| Index: src/opts/SkBitmapFilter_opts.h
|
| diff --git a/src/opts/SkBitmapFilter_opts.h b/src/opts/SkBitmapFilter_opts.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f22b5c2368050681f6979fe08dfaeeec8405c6ca
|
| --- /dev/null
|
| +++ b/src/opts/SkBitmapFilter_opts.h
|
| @@ -0,0 +1,940 @@
|
| +/*
|
| + * Copyright 2016 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#ifndef SkBitmapFilter_opts_DEFINED
|
| +#define SkBitmapFilter_opts_DEFINED
|
| +
|
| +#include "SkConvolver.h"
|
| +
|
| +#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| + #include <emmintrin.h>
|
| +#elif defined(SK_ARM_HAS_NEON)
|
| + #include <arm_neon.h>
|
| +#endif
|
| +
|
| +namespace SK_OPTS_NS {
|
| +
|
| +#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| +
|
| + static SK_ALWAYS_INLINE void AccumRemainder(const unsigned char* pixelsLeft,
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues, __m128i& accum, int r) {
|
| + int remainder[4] = {0};
|
| + for (int i = 0; i < r; i++) {
|
| + SkConvolutionFilter1D::ConvolutionFixed coeff = filterValues[i];
|
| + remainder[0] += coeff * pixelsLeft[i * 4 + 0];
|
| + remainder[1] += coeff * pixelsLeft[i * 4 + 1];
|
| + remainder[2] += coeff * pixelsLeft[i * 4 + 2];
|
| + remainder[3] += coeff * pixelsLeft[i * 4 + 3];
|
| + }
|
| + __m128i t = _mm_setr_epi32(remainder[0], remainder[1], remainder[2], remainder[3]);
|
| + accum = _mm_add_epi32(accum, t);
|
| + }
|
| +
|
| + // Convolves horizontally along a single row. The row data is given in
|
| + // |srcData| and continues for the numValues() of the filter.
|
| + void convolve_horizontally(const unsigned char* srcData,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow,
|
| + bool /*hasAlpha*/) {
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| + // Get the filter that determines the current output pixel.
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filterLength| pixels (4 bytes each) after this.
|
| + const unsigned char* rowToFilter = &srcData[filterOffset * 4];
|
| +
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i accum = _mm_setzero_si128();
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
|
| + // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
| + __m128i coeff, coeff16;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filterValues));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Load four pixels => unpack the first two pixels to 16 bits =>
|
| + // multiply with coefficients => accumulate the convolution result.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(rowToFilter));
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0*c0 b0*c0 g0*c0 r0*c0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a1*c1 b1*c1 g1*c1 r1*c1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Duplicate 3rd and 4th coefficients for all channels =>
|
| + // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
| + // => accumulate the convolution results.
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + // [16] a3 g3 b3 r3 a2 g2 b2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2*c2 b2*c2 g2*c2 r2*c2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a3*c3 b3*c3 g3*c3 r3*c3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Advance the pixel and coefficients pointers.
|
| + rowToFilter += 16;
|
| + filterValues += 4;
|
| + }
|
| +
|
| + // When |filterLength| is not divisible by 4, we accumulate the last 1 - 3
|
| + // coefficients one at a time.
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + int remainderOffset = (filterOffset + filterLength - r) * 4;
|
| + AccumRemainder(srcData + remainderOffset, filterValues, accum, r);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + accum = _mm_packs_epi32(accum, zero);
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + accum = _mm_packus_epi16(accum, zero);
|
| +
|
| + // Store the pixel value of 32 bits.
|
| + *(reinterpret_cast<int*>(outRow)) = _mm_cvtsi128_si32(accum);
|
| + outRow += 4;
|
| + }
|
| + }
|
| +
|
| + // Convolves horizontally along four rows. The row data is given in
|
| + // |srcData| and continues for the numValues() of the filter.
|
| + // The algorithm is almost same as |convolve_horizontally|. Please
|
| + // refer to that function for detailed comments.
|
| + void convolve_4_rows_horizontally(const unsigned char* srcData[4],
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow[4],
|
| + size_t outRowBytes) {
|
| + SkDEBUGCODE(const unsigned char* out_row_0_start = outRow[0];)
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + __m128i zero = _mm_setzero_si128();
|
| +
|
| + // four pixels in a column per iteration.
