Index: src/opts/SkBitmapProcState_arm_neon.cpp |
diff --git a/src/opts/SkBitmapProcState_arm_neon.cpp b/src/opts/SkBitmapProcState_arm_neon.cpp |
index 4193e6af071d10af8fb63be62d804a5722b336b9..2f442514dd44e2dd17fc3a842415d7f72e67ae35 100644 |
--- a/src/opts/SkBitmapProcState_arm_neon.cpp |
+++ b/src/opts/SkBitmapProcState_arm_neon.cpp |
@@ -77,382 +77,3 @@ const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { |
SG8_alpha_D32_filter_DX_neon, |
SG8_alpha_D32_filter_DX_neon, |
}; |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-#include <arm_neon.h> |
-#include "SkConvolver.h" |
- |
-static SK_ALWAYS_INLINE void accum_remainder(const unsigned char* pixels_left, |
- const SkConvolutionFilter1D::ConvolutionFixed* filter_values, int32x4_t& accum, int r) { |
- int remainder[4] = {0}; |
- for (int i = 0; i < r; i++) { |
- SkConvolutionFilter1D::ConvolutionFixed coeff = filter_values[i]; |
- remainder[0] += coeff * pixels_left[i * 4 + 0]; |
- remainder[1] += coeff * pixels_left[i * 4 + 1]; |
- remainder[2] += coeff * pixels_left[i * 4 + 2]; |
- remainder[3] += coeff * pixels_left[i * 4 + 3]; |
- } |
- int32x4_t t = {remainder[0], remainder[1], remainder[2], remainder[3]}; |
- accum += t; |
-} |
- |
-// Convolves horizontally along a single row. The row data is given in |
-// |srcData| and continues for the numValues() of the filter. |
-void convolveHorizontally_neon(const unsigned char* srcData, |
- const SkConvolutionFilter1D& filter, |
- unsigned char* outRow, |
- bool hasAlpha) { |
- // Loop over each pixel on this row in the output image. |
- int numValues = filter.numValues(); |
- for (int outX = 0; outX < numValues; outX++) { |
- uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
- uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
- uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
- uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
- // Get the filter that determines the current output pixel. |
- int filterOffset, filterLength; |
- const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
- filter.FilterForValue(outX, &filterOffset, &filterLength); |
- |
- // Compute the first pixel in this row that the filter affects. It will |
- // touch |filterLength| pixels (4 bytes each) after this. |
- const unsigned char* rowToFilter = &srcData[filterOffset * 4]; |
- |
- // Apply the filter to the row to get the destination pixel in |accum|. |
- int32x4_t accum = vdupq_n_s32(0); |
- for (int filterX = 0; filterX < filterLength >> 2; filterX++) { |
- // Load 4 coefficients |
- int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
- coeffs = vld1_s16(filterValues); |
- coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
- coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
- coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
- coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
- |
- // Load pixels and calc |
- uint8x16_t pixels = vld1q_u8(rowToFilter); |
- int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); |
- int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); |
- |
- int16x4_t p0_src = vget_low_s16(p01_16); |
- int16x4_t p1_src = vget_high_s16(p01_16); |
- int16x4_t p2_src = vget_low_s16(p23_16); |
- int16x4_t p3_src = vget_high_s16(p23_16); |
- |
- int32x4_t p0 = vmull_s16(p0_src, coeff0); |
- int32x4_t p1 = vmull_s16(p1_src, coeff1); |
- int32x4_t p2 = vmull_s16(p2_src, coeff2); |
- int32x4_t p3 = vmull_s16(p3_src, coeff3); |
- |
- accum += p0; |
- accum += p1; |
- accum += p2; |
- accum += p3; |
- |
- // Advance the pointers |
- rowToFilter += 16; |
- filterValues += 4; |
- } |
- |
- int r = filterLength & 3; |
- if (r) { |
- int remainder_offset = (filterOffset + filterLength - r) * 4; |
- accum_remainder(srcData + remainder_offset, filterValues, accum, r); |
- } |
- |
- // Bring this value back in range. All of the filter scaling factors |
- // are in fixed point with kShiftBits bits of fractional part. |
- accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); |
- |
- // Pack and store the new pixel. |
- int16x4_t accum16 = vqmovn_s32(accum); |
- uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); |
- vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); |
- outRow += 4; |
- } |
-} |
- |
-// Does vertical convolution to produce one output row. The filter values and |
-// length are given in the first two parameters. These are applied to each |
-// of the rows pointed to in the |sourceDataRows| array, with each row |
-// being |pixelWidth| wide. |
-// |
-// The output must have room for |pixelWidth * 4| bytes. |
-template<bool hasAlpha> |
-void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
