OLD | NEW |
1 // Copyright 2016 the V8 project authors. All rights reserved. | 1 // Copyright 2016 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/builtins/builtins.h" | 5 #include "src/builtins/builtins.h" |
6 #include "src/builtins/builtins-utils.h" | 6 #include "src/builtins/builtins-utils.h" |
7 | 7 |
8 #include "src/code-factory.h" | 8 #include "src/code-factory.h" |
9 | 9 |
10 namespace v8 { | 10 namespace v8 { |
11 namespace internal { | 11 namespace internal { |
12 | 12 |
13 // ----------------------------------------------------------------------------- | 13 // ----------------------------------------------------------------------------- |
14 // ES6 section 20.2.2 Function Properties of the Math Object | 14 // ES6 section 20.2.2 Function Properties of the Math Object |
15 | 15 |
16 // ES6 section - 20.2.2.1 Math.abs ( x ) | 16 // ES6 section - 20.2.2.1 Math.abs ( x ) |
17 void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) { | 17 void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) { |
18 typedef CodeStubAssembler::Label Label; | 18 typedef CodeStubAssembler::Label Label; |
19 typedef compiler::Node Node; | 19 typedef compiler::Node Node; |
20 typedef CodeStubAssembler::Variable Variable; | 20 typedef CodeStubAssembler::Variable Variable; |
21 CodeStubAssembler assembler(state); | |
22 | |
23 Node* context = assembler.Parameter(4); | |
24 | |
25 // We might need to loop once for ToNumber conversion. | |
26 Variable var_x(&assembler, MachineRepresentation::kTagged); | |
27 Label loop(&assembler, &var_x); | |
28 var_x.Bind(assembler.Parameter(1)); | |
29 assembler.Goto(&loop); | |
30 assembler.Bind(&loop); | |
31 { | |
32 // Load the current {x} value. | |
33 Node* x = var_x.value(); | |
34 | |
35 // Check if {x} is a Smi or a HeapObject. | |
36 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | |
37 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | |
38 | |
39 assembler.Bind(&if_xissmi); | |
40 { | |
41 // Check if {x} is already positive. | |
42 Label if_xispositive(&assembler), if_xisnotpositive(&assembler); | |
43 assembler.BranchIfSmiLessThanOrEqual( | |
44 assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive, | |
45 &if_xisnotpositive); | |
46 | |
47 assembler.Bind(&if_xispositive); | |
48 { | |
49 // Just return the input {x}. | |
50 assembler.Return(x); | |
51 } | |
52 | |
53 assembler.Bind(&if_xisnotpositive); | |
54 { | |
55 // Try to negate the {x} value. | |
56 Node* pair = assembler.IntPtrSubWithOverflow( | |
57 assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x)); | |
58 Node* overflow = assembler.Projection(1, pair); | |
59 Label if_overflow(&assembler, Label::kDeferred), | |
60 if_notoverflow(&assembler); | |
61 assembler.Branch(overflow, &if_overflow, &if_notoverflow); | |
62 | |
63 assembler.Bind(&if_notoverflow); | |
64 { | |
65 // There is a Smi representation for negated {x}. | |
66 Node* result = assembler.Projection(0, pair); | |
67 result = assembler.BitcastWordToTagged(result); | |
68 assembler.Return(result); | |
69 } | |
70 | |
71 assembler.Bind(&if_overflow); | |
72 { | |
73 Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue); | |
74 assembler.Return(result); | |
75 } | |
76 } | |
77 } | |
78 | |
79 assembler.Bind(&if_xisnotsmi); | |
80 { | |
81 // Check if {x} is a HeapNumber. | |
82 Label if_xisheapnumber(&assembler), | |
83 if_xisnotheapnumber(&assembler, Label::kDeferred); | |
84 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), | |
85 assembler.HeapNumberMapConstant()), | |
86 &if_xisheapnumber, &if_xisnotheapnumber); | |
87 | |
88 assembler.Bind(&if_xisheapnumber); | |
89 { | |
90 Node* x_value = assembler.LoadHeapNumberValue(x); | |
91 Node* value = assembler.Float64Abs(x_value); | |
92 Node* result = assembler.AllocateHeapNumberWithValue(value); | |
93 assembler.Return(result); | |
94 } | |
95 | |
96 assembler.Bind(&if_xisnotheapnumber); | |
97 { | |
98 // Need to convert {x} to a Number first. | |
99 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | |
100 var_x.Bind(assembler.CallStub(callable, context, x)); | |
101 assembler.Goto(&loop); | |
102 } | |
103 } | |
104 } | |
105 } | |
106 | |
107 namespace { | |
108 | |
109 void Generate_MathRoundingOperation( | |
110 CodeStubAssembler* assembler, | |
111 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | |
112 typedef CodeStubAssembler::Label Label; | |
113 typedef compiler::Node Node; | |
114 typedef CodeStubAssembler::Variable Variable; | |
115 | 21 |
116 Node* context = assembler->Parameter(4); | 22 Node* context = assembler->Parameter(4); |
117 | 23 |
118 // We might need to loop once for ToNumber conversion. | 24 // We might need to loop once for ToNumber conversion. |
