| OLD | NEW |
| 1 // Copyright 2016 the V8 project authors. All rights reserved. | 1 // Copyright 2016 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/builtins/builtins.h" | 5 #include "src/builtins/builtins.h" |
| 6 #include "src/builtins/builtins-utils.h" | 6 #include "src/builtins/builtins-utils.h" |
| 7 | 7 |
| 8 #include "src/code-factory.h" | 8 #include "src/code-factory.h" |
| 9 | 9 |
| 10 namespace v8 { | 10 namespace v8 { |
| 11 namespace internal { | 11 namespace internal { |
| 12 | 12 |
| 13 // ----------------------------------------------------------------------------- | 13 // ----------------------------------------------------------------------------- |
| 14 // ES6 section 20.2.2 Function Properties of the Math Object | 14 // ES6 section 20.2.2 Function Properties of the Math Object |
| 15 | 15 |
| 16 // ES6 section - 20.2.2.1 Math.abs ( x ) | 16 // ES6 section - 20.2.2.1 Math.abs ( x ) |
| 17 void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) { | 17 void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) { |
| 18 typedef CodeStubAssembler::Label Label; | 18 typedef CodeStubAssembler::Label Label; |
| 19 typedef compiler::Node Node; | 19 typedef compiler::Node Node; |
| 20 typedef CodeStubAssembler::Variable Variable; | 20 typedef CodeStubAssembler::Variable Variable; |
| 21 CodeStubAssembler assembler(state); | |
| 22 | |
| 23 Node* context = assembler.Parameter(4); | |
| 24 | |
| 25 // We might need to loop once for ToNumber conversion. | |
| 26 Variable var_x(&assembler, MachineRepresentation::kTagged); | |
| 27 Label loop(&assembler, &var_x); | |
| 28 var_x.Bind(assembler.Parameter(1)); | |
| 29 assembler.Goto(&loop); | |
| 30 assembler.Bind(&loop); | |
| 31 { | |
| 32 // Load the current {x} value. | |
| 33 Node* x = var_x.value(); | |
| 34 | |
| 35 // Check if {x} is a Smi or a HeapObject. | |
| 36 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | |
| 37 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | |
| 38 | |
| 39 assembler.Bind(&if_xissmi); | |
| 40 { | |
| 41 // Check if {x} is already positive. | |
| 42 Label if_xispositive(&assembler), if_xisnotpositive(&assembler); | |
| 43 assembler.BranchIfSmiLessThanOrEqual( | |
| 44 assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive, | |
| 45 &if_xisnotpositive); | |
| 46 | |
| 47 assembler.Bind(&if_xispositive); | |
| 48 { | |
| 49 // Just return the input {x}. | |
| 50 assembler.Return(x); | |
| 51 } | |
| 52 | |
| 53 assembler.Bind(&if_xisnotpositive); | |
| 54 { | |
| 55 // Try to negate the {x} value. | |
| 56 Node* pair = assembler.IntPtrSubWithOverflow( | |
| 57 assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x)); | |
| 58 Node* overflow = assembler.Projection(1, pair); | |
| 59 Label if_overflow(&assembler, Label::kDeferred), | |
| 60 if_notoverflow(&assembler); | |
| 61 assembler.Branch(overflow, &if_overflow, &if_notoverflow); | |
| 62 | |
| 63 assembler.Bind(&if_notoverflow); | |
| 64 { | |
| 65 // There is a Smi representation for negated {x}. | |
| 66 Node* result = assembler.Projection(0, pair); | |
| 67 result = assembler.BitcastWordToTagged(result); | |
| 68 assembler.Return(result); | |
| 69 } | |
| 70 | |
| 71 assembler.Bind(&if_overflow); | |
| 72 { | |
| 73 Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue); | |
| 74 assembler.Return(result); | |
| 75 } | |
| 76 } | |
| 77 } | |
| 78 | |
| 79 assembler.Bind(&if_xisnotsmi); | |
| 80 { | |
| 81 // Check if {x} is a HeapNumber. | |
| 82 Label if_xisheapnumber(&assembler), | |
| 83 if_xisnotheapnumber(&assembler, Label::kDeferred); | |
| 84 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), | |
| 85 assembler.HeapNumberMapConstant()), | |
| 86 &if_xisheapnumber, &if_xisnotheapnumber); | |
| 87 | |
| 88 assembler.Bind(&if_xisheapnumber); | |
| 89 { | |
| 90 Node* x_value = assembler.LoadHeapNumberValue(x); | |
| 91 Node* value = assembler.Float64Abs(x_value); | |
| 92 Node* result = assembler.AllocateHeapNumberWithValue(value); | |
| 93 assembler.Return(result); | |
| 94 } | |
| 95 | |
| 96 assembler.Bind(&if_xisnotheapnumber); | |
| 97 { | |
| 98 // Need to convert {x} to a Number first. | |
| 99 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | |
| 100 var_x.Bind(assembler.CallStub(callable, context, x)); | |
| 101 assembler.Goto(&loop); | |
| 102 } | |
| 103 } | |
| 104 } | |
| 105 } | |
| 106 | |
| 107 namespace { | |
| 108 | |
| 109 void Generate_MathRoundingOperation( | |
| 110 CodeStubAssembler* assembler, | |
| 111 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | |
| 112 typedef CodeStubAssembler::Label Label; | |
| 113 typedef compiler::Node Node; | |
| 114 typedef CodeStubAssembler::Variable Variable; | |
| 115 | 21 |
| 116 Node* context = assembler->Parameter(4); | 22 Node* context = assembler->Parameter(4); |
| 117 | 23 |
| 118 // We might need to loop once for ToNumber conversion. | 24 // We might need to loop once for ToNumber conversion. |