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + __m128i accum3 = _mm_setzero_si128();
|
| +
|
| + int start = filterOffset * 4;
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filterX = 0; filterX < (filterLength >> 2); filterX++) {
|
| + __m128i coeff, coeff16lo, coeff16hi;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filterValues));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| +#define ITERATION(src, accum) \
|
| + src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
| + src16 = _mm_unpacklo_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + src16 = _mm_unpackhi_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t)
|
| +
|
| + ITERATION(srcData[0] + start, accum0);
|
| + ITERATION(srcData[1] + start, accum1);
|
| + ITERATION(srcData[2] + start, accum2);
|
| + ITERATION(srcData[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filterValues += 4;
|
| + }
|
| +
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + int remainderOffset = (filterOffset + filterLength - r) * 4;
|
| + AccumRemainder(srcData[0] + remainderOffset, filterValues, accum0, r);
|
| + AccumRemainder(srcData[1] + remainderOffset, filterValues, accum1, r);
|
| + AccumRemainder(srcData[2] + remainderOffset, filterValues, accum2, r);
|
| + AccumRemainder(srcData[3] + remainderOffset, filterValues, accum3, r);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum0 = _mm_packs_epi32(accum0, zero);
|
| + accum0 = _mm_packus_epi16(accum0, zero);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_packs_epi32(accum1, zero);
|
| + accum1 = _mm_packus_epi16(accum1, zero);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + accum2 = _mm_packus_epi16(accum2, zero);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_packs_epi32(accum3, zero);
|
| + accum3 = _mm_packus_epi16(accum3, zero);
|
| +
|
| + // We seem to be running off the edge here (chromium:491660).
|
| + SkASSERT(((size_t)outRow[0] - (size_t)out_row_0_start) < outRowBytes);
|
| +
|
| + *(reinterpret_cast<int*>(outRow[0])) = _mm_cvtsi128_si32(accum0);
|
| + *(reinterpret_cast<int*>(outRow[1])) = _mm_cvtsi128_si32(accum1);
|
| + *(reinterpret_cast<int*>(outRow[2])) = _mm_cvtsi128_si32(accum2);
|
| + *(reinterpret_cast<int*>(outRow[3])) = _mm_cvtsi128_si32(accum3);
|
| +
|
| + outRow[0] += 4;
|
| + outRow[1] += 4;
|
| + outRow[2] += 4;
|
| + outRow[3] += 4;
|
| + }
|
| + }
|
| +
|
| + // Does vertical convolution to produce one output row. The filter values and
|
| + // length are given in the first two parameters. These are applied to each
|
| + // of the rows pointed to in the |sourceDataRows| array, with each row
|
| + // being |pixelWidth| wide.
|
| + //
|
| + // The output must have room for |pixelWidth * 4| bytes.
|
| + template<bool hasAlpha>
|
| + void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow) {
|
| + // Output four pixels per iteration (16 bytes).
|
| + int width = pixelWidth & ~3;
|
| + __m128i zero = _mm_setzero_si128();
|
| + for (int outX = 0; outX < width; outX += 4) {
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + __m128i accum3 = _mm_setzero_si128();
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filterY = 0; filterY < filterLength; filterY++) {
|
| +
|
| + // Duplicate the filter coefficient 8 times.