119 Variable var_x(assembler, MachineRepresentation::kTagged); | 25 Variable var_x(assembler, MachineRepresentation::kTagged); |
120 Label loop(assembler, &var_x); | 26 Label loop(assembler, &var_x); |
121 var_x.Bind(assembler->Parameter(1)); | 27 var_x.Bind(assembler->Parameter(1)); |
122 assembler->Goto(&loop); | 28 assembler->Goto(&loop); |
123 assembler->Bind(&loop); | 29 assembler->Bind(&loop); |
124 { | 30 { |
125 // Load the current {x} value. | 31 // Load the current {x} value. |
126 Node* x = var_x.value(); | 32 Node* x = var_x.value(); |
127 | 33 |
128 // Check if {x} is a Smi or a HeapObject. | 34 // Check if {x} is a Smi or a HeapObject. |
129 Label if_xissmi(assembler), if_xisnotsmi(assembler); | 35 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
130 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 36 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
131 | 37 |
132 assembler->Bind(&if_xissmi); | 38 assembler->Bind(&if_xissmi); |
133 { | 39 { |
134 // Nothing to do when {x} is a Smi. | 40 // Check if {x} is already positive. |
135 assembler->Return(x); | 41 Label if_xispositive(assembler), if_xisnotpositive(assembler); |
| 42 assembler->BranchIfSmiLessThanOrEqual( |
| 43 assembler->SmiConstant(Smi::FromInt(0)), x, &if_xispositive, |
| 44 &if_xisnotpositive); |
| 45 |
| 46 assembler->Bind(&if_xispositive); |
| 47 { |
| 48 // Just return the input {x}. |
| 49 assembler->Return(x); |
| 50 } |
| 51 |
| 52 assembler->Bind(&if_xisnotpositive); |
| 53 { |
| 54 // Try to negate the {x} value. |
| 55 Node* pair = assembler->IntPtrSubWithOverflow( |
| 56 assembler->IntPtrConstant(0), assembler->BitcastTaggedToWord(x)); |
| 57 Node* overflow = assembler->Projection(1, pair); |
| 58 Label if_overflow(assembler, Label::kDeferred), |
| 59 if_notoverflow(assembler); |
| 60 assembler->Branch(overflow, &if_overflow, &if_notoverflow); |
| 61 |
| 62 assembler->Bind(&if_notoverflow); |
| 63 { |
| 64 // There is a Smi representation for negated {x}. |
| 65 Node* result = assembler->Projection(0, pair); |
| 66 result = assembler->BitcastWordToTagged(result); |
| 67 assembler->Return(result); |
| 68 } |
| 69 |
| 70 assembler->Bind(&if_overflow); |
| 71 { |
| 72 Node* result = assembler->NumberConstant(0.0 - Smi::kMinValue); |
| 73 assembler->Return(result); |
| 74 } |
| 75 } |
136 } | 76 } |
137 | 77 |
138 assembler->Bind(&if_xisnotsmi); | 78 assembler->Bind(&if_xisnotsmi); |
139 { | 79 { |
140 // Check if {x} is a HeapNumber. | 80 // Check if {x} is a HeapNumber. |
141 Label if_xisheapnumber(assembler), | 81 Label if_xisheapnumber(assembler), |
142 if_xisnotheapnumber(assembler, Label::kDeferred); | 82 if_xisnotheapnumber(assembler, Label::kDeferred); |
143 assembler->Branch( | 83 assembler->Branch( |
144 assembler->WordEqual(assembler->LoadMap(x), | 84 assembler->WordEqual(assembler->LoadMap(x), |
145 assembler->HeapNumberMapConstant()), | 85 assembler->HeapNumberMapConstant()), |
146 &if_xisheapnumber, &if_xisnotheapnumber); | 86 &if_xisheapnumber, &if_xisnotheapnumber); |
147 | 87 |
148 assembler->Bind(&if_xisheapnumber); | 88 assembler->Bind(&if_xisheapnumber); |
149 { | 89 { |
150 Node* x_value = assembler->LoadHeapNumberValue(x); | 90 Node* x_value = assembler->LoadHeapNumberValue(x); |
| 91 Node* value = assembler->Float64Abs(x_value); |
| 92 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 93 assembler->Return(result); |
| 94 } |
| 95 |
| 96 assembler->Bind(&if_xisnotheapnumber); |
| 97 { |
| 98 // Need to convert {x} to a Number first. |
| 99 Callable callable = |
| 100 CodeFactory::NonNumberToNumber(assembler->isolate()); |
| 101 var_x.Bind(assembler->CallStub(callable, context, x)); |
| 102 assembler->Goto(&loop); |
| 103 } |
| 104 } |
| 105 } |
| 106 } |
| 107 |
| 108 namespace { |
| 109 |
| 110 void Generate_MathRoundingOperation( |
| 111 CodeStubAssembler* assembler, |
| 112 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { |
| 113 typedef CodeStubAssembler::Label Label; |
| 114 typedef compiler::Node Node; |
| 115 typedef CodeStubAssembler::Variable Variable; |
| 116 |
| 117 Node* context = assembler->Parameter(4); |
| 118 |
| 119 // We might need to loop once for ToNumber conversion. |
| 120 Variable var_x(assembler, MachineRepresentation::kTagged); |
| 121 Label loop(assembler, &var_x); |
| 122 var_x.Bind(assembler->Parameter(1)); |
| 123 assembler->Goto(&loop); |
| 124 assembler->Bind(&loop); |
| 125 { |
| 126 // Load the current {x} value. |
| 127 Node* x = var_x.value(); |
| 128 |
| 129 // Check if {x} is a Smi or a HeapObject. |
| 130 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
| 131 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 132 |
| 133 assembler->Bind(&if_xissmi); |
| 134 { |
| 135 // Nothing to do when {x} is a Smi. |
| 136 assembler->Return(x); |
| 137 } |
| 138 |
| 139 assembler->Bind(&if_xisnotsmi); |