| 119 Variable var_x(assembler, MachineRepresentation::kTagged); | 25 Variable var_x(assembler, MachineRepresentation::kTagged); |
| 120 Label loop(assembler, &var_x); | 26 Label loop(assembler, &var_x); |
| 121 var_x.Bind(assembler->Parameter(1)); | 27 var_x.Bind(assembler->Parameter(1)); |
| 122 assembler->Goto(&loop); | 28 assembler->Goto(&loop); |
| 123 assembler->Bind(&loop); | 29 assembler->Bind(&loop); |
| 124 { | 30 { |
| 125 // Load the current {x} value. | 31 // Load the current {x} value. |
| 126 Node* x = var_x.value(); | 32 Node* x = var_x.value(); |
| 127 | 33 |
| 128 // Check if {x} is a Smi or a HeapObject. | 34 // Check if {x} is a Smi or a HeapObject. |
| 129 Label if_xissmi(assembler), if_xisnotsmi(assembler); | 35 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
| 130 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 36 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 131 | 37 |
| 132 assembler->Bind(&if_xissmi); | 38 assembler->Bind(&if_xissmi); |
| 133 { | 39 { |
| 134 // Nothing to do when {x} is a Smi. | 40 // Check if {x} is already positive. |
| 135 assembler->Return(x); | 41 Label if_xispositive(assembler), if_xisnotpositive(assembler); |
| 42 assembler->BranchIfSmiLessThanOrEqual( |
| 43 assembler->SmiConstant(Smi::FromInt(0)), x, &if_xispositive, |
| 44 &if_xisnotpositive); |
| 45 |
| 46 assembler->Bind(&if_xispositive); |
| 47 { |
| 48 // Just return the input {x}. |
| 49 assembler->Return(x); |
| 50 } |
| 51 |
| 52 assembler->Bind(&if_xisnotpositive); |
| 53 { |
| 54 // Try to negate the {x} value. |
| 55 Node* pair = assembler->IntPtrSubWithOverflow( |
| 56 assembler->IntPtrConstant(0), assembler->BitcastTaggedToWord(x)); |
| 57 Node* overflow = assembler->Projection(1, pair); |
| 58 Label if_overflow(assembler, Label::kDeferred), |
| 59 if_notoverflow(assembler); |
| 60 assembler->Branch(overflow, &if_overflow, &if_notoverflow); |
| 61 |
| 62 assembler->Bind(&if_notoverflow); |
| 63 { |
| 64 // There is a Smi representation for negated {x}. |
| 65 Node* result = assembler->Projection(0, pair); |
| 66 result = assembler->BitcastWordToTagged(result); |
| 67 assembler->Return(result); |
| 68 } |
| 69 |
| 70 assembler->Bind(&if_overflow); |
| 71 { |
| 72 Node* result = assembler->NumberConstant(0.0 - Smi::kMinValue); |
| 73 assembler->Return(result); |
| 74 } |
| 75 } |
| 136 } | 76 } |
| 137 | 77 |
| 138 assembler->Bind(&if_xisnotsmi); | 78 assembler->Bind(&if_xisnotsmi); |
| 139 { | 79 { |
| 140 // Check if {x} is a HeapNumber. | 80 // Check if {x} is a HeapNumber. |
| 141 Label if_xisheapnumber(assembler), | 81 Label if_xisheapnumber(assembler), |
| 142 if_xisnotheapnumber(assembler, Label::kDeferred); | 82 if_xisnotheapnumber(assembler, Label::kDeferred); |
| 143 assembler->Branch( | 83 assembler->Branch( |
| 144 assembler->WordEqual(assembler->LoadMap(x), | 84 assembler->WordEqual(assembler->LoadMap(x), |
| 145 assembler->HeapNumberMapConstant()), | 85 assembler->HeapNumberMapConstant()), |
| 146 &if_xisheapnumber, &if_xisnotheapnumber); | 86 &if_xisheapnumber, &if_xisnotheapnumber); |
| 147 | 87 |
| 148 assembler->Bind(&if_xisheapnumber); | 88 assembler->Bind(&if_xisheapnumber); |
| 149 { | 89 { |
| 150 Node* x_value = assembler->LoadHeapNumberValue(x); | 90 Node* x_value = assembler->LoadHeapNumberValue(x); |
| 91 Node* value = assembler->Float64Abs(x_value); |
| 92 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 93 assembler->Return(result); |
| 94 } |
| 95 |
| 96 assembler->Bind(&if_xisnotheapnumber); |
| 97 { |
| 98 // Need to convert {x} to a Number first. |
| 99 Callable callable = |
| 100 CodeFactory::NonNumberToNumber(assembler->isolate()); |
| 101 var_x.Bind(assembler->CallStub(callable, context, x)); |
| 102 assembler->Goto(&loop); |
| 103 } |
| 104 } |
| 105 } |
| 106 } |
| 107 |
| 108 namespace { |
| 109 |
| 110 void Generate_MathRoundingOperation( |
| 111 CodeStubAssembler* assembler, |
| 112 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { |
| 113 typedef CodeStubAssembler::Label Label; |
| 114 typedef compiler::Node Node; |
| 115 typedef CodeStubAssembler::Variable Variable; |
| 116 |
| 117 Node* context = assembler->Parameter(4); |
| 118 |
| 119 // We might need to loop once for ToNumber conversion. |
| 120 Variable var_x(assembler, MachineRepresentation::kTagged); |
| 121 Label loop(assembler, &var_x); |
| 122 var_x.Bind(assembler->Parameter(1)); |
| 123 assembler->Goto(&loop); |
| 124 assembler->Bind(&loop); |
| 125 { |
| 126 // Load the current {x} value. |
| 127 Node* x = var_x.value(); |
| 128 |
| 129 // Check if {x} is a Smi or a HeapObject. |
| 130 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
| 131 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 132 |
| 133 assembler->Bind(&if_xissmi); |
| 134 { |
| 135 // Nothing to do when {x} is a Smi. |
| 136 assembler->Return(x); |
| 137 } |
