic_slow(), 1);
+ // TODO(jkummerow): Should we use the GetProperty TF stub instead?
+ TailCallRuntime(Runtime::kKeyedGetProperty, p->context, p->receiver,
+ p->name);
+ }
+}
+
+void AccessorAssemblerImpl::StoreIC(const StoreICParameters* p) {
+ Variable var_handler(this, MachineRepresentation::kTagged);
+ // TODO(ishell): defer blocks when it works.
+ Label if_handler(this, &var_handler), try_polymorphic(this),
+ try_megamorphic(this /*, Label::kDeferred*/),
+ miss(this /*, Label::kDeferred*/);
+
+ Node* receiver_map = LoadReceiverMap(p->receiver);
+
+ // Check monomorphic case.
+ Node* feedback =
+ TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
+ &var_handler, &try_polymorphic);
+ Bind(&if_handler);
+ {
+ Comment("StoreIC_if_handler");
+ HandleStoreICHandlerCase(p, var_handler.value(), &miss);
+ }
+
+ Bind(&try_polymorphic);
+ {
+ // Check polymorphic case.
+ Comment("StoreIC_try_polymorphic");
+ GotoUnless(
+ WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
+ &try_megamorphic);
+ HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
+ &miss, 2);
+ }
+
+ Bind(&try_megamorphic);
+ {
+ // Check megamorphic case.
+ GotoUnless(
+ WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
+ &miss);
+
+ TryProbeStubCache(isolate()->store_stub_cache(), p->receiver, p->name,
+ &if_handler, &var_handler, &miss);
+ }
+ Bind(&miss);
+ {
+ TailCallRuntime(Runtime::kStoreIC_Miss, p->context, p->value, p->slot,
+ p->vector, p->receiver, p->name);
+ }
+}
+
+void AccessorAssemblerImpl::KeyedStoreIC(const StoreICParameters* p,
+ LanguageMode language_mode) {
+ Variable var_handler(this, MachineRepresentation::kTagged);
+ // This is to make |miss| label see the var_handler bound on all paths.
+ var_handler.Bind(IntPtrConstant(0));
+
+ // TODO(ishell): defer blocks when it works.
+ Label if_handler(this, &var_handler), try_polymorphic(this),
+ try_megamorphic(this /*, Label::kDeferred*/),
+ try_polymorphic_name(this /*, Label::kDeferred*/),
+ miss(this /*, Label::kDeferred*/);
+
+ Node* receiver_map = LoadReceiverMap(p->receiver);
+
+ // Check monomorphic case.
+ Node* feedback =
+ TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
+ &var_handler, &try_polymorphic);
+ Bind(&if_handler);
+ {
+ Comment("KeyedStoreIC_if_handler");
+ HandleStoreICHandlerCase(p, var_handler.value(), &miss);
+ }
+
+ Bind(&try_polymorphic);
+ {
+ // CheckPolymorphic case.
+ Comment("KeyedStoreIC_try_polymorphic");
+ GotoUnless(
+ WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
+ &try_megamorphic);
+ Label if_transition_handler(this);
+ Variable var_transition_map_cell(this, MachineRepresentation::kTagged);
+ HandleKeyedStorePolymorphicCase(receiver_map, feedback, &if_handler,
+ &var_handler, &if_transition_handler,
+ &var_transition_map_cell, &miss);
+ Bind(&if_transition_handler);
+ Comment("KeyedStoreIC_polymorphic_transition");
+ Node* transition_map =
+ LoadWeakCellValue(var_transition_map_cell.value(), &miss);
+ StoreTransitionDescriptor descriptor(isolate());
+ TailCallStub(descriptor, var_handler.value(), p->context, p->receiver,
+ p->name, transition_map, p->value, p->slot, p->vector);
+ }
+
+ Bind(&try_megamorphic);
+ {
+ // Check megamorphic case.
+ Comment("KeyedStoreIC_try_megamorphic");
+ GotoUnless(
+ WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
+ &try_polymorphic_name);
+ TailCallStub(
+ CodeFactory::KeyedStoreIC_Megamorphic(isolate(), language_mode),
+ p->context, p->receiver, p->name, p->value, p->slot, p->vector);
+ }
+
+ Bind(&try_polymorphic_name);
+ {
+ // We might have a name in feedback, and a fixed array in the next slot.
+ Comment("KeyedStoreIC_try_polymorphic_name");
+ GotoUnless(WordEqual(feedback, p->name), &miss);
+ // If the name comparison succeeded, we know we have a FixedArray with
+ // at least one map/handler pair.
+ Node* offset = ElementOffsetFromIndex(
+ p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
+ FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
+ Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
+ HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
+ 1);
+ }
+
+ Bind(&miss);
+ {
+ Comment("KeyedStoreIC_miss");
+ TailCallRuntime(Runtime::kKeyedStoreIC_Miss, p->context, p->value, p->slot,
+ p->vector, p->receiver, p->name);
+ }
+}
+
+//////////////////// Public methods.