| 140 { |
| 141 // Check if {x} is a HeapNumber. |
| 142 Label if_xisheapnumber(assembler), |
| 143 if_xisnotheapnumber(assembler, Label::kDeferred); |
| 144 assembler->Branch( |
| 145 assembler->WordEqual(assembler->LoadMap(x), |
| 146 assembler->HeapNumberMapConstant()), |
| 147 &if_xisheapnumber, &if_xisnotheapnumber); |
| 148 |
| 149 assembler->Bind(&if_xisheapnumber); |
| 150 { |
| 151 Node* x_value = assembler->LoadHeapNumberValue(x); |
151 Node* value = (assembler->*float64op)(x_value); | 152 Node* value = (assembler->*float64op)(x_value); |
152 Node* result = assembler->ChangeFloat64ToTagged(value); | 153 Node* result = assembler->ChangeFloat64ToTagged(value); |
153 assembler->Return(result); | 154 assembler->Return(result); |
154 } | 155 } |
155 | 156 |
156 assembler->Bind(&if_xisnotheapnumber); | 157 assembler->Bind(&if_xisnotheapnumber); |
157 { | 158 { |
158 // Need to convert {x} to a Number first. | 159 // Need to convert {x} to a Number first. |
159 Callable callable = | 160 Callable callable = |
160 CodeFactory::NonNumberToNumber(assembler->isolate()); | 161 CodeFactory::NonNumberToNumber(assembler->isolate()); |
(...skipping 13 matching lines...) Expand all Loading... |
174 Node* context = assembler->Parameter(4); | 175 Node* context = assembler->Parameter(4); |
175 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 176 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
176 Node* value = (assembler->*float64op)(x_value); | 177 Node* value = (assembler->*float64op)(x_value); |
177 Node* result = assembler->AllocateHeapNumberWithValue(value); | 178 Node* result = assembler->AllocateHeapNumberWithValue(value); |
178 assembler->Return(result); | 179 assembler->Return(result); |
179 } | 180 } |
180 | 181 |
181 } // namespace | 182 } // namespace |
182 | 183 |
183 // ES6 section 20.2.2.2 Math.acos ( x ) | 184 // ES6 section 20.2.2.2 Math.acos ( x ) |
184 void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) { | 185 void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) { |
185 CodeStubAssembler assembler(state); | 186 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acos); |
186 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos); | |
187 } | 187 } |
188 | 188 |
189 // ES6 section 20.2.2.3 Math.acosh ( x ) | 189 // ES6 section 20.2.2.3 Math.acosh ( x ) |
190 void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) { | 190 void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) { |
191 CodeStubAssembler assembler(state); | 191 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acosh); |
192 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh); | |
193 } | 192 } |
194 | 193 |
195 // ES6 section 20.2.2.4 Math.asin ( x ) | 194 // ES6 section 20.2.2.4 Math.asin ( x ) |
196 void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) { | 195 void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) { |
197 CodeStubAssembler assembler(state); | 196 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asin); |
198 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin); | |
199 } | 197 } |
200 | 198 |
201 // ES6 section 20.2.2.5 Math.asinh ( x ) | 199 // ES6 section 20.2.2.5 Math.asinh ( x ) |
202 void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) { | 200 void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) { |
203 CodeStubAssembler assembler(state); | 201 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asinh); |
204 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh); | |
205 } | 202 } |
206 | 203 |
207 // ES6 section 20.2.2.6 Math.atan ( x ) | 204 // ES6 section 20.2.2.6 Math.atan ( x ) |
208 void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) { | 205 void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) { |
209 CodeStubAssembler assembler(state); | 206 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atan); |
210 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan); | |
211 } | 207 } |
212 | 208 |
213 // ES6 section 20.2.2.7 Math.atanh ( x ) | 209 // ES6 section 20.2.2.7 Math.atanh ( x ) |
214 void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) { | 210 void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) { |
215 CodeStubAssembler assembler(state); | 211 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atanh); |
216 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh); | |
217 } | 212 } |
218 | 213 |
219 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) | 214 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) |
220 void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) { | 215 void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) { |
221 using compiler::Node; | 216 using compiler::Node; |
222 CodeStubAssembler assembler(state); | |
223 | 217 |