| 138 |
| 139 assembler->Bind(&if_xisnotsmi); |
| 140 { |
| 141 // Check if {x} is a HeapNumber. |
| 142 Label if_xisheapnumber(assembler), |
| 143 if_xisnotheapnumber(assembler, Label::kDeferred); |
| 144 assembler->Branch( |
| 145 assembler->WordEqual(assembler->LoadMap(x), |
| 146 assembler->HeapNumberMapConstant()), |
| 147 &if_xisheapnumber, &if_xisnotheapnumber); |
| 148 |
| 149 assembler->Bind(&if_xisheapnumber); |
| 150 { |
| 151 Node* x_value = assembler->LoadHeapNumberValue(x); |
| 151 Node* value = (assembler->*float64op)(x_value); | 152 Node* value = (assembler->*float64op)(x_value); |
| 152 Node* result = assembler->ChangeFloat64ToTagged(value); | 153 Node* result = assembler->ChangeFloat64ToTagged(value); |
| 153 assembler->Return(result); | 154 assembler->Return(result); |
| 154 } | 155 } |
| 155 | 156 |
| 156 assembler->Bind(&if_xisnotheapnumber); | 157 assembler->Bind(&if_xisnotheapnumber); |
| 157 { | 158 { |
| 158 // Need to convert {x} to a Number first. | 159 // Need to convert {x} to a Number first. |
| 159 Callable callable = | 160 Callable callable = |
| 160 CodeFactory::NonNumberToNumber(assembler->isolate()); | 161 CodeFactory::NonNumberToNumber(assembler->isolate()); |
| (...skipping 13 matching lines...) Expand all Loading... |
| 174 Node* context = assembler->Parameter(4); | 175 Node* context = assembler->Parameter(4); |
| 175 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 176 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 176 Node* value = (assembler->*float64op)(x_value); | 177 Node* value = (assembler->*float64op)(x_value); |
| 177 Node* result = assembler->AllocateHeapNumberWithValue(value); | 178 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 178 assembler->Return(result); | 179 assembler->Return(result); |
| 179 } | 180 } |
| 180 | 181 |
| 181 } // namespace | 182 } // namespace |
| 182 | 183 |
| 183 // ES6 section 20.2.2.2 Math.acos ( x ) | 184 // ES6 section 20.2.2.2 Math.acos ( x ) |
| 184 void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) { | 185 void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) { |
| 185 CodeStubAssembler assembler(state); | 186 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acos); |
| 186 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos); | |
| 187 } | 187 } |
| 188 | 188 |
| 189 // ES6 section 20.2.2.3 Math.acosh ( x ) | 189 // ES6 section 20.2.2.3 Math.acosh ( x ) |
| 190 void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) { | 190 void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) { |
| 191 CodeStubAssembler assembler(state); | 191 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acosh); |
| 192 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh); | |
| 193 } | 192 } |
| 194 | 193 |
| 195 // ES6 section 20.2.2.4 Math.asin ( x ) | 194 // ES6 section 20.2.2.4 Math.asin ( x ) |
| 196 void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) { | 195 void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) { |
| 197 CodeStubAssembler assembler(state); | 196 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asin); |
| 198 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin); | |
| 199 } | 197 } |
| 200 | 198 |
| 201 // ES6 section 20.2.2.5 Math.asinh ( x ) | 199 // ES6 section 20.2.2.5 Math.asinh ( x ) |
| 202 void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) { | 200 void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) { |
| 203 CodeStubAssembler assembler(state); | 201 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asinh); |
| 204 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh); | |
| 205 } | 202 } |
| 206 | 203 |
| 207 // ES6 section 20.2.2.6 Math.atan ( x ) | 204 // ES6 section 20.2.2.6 Math.atan ( x ) |
| 208 void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) { | 205 void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) { |
| 209 CodeStubAssembler assembler(state); | 206 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atan); |
| 210 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan); | |
| 211 } | 207 } |
| 212 | 208 |
| 213 // ES6 section 20.2.2.7 Math.atanh ( x ) | 209 // ES6 section 20.2.2.7 Math.atanh ( x ) |
| 214 void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) { | 210 void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) { |
| 215 CodeStubAssembler assembler(state); | 211 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atanh); |
| 216 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh); | |
| 217 } | 212 } |
| 218 | 213 |
| 219 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) | 214 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) |
| 220 void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) { | 215 void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) { |
| 221 using compiler::Node; | 216 using compiler::Node; |
| 222 CodeStubAssembler assembler(state); | |
| 223 | 217 |