|
| + // [16] cj cj cj cj cj cj cj cj
|
| + __m128i coeff16 = _mm_set1_epi16(filterValues[filterY]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + const __m128i* src = reinterpret_cast<const __m128i*>(
|
| + &sourceDataRows[filterY][outX << 2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| +
|
| + // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| +
|
| + // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + // [32] a3 b3 g3 r3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum3 = _mm_add_epi32(accum3, t);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, accum3);
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| +
|
| + if (hasAlpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + _mm_storeu_si128(reinterpret_cast<__m128i*>(outRow), accum0);
|
| + outRow += 16;
|
| + }
|
| +
|
| + // When the width of the output is not divisible by 4, We need to save one
|
| + // pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
| + int r = pixelWidth & 3;
|
| + if (r) {
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + for (int filterY = 0; filterY < filterLength; ++filterY) {
|
| + __m128i coeff16 = _mm_set1_epi16(filterValues[filterY]);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + const __m128i* src = reinterpret_cast<const __m128i*>(
|
| + &sourceDataRows[filterY][width << 2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| + if (hasAlpha) {
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + for (int i = 0; i < r; i++) {
|
| + *(reinterpret_cast<int*>(outRow)) = _mm_cvtsi128_si32(accum0);
|
| + accum0 = _mm_srli_si128(accum0, 4);
|
| + outRow += 4;
|
| + }
|
| + }
|
| + }
|
| +
|
| +#elif defined(SK_ARM_HAS_NEON)
|
| +
|
| + static SK_ALWAYS_INLINE void AccumRemainder(const unsigned char* pixelsLeft,
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int32x4_t& accum, int r) {
|
| + int remainder[4] = {0};
|
| + for (int i = 0; i < r; i++) {
|
| + SkConvolutionFilter1D::ConvolutionFixed coeff = filterValues[i];
|
| + remainder[0] += coeff * pixelsLeft[i * 4 + 0];
|
| + remainder[1] += coeff * pixelsLeft[i * 4 + 1];
|
| + remainder[2] += coeff * pixelsLeft[i * 4 + 2];
|
| + remainder[3] += coeff * pixelsLeft[i * 4 + 3];
|
| + }
|
| + int32x4_t t = {remainder[0], remainder[1], remainder[2], remainder[3]};
|
| + accum += t;
|
| + }
|
| +
|
| + // Convolves horizontally along a single row. The row data is given in
|
| + // |srcData| and continues for the numValues() of the filter.
|
| + void convolve_horizontally(const unsigned char* srcData,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow,
|
| + bool /*hasAlpha*/) {
|
| + // Loop over each pixel on this row in the output image.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
|
| + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
|
| + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
|
| + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
|
| + // Get the filter that determines the current output pixel.
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filterLength| pixels (4 bytes each) after this.
|
| + const unsigned char* rowToFilter = &srcData[filterOffset * 4];
|
| +
|
| + // Apply the filter to the row to get the destination pixel in |accum|.
|
| + int32x4_t accum = vdupq_n_s32(0);
|
| + for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
|
| + // Load 4 coefficients
|
| + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
|
| + coeffs = vld1_s16(filterValues);
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
|
| + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
|
| +
|
| + // Load pixels and calc
|
| + uint8x16_t pixels = vld1q_u8(rowToFilter);
|
| + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
|
| + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
|
| +
|
| + int16x4_t p0_src = vget_low_s16(p01_16);
|
| + int16x4_t p1_src = vget_high_s16(p01_16);
|
| + int16x4_t p2_src = vget_low_s16(p23_16);
|
| + int16x4_t p3_src = vget_high_s16(p23_16);
|
| +
|
| + int32x4_t p0 = vmull_s16(p0_src, coeff0);
|
| + int32x4_t p1 = vmull_s16(p1_src, coeff1);
|
| + int32x4_t p2 = vmull_s16(p2_src, coeff2);
|
| + int32x4_t p3 = vmull_s16(p3_src, coeff3);
|
| +
|
| + accum += p0;
|
| + accum += p1;
|
| + accum += p2;
|
| + accum += p3;
|
| +
|
| + // Advance the pointers
|
| + rowToFilter += 16;
|
| + filterValues += 4;
|
| + }
|
| +
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + int remainder_offset = (filterOffset + filterLength - r) * 4;
|
| + AccumRemainder(srcData + remainder_offset, filterValues, accum, r);
|
| + }
|
| +
|
| + // Bring this value back in range. All of the filter scaling factors
|
| + // are in fixed point with kShiftBits bits of fractional part.
|
| + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Pack and store the new pixel.
|
| + int16x4_t accum16 = vqmovn_s32(accum);
|
| + uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
|
| + outRow += 4;
|
| + }
|
| + }
|
| +
|
| + // Convolves horizontally along four rows. The row data is given in
|
| + // |srcData| and continues for the numValues() of the filter.
|
| + // The algorithm is almost same as |convolve_horizontally|. Please
|
| + // refer to that function for detailed comments.
|
| + void convolve_4_rows_horizontally(const unsigned char* srcData[4],
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow[4],
|
| + size_t outRowBytes) {
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| +
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // four pixels in a column per iteration.