224 Node* y = assembler.Parameter(1); | 218 Node* y = assembler->Parameter(1); |
225 Node* x = assembler.Parameter(2); | 219 Node* x = assembler->Parameter(2); |
226 Node* context = assembler.Parameter(5); | 220 Node* context = assembler->Parameter(5); |
227 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 221 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); |
228 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 222 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
229 Node* value = assembler.Float64Atan2(y_value, x_value); | 223 Node* value = assembler->Float64Atan2(y_value, x_value); |
230 Node* result = assembler.AllocateHeapNumberWithValue(value); | 224 Node* result = assembler->AllocateHeapNumberWithValue(value); |
231 assembler.Return(result); | 225 assembler->Return(result); |
232 } | 226 } |
233 | 227 |
234 // ES6 section 20.2.2.10 Math.ceil ( x ) | 228 // ES6 section 20.2.2.10 Math.ceil ( x ) |
235 void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) { | 229 void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) { |
236 CodeStubAssembler assembler(state); | 230 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil); |
237 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil); | |
238 } | 231 } |
239 | 232 |
240 // ES6 section 20.2.2.9 Math.cbrt ( x ) | 233 // ES6 section 20.2.2.9 Math.cbrt ( x ) |
241 void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) { | 234 void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) { |
242 CodeStubAssembler assembler(state); | 235 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cbrt); |
243 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt); | |
244 } | 236 } |
245 | 237 |
246 // ES6 section 20.2.2.11 Math.clz32 ( x ) | 238 // ES6 section 20.2.2.11 Math.clz32 ( x ) |
247 void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) { | 239 void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) { |
248 typedef CodeStubAssembler::Label Label; | 240 typedef CodeStubAssembler::Label Label; |
249 typedef compiler::Node Node; | 241 typedef compiler::Node Node; |
250 typedef CodeStubAssembler::Variable Variable; | 242 typedef CodeStubAssembler::Variable Variable; |
251 CodeStubAssembler assembler(state); | |
252 | 243 |
253 Node* context = assembler.Parameter(4); | 244 Node* context = assembler->Parameter(4); |
254 | 245 |
255 // Shared entry point for the clz32 operation. | 246 // Shared entry point for the clz32 operation. |
256 Variable var_clz32_x(&assembler, MachineRepresentation::kWord32); | 247 Variable var_clz32_x(assembler, MachineRepresentation::kWord32); |
257 Label do_clz32(&assembler); | 248 Label do_clz32(assembler); |
258 | 249 |
259 // We might need to loop once for ToNumber conversion. | 250 // We might need to loop once for ToNumber conversion. |
260 Variable var_x(&assembler, MachineRepresentation::kTagged); | 251 Variable var_x(assembler, MachineRepresentation::kTagged); |
261 Label loop(&assembler, &var_x); | 252 Label loop(assembler, &var_x); |
262 var_x.Bind(assembler.Parameter(1)); | 253 var_x.Bind(assembler->Parameter(1)); |
263 assembler.Goto(&loop); | 254 assembler->Goto(&loop); |
264 assembler.Bind(&loop); | 255 assembler->Bind(&loop); |
265 { | 256 { |
266 // Load the current {x} value. | 257 // Load the current {x} value. |
267 Node* x = var_x.value(); | 258 Node* x = var_x.value(); |
268 | 259 |
269 // Check if {x} is a Smi or a HeapObject. | 260 // Check if {x} is a Smi or a HeapObject. |
270 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | 261 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
271 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 262 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
272 | 263 |
273 assembler.Bind(&if_xissmi); | 264 assembler->Bind(&if_xissmi); |
274 { | 265 { |
275 var_clz32_x.Bind(assembler.SmiToWord32(x)); | 266 var_clz32_x.Bind(assembler->SmiToWord32(x)); |
276 assembler.Goto(&do_clz32); | 267 assembler->Goto(&do_clz32); |
277 } | 268 } |
278 | 269 |
279 assembler.Bind(&if_xisnotsmi); | 270 assembler->Bind(&if_xisnotsmi); |
280 { | 271 { |
281 // Check if {x} is a HeapNumber. | 272 // Check if {x} is a HeapNumber. |
282 Label if_xisheapnumber(&assembler), | 273 Label if_xisheapnumber(assembler), |
283 if_xisnotheapnumber(&assembler, Label::kDeferred); | 274 if_xisnotheapnumber(assembler, Label::kDeferred); |
284 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), | 275 assembler->Branch( |
285 assembler.HeapNumberMapConstant()), | 276 assembler->WordEqual(assembler->LoadMap(x), |
286 &if_xisheapnumber, &if_xisnotheapnumber); | 277 assembler->HeapNumberMapConstant()), |
| 278 &if_xisheapnumber, &if_xisnotheapnumber); |
287 | 279 |
288 assembler.Bind(&if_xisheapnumber); | 280 assembler->Bind(&if_xisheapnumber); |