| 224 Node* y = assembler.Parameter(1); | 218 Node* y = assembler->Parameter(1); |
| 225 Node* x = assembler.Parameter(2); | 219 Node* x = assembler->Parameter(2); |
| 226 Node* context = assembler.Parameter(5); | 220 Node* context = assembler->Parameter(5); |
| 227 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 221 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); |
| 228 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 222 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 229 Node* value = assembler.Float64Atan2(y_value, x_value); | 223 Node* value = assembler->Float64Atan2(y_value, x_value); |
| 230 Node* result = assembler.AllocateHeapNumberWithValue(value); | 224 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 231 assembler.Return(result); | 225 assembler->Return(result); |
| 232 } | 226 } |
| 233 | 227 |
| 234 // ES6 section 20.2.2.10 Math.ceil ( x ) | 228 // ES6 section 20.2.2.10 Math.ceil ( x ) |
| 235 void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) { | 229 void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) { |
| 236 CodeStubAssembler assembler(state); | 230 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil); |
| 237 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil); | |
| 238 } | 231 } |
| 239 | 232 |
| 240 // ES6 section 20.2.2.9 Math.cbrt ( x ) | 233 // ES6 section 20.2.2.9 Math.cbrt ( x ) |
| 241 void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) { | 234 void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) { |
| 242 CodeStubAssembler assembler(state); | 235 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cbrt); |
| 243 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt); | |
| 244 } | 236 } |
| 245 | 237 |
| 246 // ES6 section 20.2.2.11 Math.clz32 ( x ) | 238 // ES6 section 20.2.2.11 Math.clz32 ( x ) |
| 247 void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) { | 239 void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) { |
| 248 typedef CodeStubAssembler::Label Label; | 240 typedef CodeStubAssembler::Label Label; |
| 249 typedef compiler::Node Node; | 241 typedef compiler::Node Node; |
| 250 typedef CodeStubAssembler::Variable Variable; | 242 typedef CodeStubAssembler::Variable Variable; |
| 251 CodeStubAssembler assembler(state); | |
| 252 | 243 |
| 253 Node* context = assembler.Parameter(4); | 244 Node* context = assembler->Parameter(4); |
| 254 | 245 |
| 255 // Shared entry point for the clz32 operation. | 246 // Shared entry point for the clz32 operation. |
| 256 Variable var_clz32_x(&assembler, MachineRepresentation::kWord32); | 247 Variable var_clz32_x(assembler, MachineRepresentation::kWord32); |
| 257 Label do_clz32(&assembler); | 248 Label do_clz32(assembler); |
| 258 | 249 |
| 259 // We might need to loop once for ToNumber conversion. | 250 // We might need to loop once for ToNumber conversion. |
| 260 Variable var_x(&assembler, MachineRepresentation::kTagged); | 251 Variable var_x(assembler, MachineRepresentation::kTagged); |
| 261 Label loop(&assembler, &var_x); | 252 Label loop(assembler, &var_x); |
| 262 var_x.Bind(assembler.Parameter(1)); | 253 var_x.Bind(assembler->Parameter(1)); |
| 263 assembler.Goto(&loop); | 254 assembler->Goto(&loop); |
| 264 assembler.Bind(&loop); | 255 assembler->Bind(&loop); |
| 265 { | 256 { |
| 266 // Load the current {x} value. | 257 // Load the current {x} value. |
| 267 Node* x = var_x.value(); | 258 Node* x = var_x.value(); |
| 268 | 259 |
| 269 // Check if {x} is a Smi or a HeapObject. | 260 // Check if {x} is a Smi or a HeapObject. |
| 270 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); | 261 Label if_xissmi(assembler), if_xisnotsmi(assembler); |
| 271 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 262 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 272 | 263 |
| 273 assembler.Bind(&if_xissmi); | 264 assembler->Bind(&if_xissmi); |
| 274 { | 265 { |
| 275 var_clz32_x.Bind(assembler.SmiToWord32(x)); | 266 var_clz32_x.Bind(assembler->SmiToWord32(x)); |
| 276 assembler.Goto(&do_clz32); | 267 assembler->Goto(&do_clz32); |
| 277 } | 268 } |
| 278 | 269 |
| 279 assembler.Bind(&if_xisnotsmi); | 270 assembler->Bind(&if_xisnotsmi); |
| 280 { | 271 { |
| 281 // Check if {x} is a HeapNumber. | 272 // Check if {x} is a HeapNumber. |
| 282 Label if_xisheapnumber(&assembler), | 273 Label if_xisheapnumber(assembler), |
| 283 if_xisnotheapnumber(&assembler, Label::kDeferred); | 274 if_xisnotheapnumber(assembler, Label::kDeferred); |
| 284 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), | 275 assembler->Branch( |
| 285 assembler.HeapNumberMapConstant()), | 276 assembler->WordEqual(assembler->LoadMap(x), |
| 286 &if_xisheapnumber, &if_xisnotheapnumber); | 277 assembler->HeapNumberMapConstant()), |
| 278 &if_xisheapnumber, &if_xisnotheapnumber); |
| 287 | 279 |
| 288 assembler.Bind(&if_xisheapnumber); | 280 assembler->Bind(&if_xisheapnumber); |