+
+void AccessorAssemblerImpl::GenerateLoadIC() {
+ typedef LoadICStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ LoadIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateLoadICTrampoline() {
+ typedef LoadICTrampolineStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* context = Parameter(Descriptor::kContext);
+ Node* vector = LoadTypeFeedbackVectorForStub();
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ LoadIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateLoadICProtoArray() {
+ typedef LoadICProtoArrayStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* handler = Parameter(Descriptor::kHandler);
+ Node* context = Parameter(Descriptor::kContext);
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ LoadICProtoArray(&p, handler);
+}
+
+void AccessorAssemblerImpl::GenerateLoadGlobalIC() {
+ typedef LoadGlobalICStub::Descriptor Descriptor;
+
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ LoadICParameters p(context, nullptr, nullptr, slot, vector);
+ LoadGlobalIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateLoadGlobalICTrampoline() {
+ typedef LoadGlobalICTrampolineStub::Descriptor Descriptor;
+
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* context = Parameter(Descriptor::kContext);
+ Node* vector = LoadTypeFeedbackVectorForStub();
+
+ LoadICParameters p(context, nullptr, nullptr, slot, vector);
+ LoadGlobalIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateKeyedLoadICTF() {
Igor Sheludko 2016/11/16 13:56:16 Let's drop the TF suffixes in a follow-up CL :)
+ typedef KeyedLoadICTFStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ KeyedLoadIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateKeyedLoadICTrampolineTF() {
+ typedef KeyedLoadICTrampolineTFStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* context = Parameter(Descriptor::kContext);
+ Node* vector = LoadTypeFeedbackVectorForStub();
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ KeyedLoadIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateKeyedLoadICMegamorphic() {
+ typedef LoadWithVectorDescriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ LoadICParameters p(context, receiver, name, slot, vector);
+ KeyedLoadICGeneric(&p);
+}
+
+void AccessorAssemblerImpl::GenerateStoreIC() {
+ typedef StoreICStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* value = Parameter(Descriptor::kValue);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ StoreICParameters p(context, receiver, name, value, slot, vector);
+ StoreIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateStoreICTrampoline() {
+ typedef StoreICTrampolineStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* value = Parameter(Descriptor::kValue);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* context = Parameter(Descriptor::kContext);
+ Node* vector = LoadTypeFeedbackVectorForStub();
+
+ StoreICParameters p(context, receiver, name, value, slot, vector);
+ StoreIC(&p);
+}
+
+void AccessorAssemblerImpl::GenerateKeyedStoreICTF(LanguageMode language_mode) {
+ typedef KeyedStoreICTFStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* value = Parameter(Descriptor::kValue);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* vector = Parameter(Descriptor::kVector);
+ Node* context = Parameter(Descriptor::kContext);
+
+ StoreICParameters p(context, receiver, name, value, slot, vector);
+ KeyedStoreIC(&p, language_mode);
+}
+
+void AccessorAssemblerImpl::GenerateKeyedStoreICTrampolineTF(
+ LanguageMode language_mode) {
+ typedef KeyedStoreICTrampolineTFStub::Descriptor Descriptor;
+
+ Node* receiver = Parameter(Descriptor::kReceiver);
+ Node* name = Parameter(Descriptor::kName);
+ Node* value = Parameter(Descriptor::kValue);
+ Node* slot = Parameter(Descriptor::kSlot);
+ Node* context = Parameter(Descriptor::kContext);
+ Node* vector = LoadTypeFeedbackVectorForStub();
+
+ StoreICParameters p(context, receiver, name, value, slot, vector);
+ KeyedStoreIC(&p, language_mode);
+}
+
+//////////////////// AccessorAssembler implementation.
Jakob Kummerow 2016/11/16 13:30:33 Everything below is the only part of this file tha
Igor Sheludko 2016/11/16 13:56:16 Acknowledged.
+
+#define DISPATCH_TO_IMPL(Name) \
+ void AccessorAssembler::Generate##Name(CodeAssemblerState* state) { \
+ AccessorAssemblerImpl assembler(state); \
+ assembler.Generate##Name(); \
+ }
+
+ACCESSOR_ASSEMBLER_PUBLIC_INTERFACE(DISPATCH_TO_IMPL)
+#undef DISPATCH_TO_IMPL
+
+void AccessorAssembler::GenerateKeyedStoreICTF(CodeAssemblerState* state,
+ LanguageMode language_mode) {
+ AccessorAssemblerImpl assembler(state);
+ assembler.GenerateKeyedStoreICTF(language_mode);
+}
+
+void AccessorAssembler::GenerateKeyedStoreICTrampolineTF(
+ CodeAssemblerState* state, LanguageMode language_mode) {
+ AccessorAssemblerImpl assembler(state);
+ assembler.GenerateKeyedStoreICTrampolineTF(language_mode);
+}
+
+#undef ACCESSOR_ASSEMBLER_PUBLIC_INTERFACE
+
+} // namespace internal
+} // namespace v8

Powered by Google App Engine
This is Rietveld 408576698