289 { | 281 { |
290 var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x)); | 282 var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x)); |
291 assembler.Goto(&do_clz32); | 283 assembler->Goto(&do_clz32); |
292 } | 284 } |
293 | 285 |
294 assembler.Bind(&if_xisnotheapnumber); | 286 assembler->Bind(&if_xisnotheapnumber); |
295 { | 287 { |
296 // Need to convert {x} to a Number first. | 288 // Need to convert {x} to a Number first. |
297 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | 289 Callable callable = |
298 var_x.Bind(assembler.CallStub(callable, context, x)); | 290 CodeFactory::NonNumberToNumber(assembler->isolate()); |
299 assembler.Goto(&loop); | 291 var_x.Bind(assembler->CallStub(callable, context, x)); |
| 292 assembler->Goto(&loop); |
300 } | 293 } |
301 } | 294 } |
302 } | 295 } |
303 | 296 |
304 assembler.Bind(&do_clz32); | 297 assembler->Bind(&do_clz32); |
305 { | 298 { |
306 Node* x_value = var_clz32_x.value(); | 299 Node* x_value = var_clz32_x.value(); |
307 Node* value = assembler.Word32Clz(x_value); | 300 Node* value = assembler->Word32Clz(x_value); |
308 Node* result = assembler.ChangeInt32ToTagged(value); | 301 Node* result = assembler->ChangeInt32ToTagged(value); |
309 assembler.Return(result); | 302 assembler->Return(result); |
310 } | 303 } |
311 } | 304 } |
312 | 305 |
313 // ES6 section 20.2.2.12 Math.cos ( x ) | 306 // ES6 section 20.2.2.12 Math.cos ( x ) |
314 void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) { | 307 void Builtins::Generate_MathCos(CodeStubAssembler* assembler) { |
315 CodeStubAssembler assembler(state); | 308 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cos); |
316 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos); | |
317 } | 309 } |
318 | 310 |
319 // ES6 section 20.2.2.13 Math.cosh ( x ) | 311 // ES6 section 20.2.2.13 Math.cosh ( x ) |
320 void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) { | 312 void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) { |
321 CodeStubAssembler assembler(state); | 313 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cosh); |
322 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh); | |
323 } | 314 } |
324 | 315 |
325 // ES6 section 20.2.2.14 Math.exp ( x ) | 316 // ES6 section 20.2.2.14 Math.exp ( x ) |
326 void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) { | 317 void Builtins::Generate_MathExp(CodeStubAssembler* assembler) { |
327 CodeStubAssembler assembler(state); | 318 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Exp); |
328 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp); | |
329 } | 319 } |
330 | 320 |
331 // ES6 section 20.2.2.15 Math.expm1 ( x ) | 321 // ES6 section 20.2.2.15 Math.expm1 ( x ) |
332 void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) { | 322 void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) { |
333 CodeStubAssembler assembler(state); | 323 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Expm1); |
334 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1); | |
335 } | 324 } |
336 | 325 |
337 // ES6 section 20.2.2.16 Math.floor ( x ) | 326 // ES6 section 20.2.2.16 Math.floor ( x ) |
338 void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) { | 327 void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) { |
339 CodeStubAssembler assembler(state); | 328 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor); |
340 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor); | |
341 } | 329 } |
342 | 330 |
343 // ES6 section 20.2.2.17 Math.fround ( x ) | 331 // ES6 section 20.2.2.17 Math.fround ( x ) |
344 void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) { | 332 void Builtins::Generate_MathFround(CodeStubAssembler* assembler) { |
345 using compiler::Node; | 333 using compiler::Node; |
346 CodeStubAssembler assembler(state); | |
347 | 334 |
348 Node* x = assembler.Parameter(1); | 335 Node* x = assembler->Parameter(1); |
349 Node* context = assembler.Parameter(4); | 336 Node* context = assembler->Parameter(4); |
350 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 337 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
351 Node* value32 = assembler.TruncateFloat64ToFloat32(x_value); | 338 Node* value32 = assembler->TruncateFloat64ToFloat32(x_value); |
352 Node* value = assembler.ChangeFloat32ToFloat64(value32); | 339 Node* value = assembler->ChangeFloat32ToFloat64(value32); |
353 Node* result = assembler.AllocateHeapNumberWithValue(value); | 340 Node* result = assembler->AllocateHeapNumberWithValue(value); |
354 assembler.Return(result); | 341 assembler->Return(result); |
355 } | 342 } |
356 | 343 |
357 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) | 344 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) |
358 BUILTIN(MathHypot) { | 345 BUILTIN(MathHypot) { |