| 289 { | 281 { |
| 290 var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x)); | 282 var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x)); |
| 291 assembler.Goto(&do_clz32); | 283 assembler->Goto(&do_clz32); |
| 292 } | 284 } |
| 293 | 285 |
| 294 assembler.Bind(&if_xisnotheapnumber); | 286 assembler->Bind(&if_xisnotheapnumber); |
| 295 { | 287 { |
| 296 // Need to convert {x} to a Number first. | 288 // Need to convert {x} to a Number first. |
| 297 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); | 289 Callable callable = |
| 298 var_x.Bind(assembler.CallStub(callable, context, x)); | 290 CodeFactory::NonNumberToNumber(assembler->isolate()); |
| 299 assembler.Goto(&loop); | 291 var_x.Bind(assembler->CallStub(callable, context, x)); |
| 292 assembler->Goto(&loop); |
| 300 } | 293 } |
| 301 } | 294 } |
| 302 } | 295 } |
| 303 | 296 |
| 304 assembler.Bind(&do_clz32); | 297 assembler->Bind(&do_clz32); |
| 305 { | 298 { |
| 306 Node* x_value = var_clz32_x.value(); | 299 Node* x_value = var_clz32_x.value(); |
| 307 Node* value = assembler.Word32Clz(x_value); | 300 Node* value = assembler->Word32Clz(x_value); |
| 308 Node* result = assembler.ChangeInt32ToTagged(value); | 301 Node* result = assembler->ChangeInt32ToTagged(value); |
| 309 assembler.Return(result); | 302 assembler->Return(result); |
| 310 } | 303 } |
| 311 } | 304 } |
| 312 | 305 |
| 313 // ES6 section 20.2.2.12 Math.cos ( x ) | 306 // ES6 section 20.2.2.12 Math.cos ( x ) |
| 314 void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) { | 307 void Builtins::Generate_MathCos(CodeStubAssembler* assembler) { |
| 315 CodeStubAssembler assembler(state); | 308 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cos); |
| 316 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos); | |
| 317 } | 309 } |
| 318 | 310 |
| 319 // ES6 section 20.2.2.13 Math.cosh ( x ) | 311 // ES6 section 20.2.2.13 Math.cosh ( x ) |
| 320 void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) { | 312 void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) { |
| 321 CodeStubAssembler assembler(state); | 313 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cosh); |
| 322 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh); | |
| 323 } | 314 } |
| 324 | 315 |
| 325 // ES6 section 20.2.2.14 Math.exp ( x ) | 316 // ES6 section 20.2.2.14 Math.exp ( x ) |
| 326 void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) { | 317 void Builtins::Generate_MathExp(CodeStubAssembler* assembler) { |
| 327 CodeStubAssembler assembler(state); | 318 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Exp); |
| 328 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp); | |
| 329 } | 319 } |
| 330 | 320 |
| 331 // ES6 section 20.2.2.15 Math.expm1 ( x ) | 321 // ES6 section 20.2.2.15 Math.expm1 ( x ) |
| 332 void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) { | 322 void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) { |
| 333 CodeStubAssembler assembler(state); | 323 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Expm1); |
| 334 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1); | |
| 335 } | 324 } |
| 336 | 325 |
| 337 // ES6 section 20.2.2.16 Math.floor ( x ) | 326 // ES6 section 20.2.2.16 Math.floor ( x ) |
| 338 void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) { | 327 void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) { |
| 339 CodeStubAssembler assembler(state); | 328 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor); |
| 340 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor); | |
| 341 } | 329 } |
| 342 | 330 |
| 343 // ES6 section 20.2.2.17 Math.fround ( x ) | 331 // ES6 section 20.2.2.17 Math.fround ( x ) |
| 344 void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) { | 332 void Builtins::Generate_MathFround(CodeStubAssembler* assembler) { |
| 345 using compiler::Node; | 333 using compiler::Node; |
| 346 CodeStubAssembler assembler(state); | |
| 347 | 334 |
| 348 Node* x = assembler.Parameter(1); | 335 Node* x = assembler->Parameter(1); |
| 349 Node* context = assembler.Parameter(4); | 336 Node* context = assembler->Parameter(4); |
| 350 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 337 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 351 Node* value32 = assembler.TruncateFloat64ToFloat32(x_value); | 338 Node* value32 = assembler->TruncateFloat64ToFloat32(x_value); |
| 352 Node* value = assembler.ChangeFloat32ToFloat64(value32); | 339 Node* value = assembler->ChangeFloat32ToFloat64(value32); |
| 353 Node* result = assembler.AllocateHeapNumberWithValue(value); | 340 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 354 assembler.Return(result); | 341 assembler->Return(result); |
| 355 } | 342 } |
| 356 | 343 |
| 357 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) | 344 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) |
| 358 BUILTIN(MathHypot) { | 345 BUILTIN(MathHypot) { |