|
| + int32x4_t accum0 = vdupq_n_s32(0);
|
| + int32x4_t accum1 = vdupq_n_s32(0);
|
| + int32x4_t accum2 = vdupq_n_s32(0);
|
| + int32x4_t accum3 = vdupq_n_s32(0);
|
| +
|
| + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
|
| + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
|
| + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
|
| + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
|
| +
|
| + int start = filterOffset * 4;
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filterX = 0; filterX < (filterLength >> 2); filterX++) {
|
| + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
|
| +
|
| + coeffs = vld1_s16(filterValues);
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
|
| + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
|
| +
|
| + uint8x16_t pixels;
|
| + int16x8_t p01_16, p23_16;
|
| + int32x4_t p0, p1, p2, p3;
|
| +
|
| +#define ITERATION(src, accum) \
|
| + pixels = vld1q_u8(src); \
|
| + p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \
|
| + p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
|
| + p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \
|
| + p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \
|
| + p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \
|
| + p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \
|
| + accum += p0; \
|
| + accum += p1; \
|
| + accum += p2; \
|
| + accum += p3
|
| +
|
| + ITERATION(srcData[0] + start, accum0);
|
| + ITERATION(srcData[1] + start, accum1);
|
| + ITERATION(srcData[2] + start, accum2);
|
| + ITERATION(srcData[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filterValues += 4;
|
| + }
|
| +
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + int remainder_offset = (filterOffset + filterLength - r) * 4;
|
| + AccumRemainder(srcData[0] + remainder_offset, filterValues, accum0, r);
|
| + AccumRemainder(srcData[1] + remainder_offset, filterValues, accum1, r);
|
| + AccumRemainder(srcData[2] + remainder_offset, filterValues, accum2, r);
|
| + AccumRemainder(srcData[3] + remainder_offset, filterValues, accum3, r);
|
| + }
|
| +
|
| + int16x4_t accum16;
|
| + uint8x8_t res0, res1, res2, res3;
|
| +
|
| +#define PACK_RESULT(accum, res) \
|
| + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \
|
| + accum16 = vqmovn_s32(accum); \
|
| + res = vqmovun_s16(vcombine_s16(accum16, accum16));
|
| +
|
| + PACK_RESULT(accum0, res0);
|
| + PACK_RESULT(accum1, res1);
|
| + PACK_RESULT(accum2, res2);
|
| + PACK_RESULT(accum3, res3);
|
| +
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
|
| + outRow[0] += 4;
|
| + outRow[1] += 4;
|
| + outRow[2] += 4;
|
| + outRow[3] += 4;
|
| + }
|
| + }
|
| +
|
| +
|
| + // Does vertical convolution to produce one output row. The filter values and
|
| + // length are given in the first two parameters. These are applied to each
|
| + // of the rows pointed to in the |sourceDataRows| array, with each row
|
| + // being |pixelWidth| wide.
|
| + //
|
| + // The output must have room for |pixelWidth * 4| bytes.
|
| + template<bool hasAlpha>
|
| + void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow) {
|
| + int width = pixelWidth & ~3;
|
| +
|
| + // Output four pixels per iteration (16 bytes).
|
| + for (int outX = 0; outX < width; outX += 4) {
|
| +
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + int32x4_t accum0 = vdupq_n_s32(0);
|
| + int32x4_t accum1 = vdupq_n_s32(0);
|
| + int32x4_t accum2 = vdupq_n_s32(0);
|
| + int32x4_t accum3 = vdupq_n_s32(0);
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filterY = 0; filterY < filterLength; filterY++) {
|
| +
|
| + // Duplicate the filter coefficient 4 times.
|
| + // [16] cj cj cj cj
|
| + int16x4_t coeff16 = vdup_n_s16(filterValues[filterY]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
|
| +
|
| + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
|
| + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
|
| + int16x4_t src16_0 = vget_low_s16(src16_01);
|
| + int16x4_t src16_1 = vget_high_s16(src16_01);
|
| + int16x4_t src16_2 = vget_low_s16(src16_23);
|
| + int16x4_t src16_3 = vget_high_s16(src16_23);
|
| +
|
| + accum0 += vmull_s16(src16_0, coeff16);
|
| + accum1 += vmull_s16(src16_1, coeff16);
|
| + accum2 += vmull_s16(src16_2, coeff16);
|
| + accum3 += vmull_s16(src16_3, coeff16);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
|
| +
|
| + if (hasAlpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = vmaxq_u8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum8 = vmaxq_u8(b, accum8);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
|
| + }
|
| +
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + vst1q_u8(outRow, accum8);
|
| + outRow += 16;
|
| + }
|
| +
|
| + // Process the leftovers when the width of the output is not divisible
|
| + // by 4, that is at most 3 pixels.