359 HandleScope scope(isolate); | 346 HandleScope scope(isolate); |
360 int const length = args.length() - 1; | 347 int const length = args.length() - 1; |
361 if (length == 0) return Smi::kZero; | 348 if (length == 0) return Smi::kZero; |
362 DCHECK_LT(0, length); | 349 DCHECK_LT(0, length); |
363 double max = 0; | 350 double max = 0; |
364 bool one_arg_is_nan = false; | 351 bool one_arg_is_nan = false; |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
400 double summand = n * n - compensation; | 387 double summand = n * n - compensation; |
401 double preliminary = sum + summand; | 388 double preliminary = sum + summand; |
402 compensation = (preliminary - sum) - summand; | 389 compensation = (preliminary - sum) - summand; |
403 sum = preliminary; | 390 sum = preliminary; |
404 } | 391 } |
405 | 392 |
406 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); | 393 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); |
407 } | 394 } |
408 | 395 |
409 // ES6 section 20.2.2.19 Math.imul ( x, y ) | 396 // ES6 section 20.2.2.19 Math.imul ( x, y ) |
410 void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) { | 397 void Builtins::Generate_MathImul(CodeStubAssembler* assembler) { |
411 using compiler::Node; | 398 using compiler::Node; |
412 CodeStubAssembler assembler(state); | |
413 | 399 |
414 Node* x = assembler.Parameter(1); | 400 Node* x = assembler->Parameter(1); |
415 Node* y = assembler.Parameter(2); | 401 Node* y = assembler->Parameter(2); |
416 Node* context = assembler.Parameter(5); | 402 Node* context = assembler->Parameter(5); |
417 Node* x_value = assembler.TruncateTaggedToWord32(context, x); | 403 Node* x_value = assembler->TruncateTaggedToWord32(context, x); |
418 Node* y_value = assembler.TruncateTaggedToWord32(context, y); | 404 Node* y_value = assembler->TruncateTaggedToWord32(context, y); |
419 Node* value = assembler.Int32Mul(x_value, y_value); | 405 Node* value = assembler->Int32Mul(x_value, y_value); |
420 Node* result = assembler.ChangeInt32ToTagged(value); | 406 Node* result = assembler->ChangeInt32ToTagged(value); |
421 assembler.Return(result); | 407 assembler->Return(result); |
422 } | 408 } |
423 | 409 |
424 // ES6 section 20.2.2.20 Math.log ( x ) | 410 // ES6 section 20.2.2.20 Math.log ( x ) |
425 void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) { | 411 void Builtins::Generate_MathLog(CodeStubAssembler* assembler) { |
426 CodeStubAssembler assembler(state); | 412 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log); |
427 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log); | |
428 } | 413 } |
429 | 414 |
430 // ES6 section 20.2.2.21 Math.log1p ( x ) | 415 // ES6 section 20.2.2.21 Math.log1p ( x ) |
431 void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) { | 416 void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) { |
432 CodeStubAssembler assembler(state); | 417 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log1p); |
433 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p); | |
434 } | 418 } |
435 | 419 |
436 // ES6 section 20.2.2.22 Math.log10 ( x ) | 420 // ES6 section 20.2.2.22 Math.log10 ( x ) |
437 void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) { | 421 void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) { |
438 CodeStubAssembler assembler(state); | 422 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log10); |
439 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10); | |
440 } | 423 } |
441 | 424 |
442 // ES6 section 20.2.2.23 Math.log2 ( x ) | 425 // ES6 section 20.2.2.23 Math.log2 ( x ) |
443 void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) { | 426 void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) { |
444 CodeStubAssembler assembler(state); | 427 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log2); |
445 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2); | |
446 } | 428 } |
447 | 429 |
448 // ES6 section 20.2.2.26 Math.pow ( x, y ) | 430 // ES6 section 20.2.2.26 Math.pow ( x, y ) |
449 void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) { | 431 void Builtins::Generate_MathPow(CodeStubAssembler* assembler) { |
450 using compiler::Node; | 432 using compiler::Node; |
451 CodeStubAssembler assembler(state); | |
452 | 433 |
453 Node* x = assembler.Parameter(1); | 434 Node* x = assembler->Parameter(1); |
454 Node* y = assembler.Parameter(2); | 435 Node* y = assembler->Parameter(2); |
455 Node* context = assembler.Parameter(5); | 436 Node* context = assembler->Parameter(5); |
456 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 437 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
457 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 438 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); |