- int filterLength, |
- unsigned char* const* sourceDataRows, |
- int pixelWidth, |
- unsigned char* outRow) { |
- int width = pixelWidth & ~3; |
- |
- int32x4_t accum0, accum1, accum2, accum3; |
- int16x4_t coeff16; |
- |
- // Output four pixels per iteration (16 bytes). |
- for (int outX = 0; outX < width; outX += 4) { |
- |
- // Accumulated result for each pixel. 32 bits per RGBA channel. |
- accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); |
- |
- // Convolve with one filter coefficient per iteration. |
- for (int filterY = 0; filterY < filterLength; filterY++) { |
- |
- // Duplicate the filter coefficient 4 times. |
- // [16] cj cj cj cj |
- coeff16 = vdup_n_s16(filterValues[filterY]); |
- |
- // Load four pixels (16 bytes) together. |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); |
- |
- int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
- int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
- int16x4_t src16_0 = vget_low_s16(src16_01); |
- int16x4_t src16_1 = vget_high_s16(src16_01); |
- int16x4_t src16_2 = vget_low_s16(src16_23); |
- int16x4_t src16_3 = vget_high_s16(src16_23); |
- |
- accum0 += vmull_s16(src16_0, coeff16); |
- accum1 += vmull_s16(src16_1, coeff16); |
- accum2 += vmull_s16(src16_2, coeff16); |
- accum3 += vmull_s16(src16_3, coeff16); |
- } |
- |
- // Shift right for fixed point implementation. |
- accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
- accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
- accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
- accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); |
- |
- // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
- // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
- int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); |
- |
- // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
- |
- if (hasAlpha) { |
- // Compute the max(ri, gi, bi) for each pixel. |
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
- uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
- a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- b = vmaxq_u8(a, b); // Max of r and g and b. |
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
- b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
- |
- // Make sure the value of alpha channel is always larger than maximum |
- // value of color channels. |
- accum8 = vmaxq_u8(b, accum8); |
- } else { |
- // Set value of alpha channels to 0xFF. |
- accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
- } |
- |
- // Store the convolution result (16 bytes) and advance the pixel pointers. |
- vst1q_u8(outRow, accum8); |
- outRow += 16; |
- } |
- |
- // Process the leftovers when the width of the output is not divisible |
- // by 4, that is at most 3 pixels. |
- int r = pixelWidth & 3; |
- if (r) { |
- |
- accum0 = accum1 = accum2 = vdupq_n_s32(0); |
- |
- for (int filterY = 0; filterY < filterLength; ++filterY) { |
- coeff16 = vdup_n_s16(filterValues[filterY]); |
- |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); |
- |
- int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
- int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
- int16x4_t src16_0 = vget_low_s16(src16_01); |
- int16x4_t src16_1 = vget_high_s16(src16_01); |
- int16x4_t src16_2 = vget_low_s16(src16_23); |
- |
- accum0 += vmull_s16(src16_0, coeff16); |
- accum1 += vmull_s16(src16_1, coeff16); |
- accum2 += vmull_s16(src16_2, coeff16); |
- } |
- |
- accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
- accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
- accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
- |
- int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
- int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); |
- |
- uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
- |
- if (hasAlpha) { |
- // Compute the max(ri, gi, bi) for each pixel. |
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
- uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
- a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- b = vmaxq_u8(a, b); // Max of r and g and b. |
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
- b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
- |
- // Make sure the value of alpha channel is always larger than maximum |
- // value of color channels. |
- accum8 = vmaxq_u8(b, accum8); |
- } else { |
- // Set value of alpha channels to 0xFF. |
- accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
- } |
- |
- switch(r) { |
- case 1: |
- vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); |
- break; |
- case 2: |
- vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