|
| + int r = pixelWidth & 3;
|
| + if (r) {
|
| +
|
| + int32x4_t accum0 = vdupq_n_s32(0);
|
| + int32x4_t accum1 = vdupq_n_s32(0);
|
| + int32x4_t accum2 = vdupq_n_s32(0);
|
| +
|
| + for (int filterY = 0; filterY < filterLength; ++filterY) {
|
| + int16x4_t coeff16 = vdup_n_s16(filterValues[filterY]);
|
| +
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
|
| +
|
| + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
|
| + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
|
| + int16x4_t src16_0 = vget_low_s16(src16_01);
|
| + int16x4_t src16_1 = vget_high_s16(src16_01);
|
| + int16x4_t src16_2 = vget_low_s16(src16_23);
|
| +
|
| + accum0 += vmull_s16(src16_0, coeff16);
|
| + accum1 += vmull_s16(src16_1, coeff16);
|
| + accum2 += vmull_s16(src16_2, coeff16);
|
| + }
|
| +
|
| + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
|
| + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
|
| +
|
| + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
|
| +
|
| + if (hasAlpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = vmaxq_u8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum8 = vmaxq_u8(b, accum8);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
|
| + }
|
| +
|
| + switch(r) {
|
| + case 1:
|
| + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
|
| + break;
|
| + case 2:
|
| + vst1_u32(reinterpret_cast<uint32_t*>(outRow),
|
| + vreinterpret_u32_u8(vget_low_u8(accum8)));
|
| + break;
|
| + case 3:
|
| + vst1_u32(reinterpret_cast<uint32_t*>(outRow),
|
| + vreinterpret_u32_u8(vget_low_u8(accum8)));
|
| + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| +#else
|
| +
|
| + // Converts the argument to an 8-bit unsigned value by clamping to the range
|
| + // 0-255.
|
| + inline unsigned char ClampTo8(int a) {
|
| + if (static_cast<unsigned>(a) < 256) {
|
| + return a; // Avoid the extra check in the common case.
|
| + }
|
| + if (a < 0) {
|
| + return 0;
|
| + }
|
| + return 255;
|
| + }
|
| +
|
| + // Convolves horizontally along a single row. The row data is given in
|
| + // |srcData| and continues for the numValues() of the filter.
|
| + template<bool hasAlpha>
|
| + void ConvolveHorizontally(const unsigned char* srcData,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow) {
|
| + // Loop over each pixel on this row in the output image.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| + // Get the filter that determines the current output pixel.
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filterLength| pixels (4 bytes each) after this.
|
| + const unsigned char* rowToFilter = &srcData[filterOffset * 4];
|
| +
|
| + // Apply the filter to the row to get the destination pixel in |accum|.
|
| + int accum[4] = {0};
|
| + for (int filterX = 0; filterX < filterLength; filterX++) {
|
| + SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
|
| + accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
|
| + accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
|
| + accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
|
| + if (hasAlpha) {
|
| + accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
|
| + }
|
| + }
|
| +
|
| + // Bring this value back in range. All of the filter scaling factors
|
| + // are in fixed point with kShiftBits bits of fractional part.
|
| + accum[0] >>= SkConvolutionFilter1D::kShiftBits;
|
| + accum[1] >>= SkConvolutionFilter1D::kShiftBits;
|
| + accum[2] >>= SkConvolutionFilter1D::kShiftBits;
|
| + if (hasAlpha) {
|
| + accum[3] >>= SkConvolutionFilter1D::kShiftBits;
|
| + }
|
| +
|
| + // Store the new pixel.
|
| + outRow[outX * 4 + 0] = ClampTo8(accum[0]);
|
| + outRow[outX * 4 + 1] = ClampTo8(accum[1]);
|
| + outRow[outX * 4 + 2] = ClampTo8(accum[2]);
|
| + if (hasAlpha) {
|
| + outRow[outX * 4 + 3] = ClampTo8(accum[3]);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Does vertical convolution to produce one output row. The filter values and
|
| + // length are given in the first two parameters. These are applied to each
|
| + // of the rows pointed to in the |sourceDataRows| array, with each row
|
| + // being |pixelWidth| wide.
|
| + //
|
| + // The output must have room for |pixelWidth * 4| bytes.
|
| + template<bool hasAlpha>
|
| + void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow) {
|
| + // We go through each column in the output and do a vertical convolution,
|
| + // generating one output pixel each time.