458 Node* value = assembler.Float64Pow(x_value, y_value); | 439 Node* value = assembler->Float64Pow(x_value, y_value); |
459 Node* result = assembler.ChangeFloat64ToTagged(value); | 440 Node* result = assembler->ChangeFloat64ToTagged(value); |
460 assembler.Return(result); | 441 assembler->Return(result); |
461 } | 442 } |
462 | 443 |
463 // ES6 section 20.2.2.27 Math.random ( ) | 444 // ES6 section 20.2.2.27 Math.random ( ) |
464 void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) { | 445 void Builtins::Generate_MathRandom(CodeStubAssembler* assembler) { |
465 using compiler::Node; | 446 using compiler::Node; |
466 CodeStubAssembler assembler(state); | |
467 | 447 |
468 Node* context = assembler.Parameter(3); | 448 Node* context = assembler->Parameter(3); |
469 Node* native_context = assembler.LoadNativeContext(context); | 449 Node* native_context = assembler->LoadNativeContext(context); |
470 | 450 |
471 // Load cache index. | 451 // Load cache index. |
472 CodeStubAssembler::Variable smi_index(&assembler, | 452 CodeStubAssembler::Variable smi_index(assembler, |
473 MachineRepresentation::kTagged); | 453 MachineRepresentation::kTagged); |
474 smi_index.Bind(assembler.LoadContextElement( | 454 smi_index.Bind(assembler->LoadContextElement( |
475 native_context, Context::MATH_RANDOM_INDEX_INDEX)); | 455 native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
476 | 456 |
477 // Cached random numbers are exhausted if index is 0. Go to slow path. | 457 // Cached random numbers are exhausted if index is 0. Go to slow path. |
478 CodeStubAssembler::Label if_cached(&assembler); | 458 CodeStubAssembler::Label if_cached(assembler); |
479 assembler.GotoIf( | 459 assembler->GotoIf(assembler->SmiAbove(smi_index.value(), |
480 assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)), | 460 assembler->SmiConstant(Smi::kZero)), |
481 &if_cached); | 461 &if_cached); |
482 | 462 |
483 // Cache exhausted, populate the cache. Return value is the new index. | 463 // Cache exhausted, populate the cache. Return value is the new index. |
484 smi_index.Bind( | 464 smi_index.Bind( |
485 assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context)); | 465 assembler->CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
486 assembler.Goto(&if_cached); | 466 assembler->Goto(&if_cached); |
487 | 467 |
488 // Compute next index by decrement. | 468 // Compute next index by decrement. |
489 assembler.Bind(&if_cached); | 469 assembler->Bind(&if_cached); |
490 Node* new_smi_index = assembler.SmiSub( | 470 Node* new_smi_index = assembler->SmiSub( |
491 smi_index.value(), assembler.SmiConstant(Smi::FromInt(1))); | 471 smi_index.value(), assembler->SmiConstant(Smi::FromInt(1))); |
492 assembler.StoreContextElement( | 472 assembler->StoreContextElement( |
493 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); | 473 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); |
494 | 474 |
495 // Load and return next cached random number. | 475 // Load and return next cached random number. |
496 Node* array = assembler.LoadContextElement(native_context, | 476 Node* array = assembler->LoadContextElement(native_context, |
497 Context::MATH_RANDOM_CACHE_INDEX); | 477 Context::MATH_RANDOM_CACHE_INDEX); |
498 Node* random = assembler.LoadFixedDoubleArrayElement( | 478 Node* random = assembler->LoadFixedDoubleArrayElement( |
499 array, new_smi_index, MachineType::Float64(), 0, | 479 array, new_smi_index, MachineType::Float64(), 0, |
500 CodeStubAssembler::SMI_PARAMETERS); | 480 CodeStubAssembler::SMI_PARAMETERS); |
501 assembler.Return(assembler.AllocateHeapNumberWithValue(random)); | 481 assembler->Return(assembler->AllocateHeapNumberWithValue(random)); |
502 } | 482 } |
503 | 483 |
504 // ES6 section 20.2.2.28 Math.round ( x ) | 484 // ES6 section 20.2.2.28 Math.round ( x ) |
505 void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) { | 485 void Builtins::Generate_MathRound(CodeStubAssembler* assembler) { |
506 CodeStubAssembler assembler(state); | 486 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round); |
507 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round); | |
508 } | 487 } |
509 | 488 |
510 // ES6 section 20.2.2.29 Math.sign ( x ) | 489 // ES6 section 20.2.2.29 Math.sign ( x ) |
511 void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) { | 490 void Builtins::Generate_MathSign(CodeStubAssembler* assembler) { |
512 typedef CodeStubAssembler::Label Label; | 491 typedef CodeStubAssembler::Label Label; |
513 using compiler::Node; | 492 using compiler::Node; |
514 CodeStubAssembler assembler(state); | |
515 | 493 |
516 // Convert the {x} value to a Number. | 494 // Convert the {x} value to a Number. |
517 Node* x = assembler.Parameter(1); | 495 Node* x = assembler->Parameter(1); |