- vreinterpret_u32_u8(vget_low_u8(accum8))); |
- break; |
- case 3: |
- vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
- vreinterpret_u32_u8(vget_low_u8(accum8))); |
- vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); |
- break; |
- } |
- } |
-} |
- |
-void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
- int filterLength, |
- unsigned char* const* sourceDataRows, |
- int pixelWidth, |
- unsigned char* outRow, |
- bool sourceHasAlpha) { |
- if (sourceHasAlpha) { |
- convolveVertically_neon<true>(filterValues, filterLength, |
- sourceDataRows, pixelWidth, |
- outRow); |
- } else { |
- convolveVertically_neon<false>(filterValues, filterLength, |
- sourceDataRows, pixelWidth, |
- outRow); |
- } |
-} |
- |
-// Convolves horizontally along four rows. The row data is given in |
-// |src_data| and continues for the num_values() of the filter. |
-// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
-// refer to that function for detailed comments. |
-void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], |
- const SkConvolutionFilter1D& filter, |
- unsigned char* outRow[4], |
- size_t outRowBytes) { |
- |
- uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
- uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
- uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
- uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
- int num_values = filter.numValues(); |
- |
- int filterOffset, filterLength; |
- |
- // Output one pixel each iteration, calculating all channels (RGBA) together. |
- for (int outX = 0; outX < num_values; outX++) { |
- |
- const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
- filter.FilterForValue(outX, &filterOffset, &filterLength); |
- |
- // four pixels in a column per iteration. |
- int32x4_t accum0 = vdupq_n_s32(0); |
- int32x4_t accum1 = vdupq_n_s32(0); |
- int32x4_t accum2 = vdupq_n_s32(0); |
- int32x4_t accum3 = vdupq_n_s32(0); |
- |
- int start = (filterOffset<<2); |
- |
- // We will load and accumulate with four coefficients per iteration. |
- for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { |
- int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
- |
- coeffs = vld1_s16(filterValues); |
- coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
- coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
- coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
- coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
- |
- uint8x16_t pixels; |
- int16x8_t p01_16, p23_16; |
- int32x4_t p0, p1, p2, p3; |
- |
- |
-#define ITERATION(src, accum) \ |
- pixels = vld1q_u8(src); \ |
- p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ |
- p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ |
- p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ |
- p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ |
- p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ |
- p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ |
- accum += p0; \ |
- accum += p1; \ |
- accum += p2; \ |
- accum += p3 |
- |
- ITERATION(srcData[0] + start, accum0); |
- ITERATION(srcData[1] + start, accum1); |
- ITERATION(srcData[2] + start, accum2); |
- ITERATION(srcData[3] + start, accum3); |
- |
- start += 16; |
- filterValues += 4; |
- } |
- |
- int r = filterLength & 3; |
- if (r) { |
- int remainder_offset = (filterOffset + filterLength - r) * 4; |
- accum_remainder(srcData[0] + remainder_offset, filterValues, accum0, r); |
- accum_remainder(srcData[1] + remainder_offset, filterValues, accum1, r); |
- accum_remainder(srcData[2] + remainder_offset, filterValues, accum2, r); |
- accum_remainder(srcData[3] + remainder_offset, filterValues, accum3, r); |
- } |
- |
- int16x4_t accum16; |
- uint8x8_t res0, res1, res2, res3; |
- |
-#define PACK_RESULT(accum, res) \ |
- accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ |
- accum16 = vqmovn_s32(accum); \ |
- res = vqmovun_s16(vcombine_s16(accum16, accum16)); |
- |
- PACK_RESULT(accum0, res0); |
- PACK_RESULT(accum1, res1); |
- PACK_RESULT(accum2, res2); |
- PACK_RESULT(accum3, res3); |
- |
- vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); |
- vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); |
- vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); |
- vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); |
- outRow[0] += 4; |
- outRow[1] += 4; |
- outRow[2] += 4; |
- outRow[3] += 4; |
- } |
-} |
- |
-void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { |
- procs->fConvolveVertically = &convolveVertically_neon; |
- procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; |
- procs->fConvolveHorizontally = &convolveHorizontally_neon; |
-} |