|
| + for (int outX = 0; outX < pixelWidth; outX++) {
|
| + // Compute the number of bytes over in each row that the current column
|
| + // we're convolving starts at. The pixel will cover the next 4 bytes.
|
| + int byteOffset = outX * 4;
|
| +
|
| + // Apply the filter to one column of pixels.
|
| + int accum[4] = {0};
|
| + for (int filterY = 0; filterY < filterLength; filterY++) {
|
| + SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
|
| + accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
|
| + accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
|
| + accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
|
| + if (hasAlpha) {
|
| + accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
|
| + }
|
| + }
|
| +
|
| + // Bring this value back in range. All of the filter scaling factors
|
| + // are in fixed point with kShiftBits bits of precision.
|
| + accum[0] >>= SkConvolutionFilter1D::kShiftBits;
|
| + accum[1] >>= SkConvolutionFilter1D::kShiftBits;
|
| + accum[2] >>= SkConvolutionFilter1D::kShiftBits;
|
| + if (hasAlpha) {
|
| + accum[3] >>= SkConvolutionFilter1D::kShiftBits;
|
| + }
|
| +
|
| + // Store the new pixel.
|
| + outRow[byteOffset + 0] = ClampTo8(accum[0]);
|
| + outRow[byteOffset + 1] = ClampTo8(accum[1]);
|
| + outRow[byteOffset + 2] = ClampTo8(accum[2]);
|
| + if (hasAlpha) {
|
| + unsigned char alpha = ClampTo8(accum[3]);
|
| +
|
| + // Make sure the alpha channel doesn't come out smaller than any of the
|
| + // color channels. We use premultipled alpha channels, so this should
|
| + // never happen, but rounding errors will cause this from time to time.
|
| + // These "impossible" colors will cause overflows (and hence random pixel
|
| + // values) when the resulting bitmap is drawn to the screen.
|
| + //
|
| + // We only need to do this when generating the final output row (here).
|
| + int maxColorChannel = SkTMax(outRow[byteOffset + 0],
|
| + SkTMax(outRow[byteOffset + 1],
|
| + outRow[byteOffset + 2]));
|
| + if (alpha < maxColorChannel) {
|
| + outRow[byteOffset + 3] = maxColorChannel;
|
| + } else {
|
| + outRow[byteOffset + 3] = alpha;
|
| + }
|
| + } else {
|
| + // No alpha channel, the image is opaque.
|
| + outRow[byteOffset + 3] = 0xff;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // There's a bug somewhere here with GCC autovectorization (-ftree-vectorize). We originally
|
| + // thought this was 32 bit only, but subsequent tests show that some 64 bit gcc compiles
|
| + // suffer here too.
|
| + //
|
| + // Dropping to -O2 disables -ftree-vectorize. GCC 4.6 needs noinline. https://bug.skia.org/2575
|
| +#if SK_HAS_ATTRIBUTE(optimize) && defined(SK_RELEASE)
|
| + #define SK_MAYBE_DISABLE_VECTORIZATION __attribute__((optimize("O2"), noinline))
|
| +#else
|
| + #define SK_MAYBE_DISABLE_VECTORIZATION
|
| +#endif
|
| +
|
| + SK_MAYBE_DISABLE_VECTORIZATION
|
| + void convolve_horizontally(const unsigned char* srcData,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow,
|
| + bool hasAlpha) {
|
| + if (hasAlpha) {
|
| + ConvolveHorizontally<true>(srcData, filter, outRow);
|
| + } else {
|
| + ConvolveHorizontally<false>(srcData, filter, outRow);
|
| + }
|
| + }
|
| +#undef SK_MAYBE_DISABLE_VECTORIZATION
|
| +
|
| + void (*convolve_4_rows_horizontally)(const unsigned char* srcData[4],
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow[4],
|
| + size_t outRowBytes)
|
| + = nullptr;
|
| +
|
| +
|
| +#endif
|
| +
|
| + void convolve_vertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow,
|
| + bool hasAlpha) {
|
| + if (hasAlpha) {
|
| + ConvolveVertically<true>(filterValues, filterLength, sourceDataRows,
|
| + pixelWidth, outRow);
|
| + } else {
|
| + ConvolveVertically<false>(filterValues, filterLength, sourceDataRows,
|
| + pixelWidth, outRow);
|
| + }
|
| + }
|
| +
|
| +} // namespace SK_OPTS_NS
|
| +
|
| +#endif//SkBitmapFilter_opts_DEFINED
|
|
|