518 Node* context = assembler.Parameter(4); | 496 Node* context = assembler->Parameter(4); |
519 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 497 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
520 | 498 |
521 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. | 499 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. |
522 Label if_xisnegative(&assembler), if_xispositive(&assembler); | 500 Label if_xisnegative(assembler), if_xispositive(assembler); |
523 assembler.GotoIf( | 501 assembler->GotoIf( |
524 assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)), | 502 assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)), |
525 &if_xisnegative); | 503 &if_xisnegative); |
526 assembler.GotoIf( | 504 assembler->GotoIf( |
527 assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value), | 505 assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value), |
528 &if_xispositive); | 506 &if_xispositive); |
529 assembler.Return(assembler.ChangeFloat64ToTagged(x_value)); | 507 assembler->Return(assembler->ChangeFloat64ToTagged(x_value)); |
530 | 508 |
531 assembler.Bind(&if_xisnegative); | 509 assembler->Bind(&if_xisnegative); |
532 assembler.Return(assembler.SmiConstant(Smi::FromInt(-1))); | 510 assembler->Return(assembler->SmiConstant(Smi::FromInt(-1))); |
533 | 511 |
534 assembler.Bind(&if_xispositive); | 512 assembler->Bind(&if_xispositive); |
535 assembler.Return(assembler.SmiConstant(Smi::FromInt(1))); | 513 assembler->Return(assembler->SmiConstant(Smi::FromInt(1))); |
536 } | 514 } |
537 | 515 |
538 // ES6 section 20.2.2.30 Math.sin ( x ) | 516 // ES6 section 20.2.2.30 Math.sin ( x ) |
539 void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) { | 517 void Builtins::Generate_MathSin(CodeStubAssembler* assembler) { |
540 CodeStubAssembler assembler(state); | 518 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sin); |
541 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin); | |
542 } | 519 } |
543 | 520 |
544 // ES6 section 20.2.2.31 Math.sinh ( x ) | 521 // ES6 section 20.2.2.31 Math.sinh ( x ) |
545 void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) { | 522 void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) { |
546 CodeStubAssembler assembler(state); | 523 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sinh); |
547 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh); | |
548 } | 524 } |
549 | 525 |
550 // ES6 section 20.2.2.32 Math.sqrt ( x ) | 526 // ES6 section 20.2.2.32 Math.sqrt ( x ) |
551 void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) { | 527 void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) { |
552 CodeStubAssembler assembler(state); | 528 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sqrt); |
553 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt); | |
554 } | 529 } |
555 | 530 |
556 // ES6 section 20.2.2.33 Math.tan ( x ) | 531 // ES6 section 20.2.2.33 Math.tan ( x ) |
557 void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) { | 532 void Builtins::Generate_MathTan(CodeStubAssembler* assembler) { |
558 CodeStubAssembler assembler(state); | 533 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tan); |
559 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan); | |
560 } | 534 } |
561 | 535 |
562 // ES6 section 20.2.2.34 Math.tanh ( x ) | 536 // ES6 section 20.2.2.34 Math.tanh ( x ) |
563 void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) { | 537 void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) { |
564 CodeStubAssembler assembler(state); | 538 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tanh); |
565 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh); | |
566 } | 539 } |
567 | 540 |
568 // ES6 section 20.2.2.35 Math.trunc ( x ) | 541 // ES6 section 20.2.2.35 Math.trunc ( x ) |
569 void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) { | 542 void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) { |
570 CodeStubAssembler assembler(state); | 543 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc); |
571 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc); | |
572 } | 544 } |
573 | 545 |
574 void Builtins::Generate_MathMax(MacroAssembler* masm) { | 546 void Builtins::Generate_MathMax(MacroAssembler* masm) { |
575 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); | 547 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); |
576 } | 548 } |
577 | 549 |
578 void Builtins::Generate_MathMin(MacroAssembler* masm) { | 550 void Builtins::Generate_MathMin(MacroAssembler* masm) { |
579 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); | 551 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); |
580 } | 552 } |
581 | 553 |
582 } // namespace internal | 554 } // namespace internal |
583 } // namespace v8 | 555 } // namespace v8 |
OLD | NEW |