| 359 HandleScope scope(isolate); | 346 HandleScope scope(isolate); |
| 360 int const length = args.length() - 1; | 347 int const length = args.length() - 1; |
| 361 if (length == 0) return Smi::kZero; | 348 if (length == 0) return Smi::kZero; |
| 362 DCHECK_LT(0, length); | 349 DCHECK_LT(0, length); |
| 363 double max = 0; | 350 double max = 0; |
| 364 bool one_arg_is_nan = false; | 351 bool one_arg_is_nan = false; |
| (...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 400 double summand = n * n - compensation; | 387 double summand = n * n - compensation; |
| 401 double preliminary = sum + summand; | 388 double preliminary = sum + summand; |
| 402 compensation = (preliminary - sum) - summand; | 389 compensation = (preliminary - sum) - summand; |
| 403 sum = preliminary; | 390 sum = preliminary; |
| 404 } | 391 } |
| 405 | 392 |
| 406 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); | 393 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); |
| 407 } | 394 } |
| 408 | 395 |
| 409 // ES6 section 20.2.2.19 Math.imul ( x, y ) | 396 // ES6 section 20.2.2.19 Math.imul ( x, y ) |
| 410 void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) { | 397 void Builtins::Generate_MathImul(CodeStubAssembler* assembler) { |
| 411 using compiler::Node; | 398 using compiler::Node; |
| 412 CodeStubAssembler assembler(state); | |
| 413 | 399 |
| 414 Node* x = assembler.Parameter(1); | 400 Node* x = assembler->Parameter(1); |
| 415 Node* y = assembler.Parameter(2); | 401 Node* y = assembler->Parameter(2); |
| 416 Node* context = assembler.Parameter(5); | 402 Node* context = assembler->Parameter(5); |
| 417 Node* x_value = assembler.TruncateTaggedToWord32(context, x); | 403 Node* x_value = assembler->TruncateTaggedToWord32(context, x); |
| 418 Node* y_value = assembler.TruncateTaggedToWord32(context, y); | 404 Node* y_value = assembler->TruncateTaggedToWord32(context, y); |
| 419 Node* value = assembler.Int32Mul(x_value, y_value); | 405 Node* value = assembler->Int32Mul(x_value, y_value); |
| 420 Node* result = assembler.ChangeInt32ToTagged(value); | 406 Node* result = assembler->ChangeInt32ToTagged(value); |
| 421 assembler.Return(result); | 407 assembler->Return(result); |
| 422 } | 408 } |
| 423 | 409 |
| 424 // ES6 section 20.2.2.20 Math.log ( x ) | 410 // ES6 section 20.2.2.20 Math.log ( x ) |
| 425 void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) { | 411 void Builtins::Generate_MathLog(CodeStubAssembler* assembler) { |
| 426 CodeStubAssembler assembler(state); | 412 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log); |
| 427 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log); | |
| 428 } | 413 } |
| 429 | 414 |
| 430 // ES6 section 20.2.2.21 Math.log1p ( x ) | 415 // ES6 section 20.2.2.21 Math.log1p ( x ) |
| 431 void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) { | 416 void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) { |
| 432 CodeStubAssembler assembler(state); | 417 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log1p); |
| 433 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p); | |
| 434 } | 418 } |
| 435 | 419 |
| 436 // ES6 section 20.2.2.22 Math.log10 ( x ) | 420 // ES6 section 20.2.2.22 Math.log10 ( x ) |
| 437 void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) { | 421 void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) { |
| 438 CodeStubAssembler assembler(state); | 422 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log10); |
| 439 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10); | |
| 440 } | 423 } |
| 441 | 424 |
| 442 // ES6 section 20.2.2.23 Math.log2 ( x ) | 425 // ES6 section 20.2.2.23 Math.log2 ( x ) |
| 443 void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) { | 426 void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) { |
| 444 CodeStubAssembler assembler(state); | 427 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log2); |
| 445 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2); | |
| 446 } | 428 } |
| 447 | 429 |
| 448 // ES6 section 20.2.2.26 Math.pow ( x, y ) | 430 // ES6 section 20.2.2.26 Math.pow ( x, y ) |
| 449 void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) { | 431 void Builtins::Generate_MathPow(CodeStubAssembler* assembler) { |
| 450 using compiler::Node; | 432 using compiler::Node; |
| 451 CodeStubAssembler assembler(state); | |
| 452 | 433 |
| 453 Node* x = assembler.Parameter(1); | 434 Node* x = assembler->Parameter(1); |
| 454 Node* y = assembler.Parameter(2); | 435 Node* y = assembler->Parameter(2); |
| 455 Node* context = assembler.Parameter(5); | 436 Node* context = assembler->Parameter(5); |
| 456 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 437 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 457 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); | 438 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); |
| 458 Node* value = assembler.Float64Pow(x_value, y_value); | 439 Node* value = assembler->Float64Pow(x_value, y_value); |
| 459 Node* result = assembler.ChangeFloat64ToTagged(value); | 440 Node* result = assembler->ChangeFloat64ToTagged(value); |
| 460 assembler.Return(result); | 441 assembler->Return(result); |
| 461 } | 442 } |
| 462 | 443 |
| 463 // ES6 section 20.2.2.27 Math.random ( ) | 444 // ES6 section 20.2.2.27 Math.random ( ) |
| 464 void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) { | 445 void Builtins::Generate_MathRandom(CodeStubAssembler* assembler) { |
| 465 using compiler::Node; | 446 using compiler::Node; |
| 466 CodeStubAssembler assembler(state); | |
| 467 | 447 |
| 468 Node* context = assembler.Parameter(3); | 448 Node* context = assembler->Parameter(3); |
| 469 Node* native_context = assembler.LoadNativeContext(context); | 449 Node* native_context = assembler->LoadNativeContext(context); |
| 470 | 450 |
| 471 // Load cache index. | 451 // Load cache index. |
| 472 CodeStubAssembler::Variable smi_index(&assembler, | 452 CodeStubAssembler::Variable smi_index(assembler, |
| 473 MachineRepresentation::kTagged); | 453 MachineRepresentation::kTagged); |
| 474 smi_index.Bind(assembler.LoadContextElement( | 454 smi_index.Bind(assembler->LoadContextElement( |
| 475 native_context, Context::MATH_RANDOM_INDEX_INDEX)); | 455 native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
| 476 | 456 |
| 477 // Cached random numbers are exhausted if index is 0. Go to slow path. | 457 // Cached random numbers are exhausted if index is 0. Go to slow path. |
| 478 CodeStubAssembler::Label if_cached(&assembler); | 458 CodeStubAssembler::Label if_cached(assembler); |
| 479 assembler.GotoIf( | 459 assembler->GotoIf(assembler->SmiAbove(smi_index.value(), |
| 480 assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)), | 460 assembler->SmiConstant(Smi::kZero)), |
| 481 &if_cached); | 461 &if_cached); |
| 482 | 462 |
| 483 // Cache exhausted, populate the cache. Return value is the new index. | 463 // Cache exhausted, populate the cache. Return value is the new index. |
| 484 smi_index.Bind( | 464 smi_index.Bind( |
| 485 assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context)); | 465 assembler->CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
| 486 assembler.Goto(&if_cached); | 466 assembler->Goto(&if_cached); |
| 487 | 467 |
| 488 // Compute next index by decrement. | 468 // Compute next index by decrement. |
| 489 assembler.Bind(&if_cached); | 469 assembler->Bind(&if_cached); |
| 490 Node* new_smi_index = assembler.SmiSub( | 470 Node* new_smi_index = assembler->SmiSub( |
| 491 smi_index.value(), assembler.SmiConstant(Smi::FromInt(1))); | 471 smi_index.value(), assembler->SmiConstant(Smi::FromInt(1))); |
| 492 assembler.StoreContextElement( | 472 assembler->StoreContextElement( |
| 493 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); | 473 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); |
| 494 | 474 |
| 495 // Load and return next cached random number. | 475 // Load and return next cached random number. |
| 496 Node* array = assembler.LoadContextElement(native_context, | 476 Node* array = assembler->LoadContextElement(native_context, |
| 497 Context::MATH_RANDOM_CACHE_INDEX); | 477 Context::MATH_RANDOM_CACHE_INDEX); |
| 498 Node* random = assembler.LoadFixedDoubleArrayElement( | 478 Node* random = assembler->LoadFixedDoubleArrayElement( |
| 499 array, new_smi_index, MachineType::Float64(), 0, | 479 array, new_smi_index, MachineType::Float64(), 0, |
| 500 CodeStubAssembler::SMI_PARAMETERS); | 480 CodeStubAssembler::SMI_PARAMETERS); |
| 501 assembler.Return(assembler.AllocateHeapNumberWithValue(random)); | 481 assembler->Return(assembler->AllocateHeapNumberWithValue(random)); |
| 502 } | 482 } |
| 503 | 483 |
| 504 // ES6 section 20.2.2.28 Math.round ( x ) | 484 // ES6 section 20.2.2.28 Math.round ( x ) |
| 505 void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) { | 485 void Builtins::Generate_MathRound(CodeStubAssembler* assembler) { |
| 506 CodeStubAssembler assembler(state); | 486 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round); |
| 507 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round); | |
| 508 } | 487 } |
| 509 | 488 |
| 510 // ES6 section 20.2.2.29 Math.sign ( x ) | 489 // ES6 section 20.2.2.29 Math.sign ( x ) |
| 511 void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) { | 490 void Builtins::Generate_MathSign(CodeStubAssembler* assembler) { |
| 512 typedef CodeStubAssembler::Label Label; | 491 typedef CodeStubAssembler::Label Label; |
| 513 using compiler::Node; | 492 using compiler::Node; |
| 514 CodeStubAssembler assembler(state); | |
| 515 | 493 |
| 516 // Convert the {x} value to a Number. | 494 // Convert the {x} value to a Number. |
| 517 Node* x = assembler.Parameter(1); | 495 Node* x = assembler->Parameter(1); |
| 518 Node* context = assembler.Parameter(4); | 496 Node* context = assembler->Parameter(4); |
| 519 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); | 497 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 520 | 498 |
| 521 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. | 499 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. |
| 522 Label if_xisnegative(&assembler), if_xispositive(&assembler); | 500 Label if_xisnegative(assembler), if_xispositive(assembler); |
| 523 assembler.GotoIf( | 501 assembler->GotoIf( |
| 524 assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)), | 502 assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)), |
| 525 &if_xisnegative); | 503 &if_xisnegative); |
| 526 assembler.GotoIf( | 504 assembler->GotoIf( |
| 527 assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value), | 505 assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value), |
| 528 &if_xispositive); | 506 &if_xispositive); |
| 529 assembler.Return(assembler.ChangeFloat64ToTagged(x_value)); | 507 assembler->Return(assembler->ChangeFloat64ToTagged(x_value)); |
| 530 | 508 |
| 531 assembler.Bind(&if_xisnegative); | 509 assembler->Bind(&if_xisnegative); |
| 532 assembler.Return(assembler.SmiConstant(Smi::FromInt(-1))); | 510 assembler->Return(assembler->SmiConstant(Smi::FromInt(-1))); |
| 533 | 511 |
| 534 assembler.Bind(&if_xispositive); | 512 assembler->Bind(&if_xispositive); |
| 535 assembler.Return(assembler.SmiConstant(Smi::FromInt(1))); | 513 assembler->Return(assembler->SmiConstant(Smi::FromInt(1))); |
| 536 } | 514 } |
| 537 | 515 |
| 538 // ES6 section 20.2.2.30 Math.sin ( x ) | 516 // ES6 section 20.2.2.30 Math.sin ( x ) |
| 539 void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) { | 517 void Builtins::Generate_MathSin(CodeStubAssembler* assembler) { |
| 540 CodeStubAssembler assembler(state); | 518 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sin); |
| 541 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin); | |
| 542 } | 519 } |
| 543 | 520 |
| 544 // ES6 section 20.2.2.31 Math.sinh ( x ) | 521 // ES6 section 20.2.2.31 Math.sinh ( x ) |
| 545 void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) { | 522 void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) { |
| 546 CodeStubAssembler assembler(state); | 523 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sinh); |
| 547 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh); | |
| 548 } | 524 } |
| 549 | 525 |
| 550 // ES6 section 20.2.2.32 Math.sqrt ( x ) | 526 // ES6 section 20.2.2.32 Math.sqrt ( x ) |
| 551 void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) { | 527 void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) { |
| 552 CodeStubAssembler assembler(state); | 528 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sqrt); |
| 553 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt); | |
| 554 } | 529 } |
| 555 | 530 |
| 556 // ES6 section 20.2.2.33 Math.tan ( x ) | 531 // ES6 section 20.2.2.33 Math.tan ( x ) |
| 557 void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) { | 532 void Builtins::Generate_MathTan(CodeStubAssembler* assembler) { |
| 558 CodeStubAssembler assembler(state); | 533 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tan); |
| 559 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan); | |
| 560 } | 534 } |
| 561 | 535 |
| 562 // ES6 section 20.2.2.34 Math.tanh ( x ) | 536 // ES6 section 20.2.2.34 Math.tanh ( x ) |
| 563 void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) { | 537 void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) { |
| 564 CodeStubAssembler assembler(state); | 538 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tanh); |
| 565 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh); | |
| 566 } | 539 } |
| 567 | 540 |
| 568 // ES6 section 20.2.2.35 Math.trunc ( x ) | 541 // ES6 section 20.2.2.35 Math.trunc ( x ) |
| 569 void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) { | 542 void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) { |
| 570 CodeStubAssembler assembler(state); | 543 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc); |
| 571 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc); | |
| 572 } | 544 } |
| 573 | 545 |
| 574 void Builtins::Generate_MathMax(MacroAssembler* masm) { | 546 void Builtins::Generate_MathMax(MacroAssembler* masm) { |
| 575 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); | 547 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); |
| 576 } | 548 } |
| 577 | 549 |
| 578 void Builtins::Generate_MathMin(MacroAssembler* masm) { | 550 void Builtins::Generate_MathMin(MacroAssembler* masm) { |
| 579 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); | 551 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); |
| 580 } | 552 } |
| 581 | 553 |
| 582 } // namespace internal | 554 } // namespace internal |
| 583 } // namespace v8 | 555 } // namespace v8 |
| OLD | NEW |